1
|
Flanigan KM, Vetter TA, Simmons TR, Iammarino M, Frair EC, Rinaldi F, Chicoine LG, Harris J, Cheatham JP, Cheatham SL, Boe B, Waldrop MA, Zygmunt DA, Packer D, Martin PT. A first-in-human phase I/IIa gene transfer clinical trial for Duchenne muscular dystrophy using rAAVrh74.MCK. GALGT2. Mol Ther Methods Clin Dev 2022; 27:47-60. [PMID: 36186954 PMCID: PMC9483573 DOI: 10.1016/j.omtm.2022.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/26/2022] [Indexed: 02/04/2023]
Abstract
In a phase 1/2, open-label dose escalation trial, we delivered rAAVrh74.MCK.GALGT2 (also B4GALNT2) bilaterally to the legs of two boys with Duchenne muscular dystrophy using intravascular limb infusion. Subject 1 (age 8.9 years at dosing) received 2.5 × 1013 vector genome (vg)/kg per leg (5 × 1013 vg/kg total) and subject 2 (age 6.9 years at dosing) received 5 × 1013 vg/kg per leg (1 × 1014 vg/kg total). No serious adverse events were observed. Muscle biopsy evaluated 3 or 4 months post treatment versus baseline showed evidence of GALGT2 gene expression and GALGT2-induced muscle cell glycosylation. Functionally, subject 1 showed a decline in 6-min walk test (6MWT) distance; an increase in time to run 100 m, and a decline in North Star Ambulatory Assessment (NSAA) score until ambulation was lost at 24 months. Subject 2, treated at a younger age and at a higher dose, demonstrated an improvement over 24 months in NSAA score (from 20 to 23 points), an increase in 6MWT distance (from 405 to 478 m), and only a minimal increase in 100 m time (45.6-48.4 s). These data suggest preliminary safety at a dose of 1 × 1014 vg/kg and functional stabilization in one patient.
Collapse
Affiliation(s)
- Kevin M. Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Tabatha R. Simmons
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Megan Iammarino
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emma C. Frair
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Federica Rinaldi
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Louis G. Chicoine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Johan Harris
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - John P. Cheatham
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sharon L. Cheatham
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Boe
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Megan A. Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Deborah A. Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| | - Davin Packer
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Paul T. Martin
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
2
|
Zygmunt DA, Xu R, Jia Y, Ashbrook A, Menke C, Shao G, Yoon JH, Hamilton S, Pisharath H, Bolon B, Martin PT. rAAVrh74.MCK. GALGT2 Demonstrates Safety and Widespread Muscle Glycosylation after Intravenous Delivery in C57BL/6J Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:305-319. [PMID: 31890730 PMCID: PMC6923506 DOI: 10.1016/j.omtm.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
rAAVrh74.MCK.GALGT2 is a surrogate gene therapy that inhibits muscular dystrophy in multiple animal models. Here, we report on a dose-response study of functional muscle GALGT2 expression as well as toxicity and biodistribution studies after systemic intravenous (i.v.) delivery of rAAVrh74.MCK.GALGT2. A dose of 4.3 × 1014vg/kg (measured with linear DNA standard) resulted in GALGT2-induced glycosylation in the majority of skeletal myofibers throughout the body and in almost all cardiomyocytes, while several lower doses also showed significant muscle glycosylation. No adverse clinical signs or treatment-dependent changes in tissue or organ pathology were noted at 1 or 3 months post-treatment. Blood cell and serum enzyme chemistry measures in treated mice were all within the normal range except for alkaline phosphatase (ALP) activity, which was elevated in serum but not in tissues. Some anti-rAAVrh74 capsid T cell responses were noted at 4 weeks post-treatment, but all such responses were not present at 12 weeks. Using intramuscular delivery, GALGT2-induced muscle glycosylation was increased in Cmah-deficient mice, which have a humanized sialoglycome, relative to wild-type mice, suggesting that use of mice may underestimate GALGT2 activity in human muscle. These data demonstrate safety and high transduction of muscles throughout the body plan with i.v. delivery of rAAVrh74.MCK.GALGT2.
Collapse
Affiliation(s)
- Deborah A Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Rui Xu
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Ying Jia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA.,Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chelsea Menke
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Guohong Shao
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Jung Hae Yoon
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Sonia Hamilton
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Harshan Pisharath
- Animal Resource Center and Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Paul T Martin
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Ferrer-Ferrer M, Dityatev A. Shaping Synapses by the Neural Extracellular Matrix. Front Neuroanat 2018; 12:40. [PMID: 29867379 PMCID: PMC5962695 DOI: 10.3389/fnana.2018.00040] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM) for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i) synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs), neuronal pentraxins (NPs) and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii) maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii) regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.
Collapse
Affiliation(s)
- Maura Ferrer-Ferrer
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
4
|
Gokulakrishnan G, Chang X, Fleischmann R, Fiorotto ML. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat. J Endocrinol 2017; 232:561-572. [PMID: 28096434 PMCID: PMC5321625 DOI: 10.1530/joe-16-0372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023]
Abstract
Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are unknown. To test the hypothesis that blunting of Pax7+ muscle progenitor cell proliferative activity by GLC in vivo also contributes to reduced fetal muscle growth, pregnant rats were administered dexamethasone (DEX: 1 mg/L drinking water) from embryonic day (ED) 13 to ED21. Their responses were compared to pair-fed (PF) and ad libitum-fed controls (CON). Bromodeoxyuridine (BrdU) was administered before delivery to measure myonuclear accretion. Fetal hind limb and diaphragm muscles were collected at term and analyzed for myofiber cross-sectional area (CSA), total and BrdU+ myonuclei, Pax7+ nuclei, MyoD and myogenin protein and mRNA abundance and myosin heavy chain (MyHC) isoform composition. Mean fiber CSA, myonuclei/myofiber and Pax7+ nuclei/myofiber ratios were reduced in DEX compared to those in CON and PF muscles; CSA/myonucleus, BrdU+/total myonuclei and BrdU+ myonuclei/Pax7+ nuclei were similar among groups. Myogenin abundance was reduced and MyHC-slow was increased in DEX fetuses. The data are consistent with GLC inhibition of muscle progenitor cell proliferation limiting satellite cell and myonuclear accretion. The response of PF-fed compared to CON muscles indicated that decreased food consumption by DEX dams contributed to the smaller myofiber CSA but did not affect Pax7+ nuclear accretion. Thus, the effect on satellite cell reserve and myonuclear number also contributes to the blunting of fetal muscle growth by GLC.
Collapse
Affiliation(s)
- Ganga Gokulakrishnan
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of PediatricsTexas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoyan Chang
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
6
|
Xu R, Singhal N, Serinagaoglu Y, Chandrasekharan K, Joshi M, Bauer JA, Janssen PML, Martin PT. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2668-84. [PMID: 26435413 DOI: 10.1016/j.ajpath.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/14/2015] [Accepted: 06/29/2015] [Indexed: 01/06/2023]
Abstract
Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice.
