1
|
Payer B. Developmental regulation of X-chromosome inactivation. Semin Cell Dev Biol 2016; 56:88-99. [PMID: 27112543 DOI: 10.1016/j.semcdb.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Abstract
With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, Barcelona 08003, Spain.
| |
Collapse
|
2
|
Abstract
The development of mature B and T cells in the lymphoid system involves a series of molecular decisions that culminate in the expression of a single antigen receptor on the cell surface, a phenomenon termed allelic exclusion. While feedback inhibition of the recombinase-activation gene proteins evidently plays an important role in the maintenance of allelic exclusion, the initial restriction of rearrangement to only one allele in each cell seems to be achieved through monoallelic epigenetic changes. Epigenetic mechanisms involved in the establishment of allelic exclusion also play a central role in other types of monoallelic expression, including X-chromosome inactivation in female cells, and parental imprinting. In all three systems, the inequality of the two alleles seems to be achieved mainly by differential DNA methylation, asynchronous DNA replication, differential chromatin modifications, unequal nuclear localization, and non-coding RNA. In this review, we discuss the unifying features among these monoallelically expressed systems and the unique characteristics displayed by each of them.
Collapse
Affiliation(s)
- Maya Goldmit
- Department of Experimental Medicine and Cancer Research, The Hebrew University Medical School, Jerusalem, Israel
| | | |
Collapse
|
3
|
Chow JC, Hall LL, Clemson CM, Lawrence JB, Brown CJ. Characterization of expression at the human XIST locus in somatic, embryonal carcinoma, and transgenic cell lines. Genomics 2003; 82:309-22. [PMID: 12906856 DOI: 10.1016/s0888-7543(03)00170-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
X inactivation requires XIST, a functional RNA that is expressed exclusively from, and localizes to, the inactive X in female somatic cells. In mouse, low-level unstable transcription of Xist is observed prior to the time of inactivation, and an antisense transcript, Tsix, is a critical regulator of early Xist expression. To examine the presence and impact of an antisense transcript in humans we have characterized the extent of sense and antisense transcription in human somatic, transgenic, and embryonal carcinoma (EC) cell lines. Downstream antisense expression at the human XIST locus was not detected in somatic cells, but was detected in the EC line N-Tera2D1 and in somatic cells with an ectopic XIST locus. Presence of the antisense did not disrupt the stability or localization of the sense transcript. We have also identified additional sense transcripts in EC and female somatic cells and demonstrate that the 5' flanking JPX/ENOX gene is expressed from both the active and the inactive X chromosome in somatic cell hybrids, delimiting the extent of inactive X-specific transcriptional control in somatic cells. These analyses reveal similarities to and differences from the murine Xist and Tsix transcripts and generate a complex picture of developmentally regulated transcription through the region.
Collapse
Affiliation(s)
- Jennifer C Chow
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| | | | | | | | | |
Collapse
|
4
|
Tada M, Morizane A, Kimura H, Kawasaki H, Ainscough JFX, Sasai Y, Nakatsuji N, Tada T. Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn 2003; 227:504-10. [PMID: 12889059 DOI: 10.1002/dvdy.10337] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Somatic nuclei can be epigenetically reprogrammed by factors present in undifferentiated embryonic stem (ES) cells. The acquisition of pluripotency by somatic genomes could render such cells a viable source of personalized cell type(s) for therapeutic application, avoiding the need for controversial therapeutic cloning. To investigate this possibility, we first determined the origin of transcripts in teratomas generated from mouse (ES x somatic cell) hybrid clones. Transcription of markers from the somatic genome demonstrated efficient in vivo differentiation down independent lineages. The induction of dopaminergic neurons by coculture with stromal PA6 feeder cells also demonstrated efficient capacity to differentiate in vitro. Hybrid clone-derived neurons expressed appropriate markers, and transcription of Pitx3 from the somatic genome was confirmed. When transplanted into mouse brains, the dopaminergic neurons were successfully integrated and expressed tyrosine hydroxylase. Thus, it should be possible to produce personalized ES-like cells with the reprogrammed somatic genomes.
