1
|
Ehrhardt E, Kleele T, Boyan G. A method for immunolabeling neurons in intact cuticularized insect appendages. Dev Genes Evol 2015; 225:187-94. [PMID: 25868908 DOI: 10.1007/s00427-015-0499-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
Abstract
The antennae of the grasshopper Schistocerca gregaria possess a pair of nerve pathways which are established by so-called pioneer neurons early in embryonic development. Subsequently, sensory cell clusters mediating olfaction, flight, optomotor responses, and phase changes differentiate from the antennal epithelium at stereotypic locations and direct their axons onto those of the pioneers to then project to the brain. Early in embryonic development, before the antennae become cuticularized, immunolabeling can be used to follow axogenesis in these pioneers and sensory cells. At later stages, immunolabeling becomes problematical as the cuticle is laid down and masks internal antigen sites. In order to immunolabel the nervous system of cuticularized late embryonic and first instar grasshopper antennae, we modified a procedure known as sonication in which the appendage is exposed to ultrasound thereby rendering it porous to antibodies. Comparisons of the immunolabeled nervous system of sectioned and sonicated antennae show that the cellular organization of sensory clusters and their axon projections is intact. The expression patterns of neuron-specific, microtubule-specific, and proliferative cell-specific labels in treated antennae are consistent with those reported for earlier developmental stages where sonication is not necessary, suggesting that these molecular epitopes are also conserved. The method ensures reliable immunolabeling in intact, cuticularized appendages so that the peripheral nervous system can be reconstructed directly via confocal microscopy throughout development.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | | | | |
Collapse
|
2
|
Williams JLD, Boyan GS. Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:129-140. [PMID: 18089133 DOI: 10.1016/j.asd.2007.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/22/2007] [Indexed: 05/25/2023]
Abstract
The central complex is a major neuropilar structure in the insect brain whose distinctive, modular, neuroarchitecture in the grasshopper is exemplified by a bilateral set of four fibre bundles called the w, x, y and z tracts. These columns represent the stereotypic projection of axons from the pars intercerebralis into commissures of the central complex. Each column is established separately during early embryogenesis in a clonal manner by the progeny of a subset of four identified protocerebral neuroblasts. We report here that dye injected into identified pioneers of the primary brain commissure between 31 and 37% of embryogenesis couples to cells in the pars intercerebralis which we identify as progeny of the W, X, Y, or Z neuroblasts. These progeny are the oldest within each lineage, and also putatively the first to project an axon into the protocerebral commissure. The axons of pioneers from each tract do not fasciculate with one other prior to entry into the commissure, thereby prefiguring the modular w, x, y, z columns of the adult central complex. Within the commissure, pioneer axons from columnar tracts fasciculate with the growth cones of identified pioneers of the existing primary fascicle and do not pioneer a separate fascicle. The results suggest that neurons pioneering a columnar neuroarchitecture within the embryonic central complex utilize the existing primary commissural scaffold to navigate the brain midline.
Collapse
Affiliation(s)
- J L D Williams
- Developmental Neurobiology Group, Biozentrum, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
3
|
Boyan GS, Williams JLD. Embryonic development of a peripheral nervous system: nerve tract associated cells and pioneer neurons in the antenna of the grasshopper Schistocerca gregaria. ARTHROPOD STRUCTURE & DEVELOPMENT 2007; 36:336-350. [PMID: 18089112 DOI: 10.1016/j.asd.2007.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 01/12/2007] [Accepted: 01/31/2007] [Indexed: 05/25/2023]
Abstract
The grasshopper antenna is an articulated appendage associated with the deutocerebral segment of the head. In the early embryo, the meristal annuli of the antenna represent segment borders and are also the site of differentiation of pioneer cells which found the dorsal and ventral peripheral nerve tracts to the brain. We report here on another set of cells which appear earlier than the pioneers during development and are later found arrayed along these tracts at the border of epithelium and lumen. These so-called nerve tract associated cells differ morphologically from pioneers in that they are bipolar, have shorter processes, and are not segmentally organized in the antenna. Nerve tract associated cells do not express horseradish peroxidase and so are not classical neurons. They do not express antigens such as repo and annulin which are associated with glia cells in the nervous system. Nerve tract associated cells do, however, express the mesodermal/mesectodermal cell surface marker Mes-3 and putatively derive from the antennal coelom and then migrate to the epithelium/lumen border. Intracellular recordings show that such nerve tract associated cells have resting potentials similar to those of pioneer cells and can be dye coupled to the pioneers. Similar cell types are present in the maxilla, a serially homologous appendage on the head. The nerve tract associated cells are organized into a cellular scaffold which we speculate may be relevant to the navigation of pioneer and sensory axons in the early embryonic antennal nervous system.