Collapse
Affiliation(s)
- Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Yelda Serinagaoglu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kumaran Chandrasekharan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mandar Joshi
- Department of Pediatrics, University of Kentucky College of Medicine, Kentucky Children's Hospital, Lexington, Kentucky
| | - John A Bauer
- Department of Pediatrics, University of Kentucky College of Medicine, Kentucky Children's Hospital, Lexington, Kentucky
| | - Paulus M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
7
|
Voigt T, Neve A, Schümperli D. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy. Neuropathol Appl Neurobiol 2015; 40:416-34. [PMID: 23718187 DOI: 10.1111/nan.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/30/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022]
Abstract
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
8
|
Singhal N, Martin PT. A role for Galgt1 in skeletal muscle regeneration. Skelet Muscle 2015; 5:3. [PMID: 25699169 PMCID: PMC4333175 DOI: 10.1186/s13395-014-0028-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cell surface glycans are known to play vital roles in muscle membrane stability and muscle disease, but to date, roles for glycans in muscle regeneration have been less well understood. Here, we describe a role for complex gangliosides synthesized by the Galgt1 gene in muscle regeneration. METHODS Cardiotoxin-injected wild type (WT) and Galgt1 (-/-) muscles, and mdx and Galgt1 (-/-) mdx muscles, were used to study regeneration in response to acute and chronic injury, respectively. Muscle tissue was analyzed at various time points for morphometric measurements and for gene expression changes in satellite cell and muscle differentiation markers by quantitative real-time polymerase chain reaction (qRT-PCR). Primary cell cultures were used to measure growth rate and myotube formation and to identify Galgt1 expression changes after cardiotoxin by fluorescence-activated cell sorting (FACS). Primary cell culture and tissue sections were also used to quantify satellite cell apoptosis. RESULTS A query of a microarray data set of cardiotoxin-induced mouse muscle gene expression changes identified Galgt1 as the most upregulated glycosylation gene immediately after muscle injury. This was validated by qRT-PCR as a 23-fold upregulation in Galgt1 expression 1 day after cardiotoxin administration and a 16-fold upregulation in 6-week-old mdx muscles. These changes correlated with increased expression of Galgt1 protein and GM1 ganglioside in mononuclear muscle cells. In the absence of Galgt1, cardiotoxin-induced injury led to significantly reduced myofiber diameters after 14 and 28 days of regeneration. Myofiber diameters were also significantly reduced in Galgt1-deficient mdx mice compared to age-matched mdx controls, and this was coupled with a significant increase in the loss of muscle tissue. Cardiotoxin-injected Galgt1 (-/-) muscles showed reduced gene expression of the satellite cell marker Pax7 and increased expression of myoblast markers MyoD, Myf5, and Myogenin after injury along with a tenfold increase in apoptosis of Pax7-positive muscle cells. Cultured primary Galgt1 (-/-) muscle cells showed a normal growth rate but demonstrated premature fusion into myofibers, resulting in an overall impairment of myofiber formation coupled with a threefold increase in muscle cell apoptosis. CONCLUSIONS These experiments demonstrate a role for Galgt1 in skeletal muscle regeneration and suggest that complex gangliosides made by Galgt1 modulate the survival and differentiation of satellite cells.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, USA
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, USA ; Department of Pediatrics, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205 USA ; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH 43205 USA
| |
Collapse
|
9
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
10
|
A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. J Neurosci 2011; 31:15362-75. [PMID: 22031882 DOI: 10.1523/jneurosci.3181-11.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although transcription factors are known to regulate synaptic plasticity, downstream genes that contribute to neural circuit remodeling are largely undefined. In Caenorhabditis elegans, GABAergic Dorsal D (DD) motor neuron synapses are relocated to new sites during larval development. This remodeling program is blocked in Ventral D (VD) GABAergic motor neurons by the COUP-TF (chicken ovalbumin upstream promoter transcription factor) homolog, UNC-55. We exploited this UNC-55 function to identify downstream synaptic remodeling genes that encode a diverse array of protein types including ion channels, cytoskeletal components, and transcription factors. We show that one of these targets, the Iroquois-like homeodomain protein, IRX-1, functions as a key regulator of remodeling in DD neurons. Our discovery of irx-1 as an unc-55-regulated target defines a transcriptional pathway that orchestrates an intricate synaptic remodeling program. Moreover, the well established roles of these conserved transcription factors in mammalian neural development suggest that a similar cascade may also control synaptic plasticity in more complex nervous systems.
Collapse
|
11
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
12
|
Chandrasekharan K, Yoon JH, Xu Y, deVries S, Camboni M, Janssen PML, Varki A, Martin PT. A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med 2010; 2:42ra54. [PMID: 20668298 DOI: 10.1126/scitranslmed.3000692] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the evolution of humans, an inactivating deletion was introduced in the CMAH (cytidine monophosphate-sialic acid hydroxylase) gene, which eliminated biosynthesis of the common mammalian sialic acid N-glycolylneuraminic acid from all human cells. We found that this human-specific change in sialylation capacity contributes to the marked discrepancy in phenotype between the mdx mouse model for Duchenne muscular dystrophy (DMD) and the human disease. When compared to human patients with DMD, mdx mice show reduced severity or slower development of clinically relevant disease phenotypes, despite lacking dystrophin protein in almost all muscle cells. This is especially true for the loss of ambulation, cardiac and respiratory muscle weakness, and decreased life span, all of which are major phenotypes contributing to DMD morbidity and mortality. These phenotypes occur at an earlier age or to a greater degree in mdx mice that also carry a human-like mutation in the mouse Cmah gene, possibly as a result of reduced strength and expression of the dystrophin-associated glycoprotein complex and increased activation of complement. Cmah-deficient mdx mice are a small-animal model for DMD that better approximates the human glycome and its contributions to muscular dystrophy.
Collapse
Affiliation(s)
- Kumaran Chandrasekharan
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
The synaptic CT carbohydrate modulates binding and expression of extracellular matrix proteins in skeletal muscle: Partial dependence on utrophin. Mol Cell Neurosci 2009; 41:448-63. [PMID: 19442736 DOI: 10.1016/j.mcn.2009.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/21/2022] Open
Abstract
The CT carbohydrate, Neu5Ac/Neu5Gcalpha2,3[GalNAcbeta1,4]Galbeta1,4GlcNAcbeta-, is specifically expressed at the neuromuscular junction in skeletal myofibers of adult vertebrates. When Galgt2, the glycosyltransferase that creates the synaptic beta1,4GalNAc portion of this glycan, is overexpressed in extrasynaptic regions of the myofiber membrane, alpha dystroglycan becomes glycosylated with the CT carbohydrate and this coincides with the ectopic expression of synaptic dystroglycan-binding proteins, including laminin alpha4, laminin alpha5, and utrophin. Here we show that both synaptic and extrasynaptic forms of laminin and agrin have increased binding to the CT carbohydrate compared to sialyl-N-acetyllactosamine, its extrasynaptically expressed precursor. Muscle laminins also show increased binding to CT-glycosylated muscle alpha dystroglycan relative to its non-CT-containing glycoforms. Overexpression of Galgt2 in transgenic mouse skeletal muscle increased the mRNA expression of extracellular matrix (ECM) genes, including agrin and laminin alpha5, as well as utrophin, integrin alpha7, and neuregulin. Increased expression of ECM proteins in Galgt2 transgenic skeletal muscles was partially dependent on utrophin, but utrophin was not required for Galgt2-induced changes in muscle growth or neuromuscular development. These experiments demonstrate that overexpression of a synaptic carbohydrate can increase both ECM binding to alpha dystroglycan and ECM expression in skeletal muscle, and they suggest a mechanism by which Galgt2 overexpression may inhibit muscular dystrophy and affect neuromuscular development.
Collapse
|
14
|
Xu R, Chandrasekharan K, Yoon JH, Camboni M, Martin PT. Overexpression of the cytotoxic T cell (CT) carbohydrate inhibits muscular dystrophy in the dyW mouse model of congenital muscular dystrophy 1A. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:181-99. [PMID: 17591965 PMCID: PMC1941597 DOI: 10.2353/ajpath.2007.060927] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of recent studies have demonstrated therapeutic effects of transgenes on the development of muscle pathology in the mdx mouse model for Duchenne muscular dystrophy, but none have been shown also to be effective in mouse models for laminin alpha2-deficient congenital muscular dystrophy (MDC1A). Here, we show that overexpression of the cytotoxic T cell (CT) GalNAc transferase (Galgt2) is effective in inhibiting the development of muscle pathology in the dy(W) mouse model of MDC1A, much as we had previously shown in mdx animals. Embryonic overexpression of Galgt2 in skeletal muscles using transgenic mice or postnatal overexpression using adeno-associated virus both reduced the extent of muscle pathology in dy(W)/dy(W) skeletal muscle. As with mdx mice, embryonic overexpression of the Galgt2 transgene in dy(W)/dy(W) myofibers inhibited muscle growth, whereas postnatal overexpression did not. Both embryonic and postnatal overexpression of Galgt2 in dy(W)/dy(W) muscle increased the expression of agrin, a protein that, in recombinant form, has been shown to ameliorate disease, whereas laminin alpha1, another disease modifier, was not expressed. Galgt2 over-expression also stimulated the glycosylation of a gly-colipid with the CT carbohydrate, and glycolipids accounted for most of the CT-reactive material in postnatal overexpression experiments. These experiments demonstrate that Galgt2 overexpression is effective in altering disease progression in skeletal muscles of dy(W) mice and should be considered as a therapeutic target in MDC1A.