Collapse
Affiliation(s)
- Masako Tada
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
In mammals, the levels of X-linked gene products in males and females are equalised by the silencing, early in development, of most of the genes on one of the two female X chromosomes. Once established, the silent state is stable from one cell generation to the next. In eutherian mammals, the inactive X chromosome (Xi) differs from its active homologue (Xa) in a number of ways, including increased methylation of selected CpGs, replication late in S-phase, expression of the Xist gene with binding of Xist RNA and underacetylation of core histones. The latter is a common property of genetically inactive chromatin but, in the case of Xi, it is not clear whether it is an integral part of the silencing process or simply a consequence of some other property of Xi, such as late replication. The present review describes two approaches that address this problem. The first shows that Xi in marsupial mammals also contains underacetylated H4, even though its properties differ widely from those of the eutherian Xi. The continued presence of histone underacetylation on Xi in these evolutionarily distant mammals argues for its fundamental importance. The second approach uses mouse embryonic stem cells and places H4 deacetylation in a sequence of events leading to complete X inactivation. The results argue that histone underacetylation plays a role in the stabilisation of the inactive state, rather than in its initiation.
Collapse
Affiliation(s)
- A M Keohane
- Department of Anatomy, University of Birmingham Medical School, Edgbaston, U.K
| | | | | | | |
Collapse
|
6
|
|
7
|
Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature 1996; 379:131-7. [PMID: 8538762 DOI: 10.1038/379131a0] [Citation(s) in RCA: 943] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Xist gene has been proposed as a candidate for the X inactivation centre, the master regulatory switch locus that controls X chromosome inactivation. So far this hypothesis has been supported solely by indirect evidence. Here we describe gene targeting of Xist, and provide evidence for its absolute requirement in the process of X chromosome inactivation.
Collapse
Affiliation(s)
- G D Penny
- Section of Comparative Biology, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
| | | | | | | | | |
Collapse
|
8
|
Takagi N. Variable X chromosome inactivation patterns in near-tetraploid murine EC x somatic cell hybrid cells differentiated in vitro. Genetica 1993; 88:107-17. [PMID: 8224851 DOI: 10.1007/bf02424467] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
For the cytogenetic study of X chromosome inactivation as an X chromosome dosage compensation mechanism, we isolated a number of XXXX, XXX, and XXY near-tetraploid mouse hybrid cell clones by fusing XX or XO embryonal carcinoma cells with lymphocytes carrying a structurally altered X chromosome(s). The inactive X chromosome from the female lymphocyte was reactivated in these hybrid clones which retained embryonal carcinoma morphology so far as they were cultured on the collagen-coated plastic surface in the medium supplemented with leukemia inhibitory factor (LIF) and betamercaptoethanol (BME). Some of these clones developed balloon-like cystic embryoid bodies when they were allowed to form cell aggregates in medium without LIF and BME in bacteriological petri dishes to which they do not adhere. X chromosome inactivation occurring during this process detected by the incorporation of 5-bromodeoxyuridine did not conform to the expected pattern leaving two X chromosomes active in every tetraploid cells. This may suggest either that the X-inactivation mechanism evolved primarily, for the diploid cell is unable to deal with tetraploid conditions efficiently, or that the present system of in vitro differentiation represents an anomalous situation never encountered in vivo.
Collapse
Affiliation(s)
- N Takagi
- Division of Biological Science, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Molecular and Genetic Studies of Human X Chromosome Inactivation. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s1566-3116(08)60026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Abstract
The phenomenon of X-chromosome inactivation in female mammals, whereby one of the two X chromosome present in each cell of the female embryo is inactivated early in development, was first described by Mary Lyon in 1961. Nearly 30 years later, the mechanism of X-chromosome inactivation remains unknown. Strong evidence has accumulated over the years, however, for the involvement of a major switch or inactivation centre on the mouse X chromosome. Identification of the inactivation centre at the molecular level would be an important step in understanding the mechanism of X-inactivation. In this paper we review the evidence for the existence and location of the X-inactivation centre on the mouse X-chromosome, present data on the molecular genetic mapping of this region, and describe ongoing strategies we are using to attempt to identify the inactivation centre at the molecular level.
Collapse
Affiliation(s)
- S Rastan
- Section of Comparative Biology, Clinical Research Centre, Harrow, Middlesex, UK
| | | |
Collapse
|
11
|
Lock LF, Takagi N, Martin GR. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 1987; 48:39-46. [PMID: 3791414 DOI: 10.1016/0092-8674(87)90353-9] [Citation(s) in RCA: 279] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA sequences have previously been identified in the first intron of the mouse Hprt gene that are methylated on the inactive but not the active X chromosome. The temporal relationship between methylation of these sequences and X-inactivation was studied in teratocarcinoma cells and postimplantation mouse embryos: the sequences are unmethylated prior to X-inactivation and do not become methylated on the inactive X in most fetal cells until several days postinactivation. Such inactive X-specific methylation occurs in a significantly smaller proportion of the cells in the extra-embryonic tissues, yolk sac mesoderm and endoderm, than in the fetus. These data suggest that the inactive X-specific methylation of sequences such as those in the first intron of the Hprt gene does not play any role in the primary events of X-inactivation, but may function as part of a secondary, tissue-specific mechanism for maintaining the inactive state.
Collapse
|
12
|
Adra CN, Boer PH, McBurney MW. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 1987; 60:65-74. [PMID: 3440520 DOI: 10.1016/0378-1119(87)90214-9] [Citation(s) in RCA: 313] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report the cloning of the mouse pgk-1 gene encoding the somatic cell isoform of the enzyme phosphoglycerate kinase. The gene is contained within a 16-kb region of the X chromosome and is interrupted by at least ten introns. The promoter region of the pgk-1 gene is rich in G and C nucleotides and contains five copies of the hexadeoxynucleotide, GGGCGG, the potential binding site for the Sp 1 transcription factor, a CCAAT sequence, but no TATA box. This promoter functions following DNA-mediated transfection into mammalian cells. The promoter of the mouse pgk-1 gene is homologous to the human pgk-1 promoter. A number of conserved motifs in the promoter may indicate a significant role for these sequences in expression of the pgk-1 gene.
Collapse
Affiliation(s)
- C N Adra
- Department of Medicine, University of Ottawa, Ont., Canada
| | | | | |
Collapse
|
13
|
Abstract
The embryonal carcinoma cell line, C86S1, carries two X chromosomes, one of which replicates late during S phase of the cell cycle and appears to be genetically inactive. C86S1A1 is a mutant which lacks activity of the X-encoded enzyme, hypoxanthine phosphoribosyltransferase (HPRT). Treatment of C86S1A1 cells with DNA-demethylating agents, such as 5-azacytidine (5AC), resulted in (i) the transient expression in almost all cells of elevated levels of HPRT and three other enzymes encoded by X-linked genes and (ii) the stable expression of HPRT in up to 5 to 20% of surviving cells. Most cells which stably expressed HPRT had two X chromosomes which replicated in early S phase. C86S1A1 cells which had lost the inactive X chromosome did not respond to 5AC. These results suggest that DNA demethylation results in the reactivation of genes on the inactive X chromosome and perhaps in the reactivation of the entire X chromosome. No such reactivation occurred in C86S1A1 cells when the cells were differentiated before exposure to 5AC. Thus, the process of X chromosome inactivation may be a sequential one involving, as a first step, methylation of certain DNA sequences and, as a second step, some other mechanism(s) of transcriptional repression.
Collapse
|
14
|
Okuyama K, Takagi N, Sasaki M. Sequential X-chromosome reactivation and inactivation in cell hybrids between murine embryonal carcinoma cells and female rat thymocytes. Exp Cell Res 1986; 164:323-34. [PMID: 3709678 DOI: 10.1016/0014-4827(86)90032-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By means of a 5-bromodeoxyuridine (BrdU) incorporation and an acridine orange fluorescence staining method together with [3H]thymidine ([3H]TdR) autoradiography, we studied the chronology of X-chromosome replication in newly formed cell hybrids between the hypoxanthine phosphoribosyl transferase (HPRT)-deficient OTF9-63 murine embryonal carcinoma (EC) cell with 43 +/- chromosomes and the female rat thymocyte having 42 chromosomes. Most near-tetraploid hybrid cells retained all chromosomes from both parents including one mouse X (XM) and two rat X (XR) chromosomes throughout the period of this study. Data showing changes in the chronology of X-chromosome replication obtained here were indicative of reactivation of the inactive X chromosome from the rat thymocyte, and de novo X-inactivation of one or two chromosomes. The extinction of lymphocyte phenotypes from the hybrids and their subsequent differentiation to the cell type resembling endoderm found in the peri-implantation mouse embryo apparently occurred in parallel with the above changes. These hybrids also showed an interesting possibility of preferential reinactivation of the reactivated XR chromosome in the early stages after cell fusion.