Collapse
Affiliation(s)
- G S Boyan
- Developmental Neurobiology Group, Department of Biology II, Section of Neurobiology, Biozentrum, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
4
|
Oland LA, Tolbert LP. Key interactions between neurons and glial cells during neural development in insects. ANNUAL REVIEW OF ENTOMOLOGY 2002; 48:89-110. [PMID: 12194908 DOI: 10.1146/annurev.ento.48.091801.112654] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nervous system function is entirely dependent on the intricate and precise pattern of connections made by individual neurons. Much of the insightful research into mechanisms underlying the development of this pattern of connections has been done in insect nervous systems. Studies of developmental mechanisms have revealed critical interactions between neurons and glia, the non-neuronal cells of the nervous system. Glial cells provide trophic support for neurons, act as struts for migrating neurons and growing axons, form boundaries that restrict neuritic growth, and have reciprocal interactions with neurons that govern specification of cell fate and axonal pathfinding. The molecular mechanisms underlying these interactions are beginning to be understood. Because many of the cellular and molecular mechanisms underlying neural development appear to be common across disparate insect species, and even between insects and vertebrates, studies in developing insect nervous systems are elucidating mechanisms likely to be of broad significance.
Collapse
Affiliation(s)
- Lynne A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
5
|
Salecker I, Boeckh J. Influence of receptor axons on the formation of olfactory glomeruli in a hemimetabolous insect, the cockroach Periplaneta americana. J Comp Neurol 1996; 370:262-79. [PMID: 8808734 DOI: 10.1002/(sici)1096-9861(19960624)370:2<262::aid-cne9>3.0.co;2-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The embryonic development of the hemimetabolous insect Periplaneta americana requires approximately 31 days. Deafferentation experiments were used to investigate the role of ingrowing receptor axons during embryogenesis, specifically their influence 1) on the subdivision of the antennal lobe neuropil into glomeruli, 2) on the morphology and number of glial cells, and 3) on the arborization pattern of central neurons. The flagellum of one antenna was removed from embryos at different developmental stages starting with day 10. Subsequently, they were raised in culture until a total age of 26 days. At day 10, the deutocerebrum has received only a very small number (ca. 0.4%) of antennal receptor axons; deafferentation at this stage allowed us to deprive the deutocerebrum of approximately 99% of its normal antennal input. Deafferentation has marked effects on the organization of the antennal lobe neuropil. The deafferented lobe is reduced in volume compared to the control side; the characteristic glomeruli are missing. During normal development glomeruli are formed between day 19 and 22, first in dorsal and then in ventral antennal lobe regions. By removing the antenna before day 20, their formation is disturbed in all parts of the antennal lobe. If deafferentation is performed after stage 20, glomeruli persist in dorsal regions, but are missing in ventral regions. On day 24 or later, glomeruli in both dorsal and ventral regions are unaffected by deafferentation. Glial cells continue to extend fine processes into the neuropil in the absence of ingrowing receptor axons. The number of glial cells is reduced compared to control lobes. Multiglomerular local interneurons and other gamma-amino butyric acid-immunoreactive neurons, as well as projection neurons, fail to develop glomerular arborization patterns in antennal lobes deprived of sensory axons.
Collapse
Affiliation(s)
- I Salecker
- Institut für Zoologie, Universität Regensburg, Germany
| | | |
Collapse
|
6
|
Heming BS. Structure and development of larval antennae in embryos ofLytta viridanaLeConte (Coleoptera: Meloidae). CAN J ZOOL 1996. [DOI: 10.1139/z96-114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At time of hatch (252–264 h at 25 ± 0.5 °C), each antenna in Lytta viridana has three flagellomeres, three extrinsic muscles, and 25 sensilla of five different types, including a large composite sensillum of 19 sensory units on flagellomere II. Each antenna evaginates from epidermis on either side the stomodaeum beginning at 16% of embryogenesis. At 21%, a cell near its apex divides into two pioneer neurons that move into its lumen and project their axons to the brain by 29%. Sensillar stem cells begin to emerge at 23%, those of the appendix within a large embryonic placode and, from 26 to 48%, divide asymmetrically to generate the neurons and accessory cells of each sensillum. Sensillar axonogenesis begins at 34%, the first axons contact the brain at 35%, and antennal glomeruli begin to form within the deutocerebra at 57%. At 35%, the trichogen cell of each sensillum begins to grow out and larval cuticle is deposited about these, beginning at 57%. Upon withdrawal of trichogen cytoplasm from within the appendix at 81%, the dendrites of each sensory unit grow into it and begin to branch. Functional aspects are addressed and the observations compared with the limited information available on embryos of other insects.
Collapse
|
7
|
Salecker I, Boeckh J. Embryonic development of the antennal lobes of a hemimetabolous insect, the cockroach Periplaneta americana: light and electron microscopic observations. J Comp Neurol 1995; 352:33-54. [PMID: 7536222 DOI: 10.1002/cne.903520104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the hemimetabolous insect Periplaneta americana, the adult-like organization of the primary olfactory centers, the antennal lobes, is established during the approximately 31 days of embryogenesis. This report describes the temporal sequence of developmental events as viewed in the light and electron microscope by means of histological stains and by DiI labeling of antennal receptor axons with subsequent photoconversion. Glomeruli, characteristic differentiations of the antennal lobe neuropil, are first observed on day 19; their development, which is not synchronous in the various parts of the antennal lobe, lasts until about day 22. From day 10 on, glial cells begin to form a narrow boundary layer between the soma cortex and the central neuropil. They exhibit a lengthening of their processes in parallel with the formation of glomeruli. Marked proliferation or migration of these glial cells into the neuropil between glomeruli has not been observed. Antennal receptor axons could be labeled from stage 15 on. They terminate in an elongated growth cone with numerous filopodia. From day 18 on, some of these become bent or show an initial bifurcation. From day 22 on, the first afferent axons develop an adult-like arborization pattern. Synaptic contacts between receptor axons and unidentified neurons were observed as early as stages 16 and 19, in which the axons still have a growth cone-like form. In stage 27, in which the fibers have adult-like arborizations, many output contacts and few input contacts were found.