Collapse
Affiliation(s)
- Rui Xu
- Center for Gene Therapy, Columbus Children's Research Institute, Department of Pediatrics, Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
15
|
Martin LT, Glass M, Dosunmu E, Martin PT. Altered expression of natively glycosylated alpha dystroglycan in pediatric solid tumors. Hum Pathol 2007; 38:1657-68. [PMID: 17640712 PMCID: PMC2850815 DOI: 10.1016/j.humpath.2007.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/28/2006] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Altered glycosylation and/or expression of dystroglycan have been reported in forms of congenital muscular dystrophy as well as in cancers of the breast, colon, and oral epithelium. To date, however, there has been no study of the expression of dystroglycan in pediatric solid tumors. Using a combination of immunostaining on tissue microarrays and immunoblotting of snap-frozen unfixed tissues, we demonstrate a significant reduction in native alpha dystroglycan expression in pediatric alveolar rhabdomyosarcoma (RMS), embryonal RMS, neuroblastoma (NBL), and medulloblastoma, whereas expression of beta dystroglycan, which is cotranslated with alpha dystroglycan, is largely unchanged. Loss of native alpha dystroglycan expression was significantly more pronounced in stage 4 NBL than in pooled samples of stage 1 and stage 2 NBL, suggesting that loss of native alpha dystroglycan expression increases with advancing tumor stage. Neuroblastoma and RMS samples with reduced expression of native alpha dystroglycan also showed reduced laminin binding in laminin overlay experiments. Expression of natively glycosylated alpha dystroglycan was not altered in several other pediatric tumor types when compared with appropriate normal tissue controls. These data provide the first evidence that alpha dystroglycan glycosylation and laminin binding to alpha dystroglycan are altered in certain pediatric solid tumors and suggest that aberrant dystroglycan glycosylation may contribute to tumor cell biology in patients with RMS, medulloblastoma, and NBL.
Collapse
Affiliation(s)
- Laura T Martin
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA.
| | | | | | | |
Collapse
|
16
|
Dimitropoulou A, Bixby JL. Motor neurite outgrowth is selectively inhibited by cell surface MuSK and agrin. Mol Cell Neurosci 2005; 28:292-302. [PMID: 15691710 DOI: 10.1016/j.mcn.2004.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 09/17/2004] [Accepted: 09/22/2004] [Indexed: 01/16/2023] Open
Abstract
During neuromuscular development, "stop signals" present on the target myotube inhibit motor axon growth. Mice lacking either the neuronal form of agrin or the muscle-specific tyrosine kinase (MuSK) lose stop signal activity, suggesting that they are part of such signals or induce them in myotubes. To test whether MuSK complexes form stop signals in the absence of myotube signaling, we cultured ciliary ganglion (CG) neurons with nonmuscle cells expressing cell-surface MuSK. Expression of MuSK had no effect on neuronal adhesion. MuSK expression, however, inhibited neurite outgrowth from CG neurons, but not retinal ganglion cell neurons. The neurite-inhibitory effect could be completely reversed by an antibody to the MuSK extracellular domain, and partially reversed by an antibody to agrin, suggesting that inhibition is mediated by a complex of these proteins. Thus, an agrin/MuSK complex may form part of a motor neuron stop signal involved in "reverse signaling" to the motor neuron.
Collapse
|
17
|
Jenniskens GJ, Veerkamp JH, van Kuppevelt TH. Heparan sulfates in skeletal muscle development and physiology. J Cell Physiol 2005; 206:283-94. [PMID: 15991249 DOI: 10.1002/jcp.20450] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have seen an emerging interest in the composition of the skeletal muscle extracellular matrix (ECM) and in the developmental and physiological roles of its constituents. Many cell surface-associated and ECM-embedded molecules occur in highly organized spatiotemporal patterns, suggesting important roles in the development and functioning of skeletal muscle. Glycans are historically underrepresented in the study of skeletal muscle ECM, even though studies from up to 30 years ago have demonstrated specific carbohydrates and glycoproteins to be concentrated in neuromuscular junctions (NMJs). Changes in glycan profile and distribution during myogenesis and synaptogenesis hint at an active involvement of glycoconjugates in muscle development. A modest amount of literature involves glycoconjugates in muscle ion housekeeping, but a recent surge of evidence indicates that glycosylation defects are causal for many congenital (neuro)muscular disorders, rendering glycosylation essential for skeletal muscle integrity. In this review, we focus on a single class of ECM-resident glycans and their emerging roles in muscle development, physiology, and pathology: heparan sulfate proteoglycans (HSPGs), notably their heparan sulfate (HS) moiety.
Collapse
Affiliation(s)
- Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands
| | | | | |
Collapse
|
18
|
Aldunate R, Casar JC, Brandan E, Inestrosa NC. Structural and functional organization of synaptic acetylcholinesterase. ACTA ACUST UNITED AC 2004; 47:96-104. [PMID: 15572165 DOI: 10.1016/j.brainresrev.2004.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The expression of the synaptic asymmetric form of the enzyme acetylcholinesterase (AChE) depends of two different genes: the gene that encodes for the catalytic subunit and the gene that encodes for the collagenic tail, ColQ. Asymmetric AChE is specifically localized to the basal lamina at the neuromuscular junction (NMJ). This highly organized distribution pattern suggests the existence of one or more specific binding sites in ColQ required for its anchorage to the synaptic basal lamina. Recent evidence support this notion: first, the presence of two heparin-binding domains in ColQ that interact with heparan sulfate proteoglycans (HSPGs) at the synaptic basal lamina; and second, a knockout mouse for perlecan, a HSPG concentrated in nerve-muscle contact, in which absence of asymmetric AChE at the NMJ is observed. The physiological importance of collagen-tailed AChE form in skeletal muscle has been illustrated by the identification of several mutations in the ColQ gene. These mutations determine end-plate acetylcholinesterase deficiency and induce one type of synaptic functional disorders observed in Congenital Myasthenic Syndromes (CMSs).
Collapse
Affiliation(s)
- Rebeca Aldunate
- Centro FONDAP de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 114-D Santiago, Chile
| | | | | | | |
Collapse
|
19
|
Lai KO, Chen Y, Po HM, Lok KC, Gong K, Ip NY. Identification of the Jak/Stat Proteins as Novel Downstream Targets of EphA4 Signaling in Muscle. J Biol Chem 2004; 279:13383-92. [PMID: 14729671 DOI: 10.1074/jbc.m313356200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eph receptors and their cognate ligands ephrins are important players in axon guidance and neural patterning during development of the nervous system. Much of our knowledge about the signal transduction pathways triggered by Eph receptors has been related to the modulation of actin cytoskeleton, which is fundamental in mediating the cellular responses in growth cone navigation, cell adhesion, and cell migration. In contrast, little was known about whether long term activation of Eph receptor would regulate gene expression. Here we report a novel signaling pathway of EphA4, which involves activation of the tyrosine kinase Jak2 and the transcriptional activator Stat3. Transfection of COS7 cells with EphA4, but not the kinase-dead mutant, induced tyrosine phosphorylation of Jak2, Stat1, and Stat3. Treatment of cultured C2C12 myotubes with ephrin-A1 also induced tyrosine phosphorylation of Stat3, which was abolished by the Jak2 inhibitor AG490. Moreover, Jak2 was co-immunoprecipitated with EphA4 in muscle, and both proteins were concentrated at the neuromuscular junction (NMJ) of adult muscle. By using microarray analysis, we have identified acetylcholinesterase, the critical enzyme that hydrolyzed the neurotransmitter acetylcholine at the NMJ, as a downstream target gene of the Jak/Stat pathway in muscle. More importantly, ephrin-A1 increased the expression of acetylcholinesterase protein in C2C12 myotubes, which was abolished by AG490. In contrast, ephrin-A1 reduced the expression of fibronectin mRNA in C2C12 myotubes independently of Jak2. Finally, the expression level of acetylcholinesterase in limb muscle of EphA4 null mice was significantly reduced compared with the wild-type control. Taken together, these results have identified Jak/Stat proteins as the novel downstream targets of EphA4 signaling. In addition, the present study provides the first demonstration of a potential function of Eph receptors and Jak/Stat proteins at the NMJ.
Collapse
Affiliation(s)
- Kwok-On Lai
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Misgeld T, Burgess RW, Lewis RM, Cunningham JM, Lichtman JW, Sanes JR. Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 2002; 36:635-48. [PMID: 12441053 DOI: 10.1016/s0896-6273(02)01020-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activity-dependent and -independent signals collaborate to regulate synaptogenesis, but their relative contributions are unclear. Here, we describe the formation of neuromuscular synapses at which neurotransmission is completely and specifically blocked by mutation of the neurotransmitter-synthesizing enzyme choline acetyltransferase. Nerve terminals differentiate extensively in the absence of neurotransmitter, but neurotransmission plays multiple roles in synaptic differentiation. These include influences on the numbers of pre- and postsynaptic partners, the distribution of synapses in the target field, the number of synaptic sites per target cell, and the number of axons per synaptic site. Neurotransmission also regulates the formation or stability of transient acetylcholine receptor-rich processes (myopodia) that may initiate nerve-muscle contact. At subsequent stages, neurotransmission delays some steps in synaptic maturation but accelerates others. Thus, neurotransmission affects synaptogenesis from early stages and coordinates rather than drives synaptic maturation.
Collapse
Affiliation(s)
- Thomas Misgeld
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
21
|
Jenniskens GJ, Hafmans T, Veerkamp JH, van Kuppevelt TH. Spatiotemporal distribution of heparan sulfate epitopes during myogenesis and synaptogenesis: a study in developing mouse intercostal muscle. Dev Dyn 2002; 225:70-9. [PMID: 12203722 DOI: 10.1002/dvdy.10138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Formation of a basal lamina (BL) ensheathing developing skeletal muscle cells is one of the earliest events in mammalian skeletal muscle myogenesis. BL-resident heparan sulfate proteoglycans have been implicated in various processes during myogenesis, including synaptic differentiation. However, attention has focused on the proteoglycan protein core, ignoring the glycosaminoglycan moiety mainly because of a lack of appropriate tools. Recently, we selected a panel of anti-heparan sulfate antibodies applied here to study the spatiotemporal distribution of specific heparan sulfate (HS) epitopes during myogenesis. In mouse intercostal muscle at embryonic day (E14), formation of acetylcholine receptor clusters at synaptic sites coincides with HS deposition. Although some HS epitopes show a general appearance throughout the BL, one epitope preferably clusters at synaptic sites but does so only from E16 onward. During elongation and maturation of primary myotubes, a process preceding secondary myotube development, significant changes in the HS epitope constitution of both synaptic and extrasynaptic BL were observed. As a whole, the data presented here strengthen previous observations on developmental regulation by BL components, and add to the putative roles of specific HS epitopes in myogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
22
|
Bezakova G, Helm JP, Francolini M, Lømo T. Effects of purified recombinant neural and muscle agrin on skeletal muscle fibers in vivo. J Cell Biol 2001; 153:1441-52. [PMID: 11425874 PMCID: PMC2150725 DOI: 10.1083/jcb.153.7.1441] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aggregation of acetylcholine receptors (AChRs) in muscle fibers by nerve-derived agrin plays a key role in the formation of neuromuscular junctions. So far, the effects of agrin on muscle fibers have been studied in culture systems, transgenic animals, and in animals injected with agrin--cDNA constructs. We have applied purified recombinant chick neural and muscle agrin to rat soleus muscle in vivo and obtained the following results. Both neural and muscle agrin bind uniformly to the surface of innervated and denervated muscle fibers along their entire length. Neural agrin causes a dose-dependent appearance of AChR aggregates, which persist > or = 7 wk after a single application. Muscle agrin does not cluster AChRs and at 10 times the concentration of neural agrin does not reduce binding or AChR-aggregating activity of neural agrin. Electrical muscle activity affects the stability of agrin binding and the number, size, and spatial distribution of the neural agrin--induced AChR aggregates. Injected agrin is recovered from the muscles together with laminin and both proteins coimmunoprecipitate, indicating that agrin binds to laminin in vivo. Thus, the present approach provides a novel, simple, and efficient method for studying the effects of agrin on muscle under controlled conditions in vivo.
Collapse
Affiliation(s)
- G Bezakova
- Department of Physiology, University of Oslo, 0317 Oslo, Norway.
| | | | | | | |
Collapse
|
23
|
Abstract
The mammalian neuromuscular system expresses seven laminin genes (alpha 1, alpha 2, alpha 4, alpha 5, beta 1, beta 2, and gamma 1), produces seven isoforms of the laminin trimer (laminins 1, 2, 4, 8, 9, 10, and 11), and distributes these trimers to at least seven distinct basal laminae (perineurial, endoneurial, terminal Schwann cell, myotendinous junction, synaptic cleft, synaptic fold, and extrajunctional muscle). The patterns of expression, assembly, and distribution are regulated during development, and primary and secondary changes in laminin expression occur in several neuromuscular genetic disorders. Functional studies using knockout and transgenic mice, and purified laminins and cell types, demonstrate that laminins are required components of basal laminae in the neuromuscular system. Collectively, laminins have both structural and signaling functions; individually, laminin isoforms have unique roles in regulating the behavior of nerve, muscle, and Schwann cell. Among them, laminin-2 (alpha 2 beta 1 gamma 1) plays an important structural role in supporting the muscle plasma membrane, laminin-4 regulates adhesion and differentiation of the myotendinous junction, and laminin-11 regulates nerve terminal differentiation and Schwann cell motility. Together, these observations reveal remarkable diversity in the formation and function of laminins and basal laminae, and suggest avenues for addressing some neuromuscular diseases.
Collapse
Affiliation(s)
- B L Patton
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| |
Collapse
|
24
|
Son YJ, Patton BL, Sanes JR. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur J Neurosci 1999; 11:3457-67. [PMID: 10564354 DOI: 10.1046/j.1460-9568.1999.00766.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motoneurons reinnervating skeletal muscles form nerve terminals at sites of contact with a specialized basal lamina. To analyse the molecules and mechanisms that underly these responses, we introduce two systems in which basal lamina-derived components induce presynaptic differentiation of cultured neurons from chick ciliary ganglia in the absence of a postsynaptic cell. In one, ciliary neurites that contact substrates coated with a recombinant laminin beta2 fragment form varicosities that are rich in synaptic vesicle proteins, depleted of neurofilaments, and capable of depolarization-dependent exocytosis and endocytosis. Thus, a single molecule can trigger a complex, coordinated program of presynaptic differentiation. In a second system, neurites growing on cryostat sections of adult kidney form vesicle-rich, neurofilament-poor arbors on glomeruli. Glomerular basal lamina, like synaptic basal lamina, is rich in laminin beta2 and collagen (alpha3-5) IV. However, glomeruli from mutant mice lacking these proteins were capable of inducing differentiation, suggesting the glomerulus as a source of novel presynaptic organizing molecules.
Collapse
Affiliation(s)
- Y J Son
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
25
|
Abstract
We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.
Collapse
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
26
|
Loeb JA, Khurana TS, Robbins JT, Yee AG, Fischbach GD. Expression patterns of transmembrane and released forms of neuregulin during spinal cord and neuromuscular synapse development. Development 1999; 126:781-91. [PMID: 9895325 DOI: 10.1242/dev.126.4.781] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We mapped the distribution of neuregulin and its transmembrane precursor in developing, embryonic chick and mouse spinal cord. Neuregulin mRNA and protein were expressed in motor and sensory neurons shortly after their birth and levels steadily increased during development. Expression of the neuregulin precursor was highest in motor and sensory neuron cell bodies and axons, while soluble, released neuregulin accumulated along early motor and sensory axons, radial glia, spinal axonal tracts and neuroepithelial cells through associations with heparan sulfate proteoglycans. Neuregulin accumulation in the synaptic basal lamina of neuromuscular junctions occurred significantly later, coincident with a reorganization of muscle extracellular matrix resulting in a relative concentration of heparan sulfate proteoglycans at endplates. These results demonstrate an early axonal presence of neuregulin and its transmembrane precursor at developing synapses and a role for heparan sulfate proteoglycans in regulating the temporal and spatial sites of soluble neuregulin accumulation during development.
