Fu PP, Herreno-Saenz D, Von Tungeln LS, Lay JO, Wu YS, Lai JS, Evans FE. DNA adducts and carcinogenicity of nitro-polycyclic aromatic hydrocarbons.
ENVIRONMENTAL HEALTH PERSPECTIVES 1994;
102 Suppl 6:177-83. [PMID:
7889844 PMCID:
PMC1566865 DOI:
10.1289/ehp.94102s6177]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have been interested in the structure-activity relationships of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), and have focused on the correlation of structural and electronic features with biological activities, including mutagenicity and tumorigenicity. In our studies, we have emphasized 1-, 2-, 3-, and 6-nitrobenzo[a]pyrenes (nitro-B[a]Ps) and related compounds, all of which are derived from the potent carcinogen benzo[a]pyrene. While 1-, 2-, and 3-nitro-B[a]P are potent mutagens in Salmonella, 6-nitro-B[a]P is a weak mutagen. In vitro metabolism of 1- and 3-nitro-B[a]P has been found to generate multiple pathways for mutagenic activation. The formation of the corresponding trans-7,8-dihydrodiols and 7,8,9,10-tetrahydrotetrols suggests that 1- and 3-nitro-B[a]P trans-7,8-diol-9,10-epoxides are ultimate metabolites of the parent nitro-B[a]Ps. We have isolated a DNA adduct from the reaction between 3-nitro-B[a]P trans-7,8-diol-anti9,10-epoxide and calf thymus DNA, and identified it as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-3-ni tro-B[a]P . The same adduct was identified from in vitro metabolism of [3H]3-nitro-B[a]P by rat liver microsomes in the presence of calf thymus DNA. A DNA adduct of 3-nitro-B[a]P formed from reaction of N-hydroxy-3-amino-B[a]P, prepared in situ with calf thymus DNA was also isolated. This adduct was identified as 6-(deoxyguanosin-N2-yl)-3-amino-B[a]P. The same adduct was obtained from incubating DNA with 3-nitro-B[a]P in the presence of the mammalian nitroeductase, xanthine oxidase, and hypoxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse