Abstract
In the sea urchin, Strongylocentrotus purpuratus, three cell types comprise the 16-cell stage embryo: micromeres, macromeres, and mesomeres. We have analyzed these three cell types for nuclear proteins that were synthesized during the earliest stages of embryonic development. The most striking differences in composition of newly synthesized proteins were found between the micromeres, which are the most committed cell type, and the macromeres and mesomeres. First, the micromeres lacked triply modified forms of histone H3; the levels of doubly modified forms of H3 were also greatly reduced. In contrast, micromeres were enriched in a band which migrated at the position of unmodified, unacetylated, histone H3 protein. Second, the overall distribution of H2A histone variants differed among the three cell types. Compared with macromeres and mesomeres, micromeres had a higher ratio of alpha-stage to cleavage-stage (CS) histone H2A; the micromere nuclei were depleted by 50 and 35%, respectively, in embryonically synthesized histone CS-H2A. Third, micromeres displayed different profiles of H1 histones. (a) They contained a cleavage-stage H1 histone which migrated faster than that of macromeres and mesomeres. This protein displays the electrophoretic behavior expected for a protein with reduced levels of posttranslational covalent modification. (b) Micromeres also had reduced levels of an H1 histone (designated H1 alpha a) band found in the alpha-H1 region of macromeres and mesomeres. These changes in chromatin modification correlate with the degree of commitment of cells in the developing embryo; they may reflect differing activities of the chromatin modifying enzymes in the various cell types at the 16-cell stage. Thus, the newly synthesized chromatin proteins of the individual blastomere types already differ in the developing sea urchin by the 16-cell stage. We suggest that variations in histone subtypes and in the levels of activity of chromatin modifying enzymes, e.g., acetylases and phosphorylases, could be involved in commitment and differentiation of different cell types.
Collapse