Collapse
Affiliation(s)
- J A Loeb
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
27
|
Bennett MR. Synapse formation molecules in muscle and autonomic ganglia: the dual constraint hypothesis. Prog Neurobiol 1999; 57:225-87. [PMID: 9987806 DOI: 10.1016/s0301-0082(98)00043-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1970 it was thought that if the motor-nerve supply to a muscle was interrupted and then allowed to regenerate into the muscle, motor-synaptic terminals most often formed presynaptic specializations at random positions over the surface of the constituent muscle fibres, so that the original spatial pattern of synapses was not restored. However, in the early 1970s a systematic series of experiments were carried out showing that if injury to muscles was avoided then either reinnervation or cross-reinnervation reconstituted the pattern of synapses on the muscle fibres according to an analysis using the combined techniques of electrophysiology, electronmicroscopy and histology on the muscles. It was thus shown that motor-synaptic terminals are uniquely restored to their original synaptic positions. This led to the concept of the synaptic site, defined as that region on a muscle fibre that contains molecules for triggering synaptic terminal formation. However, nerves in developing muscles were found to form connections at random positions on the surface of the very short muscle cells, indicating that these molecules are not generated by the muscle but imprinted by the nerves themselves; growth in length of the cells on either side of the imprint creates the mature synaptic site in the approximate middle of the muscle fibres. This process is accompanied at first by the differentiation of an excess number of terminals at the synaptic site, and then the elimination of all but one of the terminals. In the succeeding 25 years, identification of the synaptic site molecules has been a major task of molecular neurobiology. This review presents an historical account of the developments this century of the idea that synaptic-site formation molecules exist in muscle. The properties that these molecules must possess if they are to guide the differentiation and elimination of synaptic terminals is considered in the context of a quantitative model of this process termed the dual-constraint hypothesis. It is suggested that the molecules agrin, ARIA, MuSK and S-laminin have suitable properties according to the dual-constraint hypothesis to subserve this purpose. The extent to which there is evidence for similar molecules at neuronal synapses such as those in autonomic ganglia is also considered.
Collapse
Affiliation(s)
- M R Bennett
- Neurobiology Laboratory, University of Sydney, NSW, Australia.
| |
Collapse
|
28
|
Martin PT, Scott LJ, Porter BE, Sanes JR. Distinct structures and functions of related pre- and postsynaptic carbohydrates at the mammalian neuromuscular junction. Mol Cell Neurosci 1999; 13:105-18. [PMID: 10192769 DOI: 10.1006/mcne.1999.0737] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbohydrates that terminate in beta-linked N-acetylgalactosamine (betaGalNAc) residues are concentrated in the postsynaptic apparatus of the skeletal neuromuscular junction and have been implicated in the differentiation of the postsynaptic membrane. We now report that distinct synapse-specific betaGalNAc-containing carbohydrates are associated with motor nerve terminals. Two monoclonal antibodies that recognize distinct betaGalNAc-containing epitopes, CT1 and CT2, both stain synaptic sites on skeletal muscle fibers. However, CT1 selectively stains nerve terminal, whereas CT2 selectively stains the postsynaptic apparatus. Likewise, CT1 and CT2 selectively stain motoneuron-like and muscle cell lines, respectively. Using the cell lines, we identify distinct CT1- and CT2-reactive glycolipids and glycoproteins. Finally, we show that GalNAc modulates the adhesion of motoneuron-like cells to recombinant fragments of a synaptic cleft component, laminin beta2. Together, these results show that pre- as well as postsynaptic membranes bear and are affected by distinct but related synapse-specific carbohydrates.
Collapse
Affiliation(s)
- P T Martin
- Department of Neurosciences, University of California at San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0691,
| | | | | | | |
Collapse
|
29
|
Ruegg MA, Bixby JL. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 1998; 21:22-7. [PMID: 9464682 DOI: 10.1016/s0166-2236(97)01154-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synapse is a key structure that is involved in perception, learning and memory. Understanding the sequence of steps that is involved in establishing synapses during development might also help to understand mechanisms that cause changes in synapses during learning and memory. For practical reasons, most of our current knowledge of synapse development is derived from studies of the vertebrate neuromuscular junction (NMJ). Several lines of evidence strongly suggest that motor axons release the molecule agrin to induce the formation of the postsynaptic apparatus in muscle fibers. Recent advances implicate proteins such as dystroglycan, MuSK, and rapsyn in the transduction of agrin signals. Recently, additional functions of agrin have been discovered, including the upregulation of gene transcription in myonuclei and the control of presynaptic differentiation. Agrin therefore appears to play a unique role in controlling synaptic differentiation on both sides of the NMJ.
Collapse
Affiliation(s)
- M A Ruegg
- Dept of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
30
|
Patton BL, Miner JH, Chiu AY, Sanes JR. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol 1997; 139:1507-21. [PMID: 9396756 PMCID: PMC2132624 DOI: 10.1083/jcb.139.6.1507] [Citation(s) in RCA: 363] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Revised: 10/10/1997] [Indexed: 02/08/2023] Open
Abstract
Laminins, heterotrimers of alpha, beta, and gamma chains, are prominent constituents of basal laminae (BLs) throughout the body. Previous studies have shown that laminins affect both myogenesis and synaptogenesis in skeletal muscle. Here we have studied the distribution of the 10 known laminin chains in muscle and peripheral nerve, and assayed the ability of several heterotrimers to affect the outgrowth of motor axons. We show that cultured muscle cells express four different alpha chains (alpha1, alpha2, alpha4, and alpha5), and that developing muscles incorporate all four into BLs. The portion of the muscle's BL that occupies the synaptic cleft contains at least three alpha chains and two beta chains, but each is regulated differently. Initially, the alpha2, alpha4, alpha5, and beta1 chains are present both extrasynaptically and synaptically, whereas beta2 is restricted to synaptic BL from its first appearance. As development proceeds, alpha2 remains broadly distributed, whereas alpha4 and alpha5 are lost from extrasynaptic BL and beta1 from synaptic BL. In adults, alpha4 is restricted to primary synaptic clefts whereas alpha5 is present in both primary and secondary clefts. Thus, adult extrasynaptic BL is rich in laminin 2 (alpha2beta1gamma1), and synaptic BL contains laminins 4 (alpha2beta2gamma1), 9 (alpha4beta2gamma1), and 11 (alpha5beta2gamma1). Likewise, in cultured muscle cells, alpha2 and beta1 are broadly distributed but alpha5 and beta2 are concentrated at acetylcholine receptor-rich "hot spots," even in the absence of nerves. The endoneurial and perineurial BLs of peripheral nerve also contain distinct laminin chains: alpha2, beta1, gamma1, and alpha4, alpha5, beta2, gamma1, respectively. Mutation of the laminin alpha2 or beta2 genes in mice not only leads to loss of the respective chains in both nerve and muscle, but also to coordinate loss and compensatory upregulation of other chains. Notably, loss of beta2 from synaptic BL in beta2(-/-) "knockout" mice is accompanied by loss of alpha5, and decreased levels of alpha2 in dystrophic alpha2(dy/dy) mice are accompanied by compensatory retention of alpha4. Finally, we show that motor axons respond in distinct ways to different laminin heterotrimers: they grow freely between laminin 1 (alpha1beta1gamma1) and laminin 2, fail to cross from laminin 4 to laminin 1, and stop upon contacting laminin 11. The ability of laminin 11 to serve as a stop signal for growing axons explains, in part, axonal behaviors observed at developing and regenerating synapses in vivo.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Cells, Cultured
- Chick Embryo
- Culture Media, Conditioned
- Embryonic and Fetal Development
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/physiology
- Gene Expression Regulation, Developmental
- Laminin/analysis
- Laminin/biosynthesis
- Laminin/physiology
- Macromolecular Substances
- Mice
- Mice, Knockout
- Motor Neurons/physiology
- Muscle Development
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Neuromuscular Junction/physiology
- Neurons/cytology
- Neurons/physiology
- Peripheral Nerves/embryology
- Peripheral Nerves/growth & development
- Peripheral Nerves/physiology
- Rats
- Synapses/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B L Patton
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
31
|
Campagna JA, Ruegg MA, Bixby JL. Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro. Eur J Neurosci 1997; 9:2269-83. [PMID: 9464922 DOI: 10.1111/j.1460-9568.1997.tb01645.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synaptic protein agrin is required for aspects of both pre- and postsynaptic differentiation at neuromuscular junctions. Although a direct effect of agrin on postsynaptic differentiation, presumably through the MuSK receptor, is established, it is not clear whether agrin directly affects the presynaptic nerve. To provide evidence on this point, we used anti-agrin IgG to disrupt agrin function in chick ciliary ganglion (CG) neuron/myotube cocultures. In cocultures grown in the presence of 200 microg/ml anti-agrin IgG, clustering of acetylcholine receptors (AChRs), extracellular matrix proteins, and the synaptic vesicle protein synaptotagmin (syt) at nerve-muscle contacts was inhibited. Syt clustering was still inhibited in the presence of 100 microg/ml blocking antibody, while the postsynaptic clustering of AChRs, heparan sulphate proteoglycan, and s-laminin was retained. Additionally, in CG neurons cultured with COS cells expressing agrin A0B0, which lacks the ability to signal postsynaptic differentiation, syt clustering was induced and this clustering was also blocked by anti-agrin IgG. Our results demonstrate that agrin function is acutely required for pre- and postsynaptic differentiation in vitro, and strongly suggest that agrin is directly involved in the induction of presynaptic differentiation.