Collapse
|
15
|
SUGAWARA OSAMU, TAKAGI NOBUO. Presence of an Allocyclic Early Replicating X Chromosome in Female Embryos of the Rat, Chinese Hamster and Rabbit. (X chromosome inactivation/allocyclic X chromosome/rat/Chinese hamster/rabbit). Dev Growth Differ 1985. [DOI: 10.1111/j.1440-169x.1985.00663.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Abstract
The embryonal carcinoma cell line, C86S1, carries two X chromosomes, one of which replicates late during S phase of the cell cycle and appears to be genetically inactive. C86S1A1 is a mutant which lacks activity of the X-encoded enzyme, hypoxanthine phosphoribosyltransferase (HPRT). Treatment of C86S1A1 cells with DNA-demethylating agents, such as 5-azacytidine (5AC), resulted in (i) the transient expression in almost all cells of elevated levels of HPRT and three other enzymes encoded by X-linked genes and (ii) the stable expression of HPRT in up to 5 to 20% of surviving cells. Most cells which stably expressed HPRT had two X chromosomes which replicated in early S phase. C86S1A1 cells which had lost the inactive X chromosome did not respond to 5AC. These results suggest that DNA demethylation results in the reactivation of genes on the inactive X chromosome and perhaps in the reactivation of the entire X chromosome. No such reactivation occurred in C86S1A1 cells when the cells were differentiated before exposure to 5AC. Thus, the process of X chromosome inactivation may be a sequential one involving, as a first step, methylation of certain DNA sequences and, as a second step, some other mechanism(s) of transcriptional repression.
Collapse
|
17
|
Evidence for a relationship between DNA methylation and DNA replication from studies of the 5-azacytidine-reactivated allocyclic X chromosome. Exp Cell Res 1985; 158:301-10. [PMID: 2408909 DOI: 10.1016/0014-4827(85)90455-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We examined the sequence of DNA synthesis of the human active, inactive and reactivated X chromosomes in mouse-human hybrid cells. The two independent reactivants, induced by 5-azacytidine (5-azaC), expressed human hypoxanthinephosphoribosyl transferase (HPRT), and one also expressed human glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase (PGK). Restriction enzyme analysis of DNA methylation at the re-expressed loci revealed hypomethylation of CpG clusters, that characterizes the relevant genes on the active X. The transfer of active and inactive X chromosomes from the native environment of the human fibroblast to the foreign environment of the hybrid cell did not affect the specific replication sequence of either human X chromosome. The silent X chromosome when reactivated, remained allocyclic, and the first bands to replicate were the same as prior to reactivation. In one reactivant, however, further progression of replication was significantly altered with respect to the order in which bands were synthesized. This alteration in the replication of the silent X following 5-azaC-induced reactivation suggests that DNA methylation may modulate the replication kinetics of chromosomal DNA.
Collapse
|
18
|
Huebner K, Nagarajan L, deJesus E, Orkin SH, Caskey CT, Croce CM. Activity of X-linked genes in stem and differentiated Mus musculus X Mus caroli hybrid cells. ACTA ACUST UNITED AC 1984; 15:241-8. [PMID: 6543551 DOI: 10.1016/0045-6039(84)90081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypoxanthine phosphoribosyltransferase-deficient (HPRT-) F9-derived teratocarcinoma stem cells carrying an SV40 genome (12-16TG cells) were fused with Mus caroli (M. car.) spleen cells, and a stem cell hybrid containing reduced numbers of M. car. chromosomes was isolated (BC6 stem cell). The BC6 cells containing an active X chromosome from each parental cell were induced to differentiate in retinoic acid, and differentiated clones were isolated. Most differentiated clones retained both parental X chromosomes in active form. One differentiated clone, BC6-13, grew equally well in hypoxanthine/aminopterin/thymidine (HAT) selective medium (which requires an active M. car. HPRT (E.C.2.4.2.8) locus) or in 6-thioguanine (6TG, which would require either loss or inactivation of the M. car. HPRT locus). Using cDNA probes for HPRT and phosphoglycerate kinase (PGK) (E.C.2.7.2.3) loci and biochemical assays for HPRT and PGK enzymes, it was shown that BC6-13 cells, whether grown in nonselective medium, HAT medium, or 6TG-containing medium, retain the HPRT and PGK genes of both parental cells, but the M. car. forms of HPRT and PGK were inactivated in cells treated with 6TG. 6-Thioguanine seems to act as an inducer, one effect of which is X chromosome inactivation, which seems to be complete and irreversible as early as 24 h after addition of 6TG to BC6-13 cells.
Collapse
|