Collapse
Affiliation(s)
- J A Campagna
- Department of Molecular & Cellular Pharmacology, R-189, University of Miami School of Medicine, FL 33136, USA
| | | | | |
Collapse
|
32
|
Sugiyama JE, Glass DJ, Yancopoulos GD, Hall ZW. Laminin-induced acetylcholine receptor clustering: an alternative pathway. J Biophys Biochem Cytol 1997; 139:181-91. [PMID: 9314538 PMCID: PMC2139811 DOI: 10.1083/jcb.139.1.181] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The induction of acetylcholine receptor (AChR) clustering by neurally released agrin is a critical, early step in the formation of the neuromuscular junction. Laminin, a component of the muscle fiber basal lamina, also induces AChR clustering. We find that induction of AChR clustering in C2 myotubes is specific for laminin-1; neither laminin-2 (merosin) nor laminin-11 (a synapse-specific isoform) are active. Moreover, laminin-1 induces AChR clustering by a pathway that is independent of that used by neural agrin. The effects of laminin-1 and agrin are strictly additive and occur with different time courses. Most importantly, laminin- 1-induced clustering does not require MuSK, a receptor tyrosine kinase that is part of the receptor complex for agrin. Laminin-1 does not cause tyrosine phosphorylation of MuSK in C2 myotubes and induces AChR clustering in myotubes from MuSK-/- mice that do not respond to agrin. In contrast to agrin, laminin-1 also does not induce tyrosine phosphorylation of the AChR, demonstrating that AChR tyrosine phosphorylation is not required for clustering in myotubes. Laminin-1 thus acts by a mechanism that is independent of that used by agrin and may provide a supplemental pathway for AChR clustering during synaptogenesis.
Collapse
Affiliation(s)
- J E Sugiyama
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
33
|
Daniels MP. Intercellular communication that mediates formation of the neuromuscular junction. Mol Neurobiol 1997; 14:143-70. [PMID: 9294861 DOI: 10.1007/bf02740654] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. "Knockout" experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.
Collapse
Affiliation(s)
- M P Daniels
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Denzer AJ, Brandenberger R, Gesemann M, Chiquet M, Ruegg MA. Agrin binds to the nerve-muscle basal lamina via laminin. J Biophys Biochem Cytol 1997; 137:671-83. [PMID: 9151673 PMCID: PMC2139873 DOI: 10.1083/jcb.137.3.671] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.
Collapse
Affiliation(s)
- A J Denzer
- Department of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Lentz SI, Miner JH, Sanes JR, Snider WD. Distribution of the ten known laminin chains in the pathways and targets of developing sensory axons. J Comp Neurol 1997; 378:547-61. [PMID: 9034910 DOI: 10.1002/(sici)1096-9861(19970224)378:4<547::aid-cne9>3.0.co;2-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Laminins are heterotrimers of alpha, beta, and gamma chains. At present, five alpha, three beta, and two gamma chains have been described. The best characterized laminin (laminin 1 = alpha 1, beta 1, gamma 1) promotes neurite outgrowth from virtually all classes of developing neurons, implying that laminins may serve as axon guidance molecules in vivo. Moreover, different laminin trimers exert distinct effects on subsets of laminin-1-responsive cells, suggesting that isoform diversity may underlie some axonal choices in vivo. As a first step toward evaluating these hypotheses, we have documented the expression patterns of all 10-known laminin chains in the peripheral nervous system and spinal cord of the murine embryo. The alpha 2, alpha 4, beta 1, and gamma 1 chains are expressed in peripheral axonal pathways by embryonic day (E) 11.5, when sensory and motor axonal outgrowth is underway. Thus, laminins (but not laminin 1) may promote peripheral axonal outgrowth. By E 13.5, laminin chains are differentially expressed in the limb-bud, with prominent expression of alpha 2 and alpha 4 in muscle and of alpha 3 and alpha 5 in skin. This pattern raises the possibility that laminin isoform diversity contributes to the ability of cutaneous and muscle sensory axons to distinguish their targets. Later in development, some chains (e.g., alpha 2, alpha 4, and beta 1) are downregulated in peripheral nerve while others (e.g., gamma 1), continue to be expressed by Schwann cells into adulthood. In contrast to peripheral nerves and ganglia, laminin chains are expressed at low levels, if at all, in the developing spinal cord gray matter.
Collapse
Affiliation(s)
- S I Lentz
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
36
|
Huard J, Feero WG, Watkins SC, Hoffman EP, Rosenblatt DJ, Glorioso JC. The basal lamina is a physical barrier to herpes simplex virus-mediated gene delivery to mature muscle fibers. J Virol 1996; 70:8117-23. [PMID: 8892937 PMCID: PMC190886 DOI: 10.1128/jvi.70.11.8117-8123.1996] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A major impediment to successful implementation of gene therapy for treatment of muscular dystrophy is the restricted infectivity of mature muscle fibers with viral vectors. This phenomenon has been observed with adenovirus vectors and more recently with herpes simplex virus type 1 (HSV-1)-based vectors. Here we report findings of morphological studies designed to experimentally determine the mechanism underlying the rapid reduction in vector-mediated gene delivery concomitant with the maturation of muscle fibers. Using immunohistochemistry and confocal microscopy, we have colocalized HSV-1 and collagen IV, a major component of the basal lamina, in HSV-1-injected muscles and determined that the virus penetrates and expresses a transgene (lacZ) in muscle fibers of newborn animals but cannot efficiently penetrate adult myofibers. This was observed in normal as well as in immunocompromised animals, suggesting that the lack of adult myofiber transduction is not a result of an immune response and clearance of the viral vector. Since heparan sulfate proteoglycan, the initial attachment receptor for HSV-1, was shown to be preserved during the maturation of the myofibers by immunofluorescence assay and HSV-1 was able to infect isolated, viable myofibers in vitro, we suggest that the low-level HSV-1 transduction of mature myofibers is not a consequence of the loss of viral attachment sites on the surfaces of mature muscle fibers. Rather, our results indicate that the mature basal lamina acts as a physical barrier to HSV-1 infection of adult myofibers. This conclusion was further supported by the finding that HSV-1 displayed an intermediate level of transduction in mature dy/dy muscle which is defective for normal basal lamina formation. Together, these experiments suggest that efficient HSV vector transduction in mature skeletal muscle requires methods to permeabilize the basal lamina.
Collapse
Affiliation(s)
- J Huard
- Department of Molecular Genetics, Biomedical Science Tower, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Proteins of the synaptic basal lamina are important in directing the differentiation of motor nerve terminals. One synaptic basal lamina protein, agrin, which influences postsynaptic muscle differentiation, has been suggested to influence nerve terminals as well. To test this hypothesis, we cocultured chick ciliary ganglion neurons with agrin-expressing CHO cells. Ciliary ganglion neurons, but not sensory neurons, adhered five times as well to agrin-expressing cells as to untransfected cells. Further, ciliary ganglion neurites were growth inhibited upon contact with agrin-expressing cells. Finally, the synaptic vesicle protein synaptotagmin became concentrated at contacts between ciliary ganglion neurites and agrin-expressing cells. These activities were shared by neuronal and muscle-derived agrin isoforms, consistent with the hypothesis that muscle agrin may influence the presynaptic axon. Our results suggest that agrin influences the growth and differentiation of motoneurons in vivo.
Collapse
Affiliation(s)
- J A Campagna
- Department of Molecular and Cellular Pharmacology, R-189, University of Miami School of Medicine, Florida 33136, USA
| | | | | |
Collapse
|
38
|
Mundegar RR, von Oertzen J, Zierz S. Increased laminin A expression in regenerating myofibers in neuromuscular disorders. Muscle Nerve 1995; 18:992-9. [PMID: 7543975 DOI: 10.1002/mus.880180911] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Laminin is a basement membrane (BM) glycoprotein composed of three of five subunits, the A, M, B1, B2, and the S chain. Four forms of laminin, A-B1-B2, A-S-B2, M-B1-B2, and M-S-B2, have been identified. Laminin is implicated in various biological processes such as cell adhesion and differentiation. We studied immunohistochemically the expression of the four laminin subunits A, M, B1, B2 as well as of neural cell adhesion molecule (N-CAM, CD56), a marker of regenerating myofibers, in various neuromuscular disorders. In normal muscle, the predominant subunits of myofiber laminin were M, B1, and B2. The A chain was only faintly expressed in myofiber BM. In inflammatory myopathies and dystrophinopathies myofiber laminin A expression was greatly increased. An average of 80% and 63% of laminin A-positive myofibers in inflammatory myopathies and dystrophinopathies, respectively, were additionally CD56 positive. Laminin A and CD56 expression in denervating diseases and mitochondrial myopathies were negligible. Expression of M, B1, and B2 subunits did not seem to be altered in the diseased conditions examined above. The data suggest that laminin A is upregulated in inflammatory myopathies and dystrophinopathies and, most markedly in regenerating myofibers.
Collapse
|
39
|
Martin PT, Ettinger AJ, Sanes JR. A synaptic localization domain in the synaptic cleft protein laminin beta 2 (s-laminin). Science 1995; 269:413-6. [PMID: 7618109 DOI: 10.1126/science.7618109] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The basal lamina that ensheaths skeletal muscle fibers traverses the synaptic cleft at the neuromuscular junction. Synaptic and extrasynaptic portions of the basal lamina contain different laminin beta chains: beta 2 (or s) at synapses and beta 1 (or B1) extrasynaptically. Laminin beta 2 is also confined to synapselike patches on myotube surfaces in vitro, whereas beta 1 is present throughout the extracellular matrix. This differential localization of laminin beta chains was analyzed by expression of chimeric beta 1-beta 2 molecules in cultured mouse myotubes. A 16-amino acid carboxyl-terminal sequence in beta 2 was necessary for synaptic localization, and an amino-terminal domain in beta 1 promoted association with extracellular fibrils. The synaptic targeting sequence of beta 2 contains a site previously shown to be adhesive for motor neurons.
Collapse
Affiliation(s)
- P T Martin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St.Louis, MO 63110, USA
| | | | | |
Collapse
|
40
|
Bellamkonda R, Ranieri JP, Aebischer P. Laminin oligopeptide derivatized agarose gels allow three-dimensional neurite extension in vitro. J Neurosci Res 1995; 41:501-9. [PMID: 7473881 DOI: 10.1002/jnr.490410409] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The phenotypic expression of various neural cells is influenced by extracellular matrix (ECM) molecules. This study aims to develop a three-dimensional gel tailored to support neurite extension from neural cells. Laminin-derived (LN) oligopeptides CDP-GYIGSR, a 19-mer IKVAV containing sequence, GRGDSP, a cocktail of the three aforementioned LN peptides (PEPMIX), and a control peptide sequence GGGGG were covalently linked to an agarose hydrogel backbone using the bi-functional coupling agent 1'1, carbonyldiimidazole. Embryonic day 9 chick DRGs and PC12 cells were suspended in three dimensions in underivatized and derivatized agarose gels and neurite extension was analyzed. Agarose gels derivatized with CDPGYIGSR and PEPMIX enhanced neurite outgrowth from DRGs while GRGDSP and IKVAV derivatized gels inhibited neurite extension when compared to underivatized agarose gels. The IKVAV derivatized gels significantly enhanced neurite outgrowth from PC12 cells in comparison to underivatized and other LN peptide derivatized gels. Agarose hydrogels carrying covalently immobilized LN oligopeptides thus evoke specific responses from cells which contain receptors to the peptides used. Agarose hydrogels derivatized with neurite promoting peptide sequences may find applications in various models of in vivo regeneration of nervous tissue.
Collapse
Affiliation(s)
- R Bellamkonda
- Division of Surgical Research, Centre Hospitalier Universitaire Vaudois, Lausanne University Medical School, Switzerland
| | | | | |
Collapse
|
41
|
Murakami N, Goto Y, Itoh M, Katsumi Y, Wada T, Ozawa E, Nonaka I. Sarcolemmal indentation in cardiomyopathy with mental retardation and vacuolar myopathy. Neuromuscul Disord 1995; 5:149-55. [PMID: 7539316 DOI: 10.1016/0960-8966(94)00046-c] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Muscle biopsies from three patients with cardiomyopathy, mental retardation and increased serum creatine kinase levels revealed scattered fibers with tiny intracytoplasmic vacuoles containing basophilic and acid phosphatase-positive material and slightly increased amounts of PAS-positive granules. These findings are consistent with those seen in the so-called lysosomal glycogen storage disease with normal acid maltase. In addition to the vacuoles, there were occasional folds or indentations in the sarcolemma which were connected to the membrane enclosing the vacuoles. These membranes were well demonstrated histochemically by the nonspecific esterase and acetylcholinesterase stains. On electron microscopy, most of the vacuoles were bounded by membranes with basal lamina. The vacuolar membrane stained positively with antibodies raised to dystrophin, dystrophin-associated glycoproteins, laminin and type 4 collagen, and it was identical to the sarcolemma and its basal lamina. Therefore, the membrane abnormality which causes sarcolemmal folding is probably critical to understanding the pathomechanism of this disease.
Collapse
Affiliation(s)
- N Murakami
- Department of Ultrastructural Research, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Bixby JL. Collagen synthesis inhibition reduces clustering of heparan sulfate proteoglycan and acetylcholine receptors but not agrin or p65, at neuromuscular contacts in vitro. JOURNAL OF NEUROBIOLOGY 1995; 26:262-72. [PMID: 7707046 DOI: 10.1002/neu.480260210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied presynaptic and postsynaptic differentiation at neuromuscular junctions in vitro by examining the localization of synapse-specific proteins. In nerve-muscle co-cultures, the synaptic vesicle protein synaptotagmin (p65) accumulated in the nerve terminal overlying myotubes in association with postsynaptic clusters of acetylcholine receptors (AChRs), heparan sulfate proteoglycan (HSPG), laminin, and agrin. Inhibition of collagen synthesis with cis-hydroxyproline decreased the nerve-induced clustering of AChRs in muscle cells as well as that caused by exogenous agrin in muscle-only cultures. Moreover, accumulation of HSPG at contacts was also inhibited in cis-hydroxyproline-treated cultures. However, accumulation of p65 in nerve fibers at sites of muscle contact, a sign of presynaptic differentiation, was unaffected by cis-hydroxyproline treatment. In addition, even in cis-hydroxyproline-inhibited cultures, agrin was evident at more than 90% of contacts showing accumulation of p65 in the nerve terminal. Therefore, a mechanism exists to maintain agrin concentrations at nerve-muscle contacts, even when at least some extracellular matrix (ECM) proteins are disrupted. Our results suggest that HSPG is not required for the induction of nerve terminal differentiation but are consistent with the idea that HSPG or other ECM proteins are important in both nerve- and agrin-induced AChR clustering. In particular, agrin accumulation at sites of nerve-muscle contact is not sufficient to induce AChR clusters when the ECM at these contacts is disrupted.
Collapse
Affiliation(s)
- J L Bixby
- Department of Molecular & Cellular Pharmacology, University of Miami, Florida 33101, USA
| |
Collapse
|
43
|
Connor EA, Smith MA. Retrograde signaling in the formation and maintenance of the neuromuscular junction. JOURNAL OF NEUROBIOLOGY 1994; 25:722-39. [PMID: 8071669 DOI: 10.1002/neu.480250611] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neuromuscular junction is characterized by precise alignment between the nerve terminal and the postsynaptic apparatus formed by the muscle fiber. Organization of the neuromuscular junction during embryonic development, growth, and maintenance is coordinated by signals exchanged between motor neurons and their target muscle fibers. Identification of proteins such as agrin, likely to represent neuronal agents that direct the organization of the postsynaptic apparatus, has focused attention on characterization of proteins that mediate retrograde signals that regulate the organization and function of the nerve terminal. The results of these studies implicate a role for both adhesive and diffusible signals in coordinating the development, maturation, and maintenance of the motor nerve terminal. The diversity of molecules identified to date that appear to play a role in these processes implies a considerable level of redundancy in the transduction pathway. However, studies of early nerve-muscle interactions suggest that a common feature of many of these retrograde agents is activation of a protein kinase coupled with an increase in cytosolic Ca2+ concentration. While the molecular signals that regulate growth and maintenance of neuromuscular junctions are less well understood it seems likely that similar adhesive and diffusible factors will be involved.
Collapse
Affiliation(s)
- E A Connor
- Department of Biology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
44
|
Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A. Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 1994; 199:326-37. [PMID: 8075434 DOI: 10.1002/aja.1001990407] [Citation(s) in RCA: 279] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Following muscle damage in adult vertebrates, myofibers can be regenerated from muscle precursor cells (satellite cells). During this process, prenatal myogenesis is recapitulated to a large extent, both morphologically and molecularly. A putative morphoregulatory molecule involved in myogenesis is M-cadherin (Mcad), a calcium-dependent cell adhesion protein. The expression of Mcad was studied by immunofluorescence in regenerating, denervated, and normal mouse muscles. Our results demonstrate that Mcad is present in satellite cells in normal muscle. Enhanced staining at sites of contact between satellite cells and the parent muscle fiber suggests an additional, spatially restricted expression of Mcad in muscle fibers. Mcad positive cells in normal and denervated muscles did not incorporate bromodeoxyuridine within 24 hr after injection in vivo, indicating that Mcad is expressed on mitotically quiescent satellite cells. Neural cell adhesion molecule (NCAM) co-localized with Mcad in nearly all satellite cells in denervated muscles but rarely in intact muscles. At early stages of regeneration, Mcad was exclusively and strongly expressed in myoblasts. After fusion of myoblasts into myotubes, Mcad was down-regulated and was barely detectable on more mature myotubes surrounded by distinct basal lamina sheaths. These observations are in line with the idea that Mcad plays a crucial role in myogenesis. In intact muscle, Mcad might function as a molecular link between satellite cell and muscle fiber.
Collapse
Affiliation(s)
- A Irintchev
- Department of Physiology, Neurophysiology, University of Bonn, Germany
| | | | | | | |
Collapse
|
45
|
Abstract
Prolonged denervation results in atrophy of target organs and increased risk of permanent paralysis. A better understanding of the mechanism responsible for nerve regeneration may one day lead to improved rates of nerve regeneration and diminished risk of loss of function. Neurobiologists have known for decades that soluble neurotrophic activity is present in nerves and nerve targets. Until recently, the soluble molecules that regulate the rate of nerve regeneration have eluded identification. Insulin-like growth factor (IGF) gene expression is correlated with synapse formation during development and regeneration. IGFs are now identified as the first soluble nerve- and muscle-derived neurotrophic factors found to regulate the rate of peripheral nerve regeneration. The roles of IGFs and other neurotrophic factors in peripheral nerve regeneration, motor nerve terminal sprouting and synapse formation are reviewed.
Collapse
Affiliation(s)
- D N Ishii
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
46
|
Kroll T, Peters B, Hustad C, Jones P, Killen P, Ruddon R. Expression of laminin chains during myogenic differentiation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37103-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Cameron-Curry P, Dulac C, Le Douarin NM. Negative regulation of Schwann cell myelin protein gene expression by the dorsal root ganglionic microenvironment. Eur J Neurosci 1993; 5:594-604. [PMID: 8261134 DOI: 10.1111/j.1460-9568.1993.tb00525.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In vivo, the surface glycoprotein Schwann cell myelin protein (SMP) is expressed in the quail peripheral nervous system exclusively by Schwann cells. It is not detectable at any developmental stage either in enteric glia or in ganglionic satellite cells. We demonstrate here that the satellite glial cells of the dorsal root ganglia start to express SMP on their surface when they are dissociated into single cells and cultivated in vitro. Activation of SMP synthesis is a rapid event observed in mass cultures of dorsal root ganglia dissociated cells as soon as 4 h after the onset of the culture. Confocal microscope analysis revealed that satellite cells may acquire the Schwann cell marker when still in close contact with the neuronal soma. Clonal cultures of satellite cells from E8 dorsal root ganglia demonstrated that the progeny of these SMP-negative cells steadily express SMP. This, together with similar results previously obtained with enteric glia, suggests that the SMP-positive phenotype is a constitutive trait of the peripheral glial cell lineage which is inhibited in satellite cells in vivo by the microenvironment prevailing in the peripheral nervous system ganglia.
Collapse
Affiliation(s)
- P Cameron-Curry
- Institut d'Embryologie Cellulaire et Moléculaire, Nogent-sur-Marne, France
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Z W Hall
- Department of Physiology, University of California, San Francisco 94143
| | | |
Collapse
|
49
|
Dickson G, Azad A, Morris GE, Simon H, Noursadeghi M, Walsh FS. Co-localization and molecular association of dystrophin with laminin at the surface of mouse and human myotubes. J Cell Sci 1992; 103 ( Pt 4):1223-33. [PMID: 1283164 DOI: 10.1242/jcs.103.4.1223] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), deficiency of the protein dystrophin results in necrosis of muscle myofibres, associated with lesions in the sarcolemma and surrounding basal lamina. Dystrophin has been proposed to be a major component of the sub-sarcolemmal cytoskeleton involved in maintaining the integrity of the myofibre plasma membrane, and is known to associate with a group of sarcolemmal glycoproteins, one of which exhibits high affinity binding to the basal lamina component laminin. However, a direct or indirect transmembrane association of dystrophin in muscle cells with the myofibre basal lamina has not been demonstrated. To address this question we have examined dystrophin immunostaining and immunoprecipitation patterns in cultured mouse and human myotubes in comparison with that of the basal lamina component, laminin. Dual-immunolabelling revealed virtually complete co-localization of dystrophin on the inside surface of the muscle cell sarcolemma with plaques and veined arrays of laminin accumulating on the extracellular face. This pattern of laminin and dystrophin distribution was distinct from that of other cell surface molecules expressed in myotubes such as the neural cell adhesion molecule, NCAM, and the beta 1 integrin receptor, and immunoprecipitation of dystrophin from solubilized myotube extracts resulted in co-purification of laminin B1 chain confirming an association between these two components. The results thus provide the first direct cellular evidence of a transmembrane linkage between dystrophin in the sarcolemmal cytoskeleton with laminin in the overlying basal lamina. While the immunocytochemical distribution of laminin was apparently normal in dystrophin-deficient muscle cells, elevated levels of soluble laminin were present in extracts of mdx compared with normal mouse skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Dickson
- Department of Experimental Pathology, UMDS, Guy's Hospital, London Bridge, UK
| | | | | | | | | | | |
Collapse
|
50
|
Hunter DD, Llinas R, Ard M, Merlie JP, Sanes JR. Expression of s-laminin and laminin in the developing rat central nervous system. J Comp Neurol 1992; 323:238-51. [PMID: 1401258 DOI: 10.1002/cne.903230208] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The extracellular matrix component, s-laminin, is a homologue of the B1 subunit of laminin. S-laminin is concentrated in the synaptic cleft at the neuromuscular junction and contains a site that is adhesive for motor neurons, suggesting that it may influence neuromuscular development. To ascertain whether s-laminin may also play roles in the genesis of the central nervous system, we have examined its expression in the brain and spinal cord of embryonic and postnatal rats. S-laminin was not detectable in synapse-rich areas of adults. However, s-laminin was present in discrete subsets of three laminin-containing structures: (1) In the developing cerebral cortex, laminin and s-laminin were expressed in the subplate, a transient layer through which neuroblasts migrate and cortical afferents grow. Both laminin and s-laminin disappeared as embryogenesis proceeded; however, laminin was more widely distributed and present longer than s-laminin. (2) In the developing spinal cord, laminin was present throughout the pia. In contrast, s-laminin was concentrated in the pia that overlies the floor plate, a region in which extracellular cues have been postulated to guide growing axons. (3) In central capillaries, s-laminin appeared perinatally, an interval during which the blood-brain barrier matures. In contrast, laminin was present in capillary walls of both embryos and adults. To extend our immunohistochemical results, we used biochemical methods to characterize s-laminin in brain. We found that authentic s-laminin mRNA is present in the embryonic brain, but that brain-derived s-laminin differs (perhaps by a posttranslational modification) from that derived from nonneural tissues. We also used tissue culture methods to show that glia are capable of synthesizing "brain-like" s-laminin, and of assembling it into an extracellular matrix. Thus, glia may be one cellular source of s-laminin in brain. Together, these results demonstrate that s-laminin is present in the developing central nervous system, and raise the possibility that this molecule may influence developmental processes.
Collapse
Affiliation(s)
- D D Hunter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|