Collapse
Affiliation(s)
- I Salecker
- Institut für Zoologie, Universität Regensburg, Federal Republic of Germany
| | | |
Collapse
|
8
|
Structure and function of the thecogen cell in contact chemosensitive sensilla of Periplaneta americana L. (Blattodea: Blattidae). ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0020-7322(92)90019-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Structure and differentiation of the sensilla of the ventral sensory field on the maxillary palps ofPeriplaneta americana (Insecta, Blattodea), paying special attention to the ciliogenesis of the sensory cells. ZOOMORPHOLOGY 1991. [DOI: 10.1007/bf01632708] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Lakes R, Pollack GS. The development of the sensory organs of the legs in the blowfly, Phormia regina. Cell Tissue Res 1990; 259:93-103. [PMID: 2297787 DOI: 10.1007/bf00571434] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of the sensory neurons of the legs of the blowfly, Phormia regina has been described from the third instar larva to the late pupa using immunohistochemical staining. The leg discs of the third instar larva contain 8 neurons of which 5 come to lie in the fifth tarsomere of the developing leg. Whereas 2 neurons persist at least to the late pupa, the other cells degenerate. The first neurons of gustatory sensilla arise in the fifth tarsomere at about 1.5 h after formation of the puparium. Most of these sensilla, however, appear within a short time period beginning at about 18 h. The femoral chordotonal sensory neurons first appear at the time of formation of the puparium, as a mass of cells situated in the distal femur. During later pupal development 2 groups of these cells come to lie at the femur-trochanter border, where they become the proximal femoral chordotonal organ of the adult; the remaining cells become the distal femoral chordotonal organ. Other scolopidial neurons appear later in development. The nerve pathways of the late pupal leg are established either by the axons of the cells that are present in the larval leg disc or by new outgrowing processes of sensory neurons. In the tibia, the initial direction of new outgrowth differs in different regions of the segment: proximal tibial neurons grow distally, while distal tibial neurons grow initially proximally.
Collapse
Affiliation(s)
- R Lakes
- McGill University, Department of Biology, Montreal, Canada
| | | |
Collapse
|
11
|
Condic ML, Bentley D. Pioneer neuron pathfinding from normal and ectopic locations in vivo after removal of the basal lamina. Neuron 1989; 3:427-39. [PMID: 2642004 DOI: 10.1016/0896-6273(89)90202-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The contribution of the basal lamina to Ti1 pioneer axon guidance in grasshopper limb buds was investigated by allowing growth cones to migrate in 30%-31% stage limbs from which the basal lamina had been removed by enzymatic treatment. When the Ti1 axons extended from their normal location, the pathways established in the absence of basal lamina were normal. This indicates that the basal lamina is not required for initial proximal axon outgrowth, recognition of limb segment boundaries, or selective interaction with neuronal somata. Removal of the basal lamina from slightly older (32% stage) embryos resulted in displacement of the Ti1 somata to ectopic locations in approximately 50% of the limbs. Pathfinding from ectopic locations was aberrant in 45% of the cases observed. This demonstrates that if orienting information is present in the basal lamina-free epithelium at this stage, it is not the predominant factor in determining growth cone orientation from ectopic locations.
Collapse
Affiliation(s)
- M L Condic
- Neurobiology Group, University of California, Berkeley 94720
| | | |
Collapse
|
12
|
Blochl R, Selzer R. Embryogenesis of the connective chordotonal organ in the pedicel of the American cockroach: cell lineage and morphological differentiation. Cell Tissue Res 1988; 252:669-78. [PMID: 3190831 DOI: 10.1007/bf00216655] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ontogenesis of single scolopidia of the chordotonal organ of the American cockroach, Periplaneta americana, takes about 4 days. At 23% embryogenesis (100%=30 d) the first anlagen of scolopidia were identified within the eipithelium by staining with anti-horseradish peroxidase. Reconstruction of the cell lineage of the scolopidial cells was facilitated by two facts: (i) the arrangement of the cells throughout ontogenesis follows a strict pattern, and (ii) daughter cells are recognizable for several hours after mitosis by the cytoplasmic bridge and midbody joining them. When they separate, the midbody undergoes lysosomal degeneration in one of these cells. The earliest recognizable stage is a pair of cells, one of which (cell 1) encloses the other (cell 2) apically. The enclosing cell becomes the accessory cell. Cell 2 divides, yielding the mother cell (cell 3) of two sensory cells which degenerate later, and cell 2'. Cell 2' gives rise to the attachment cell and to cell 2'', which in turn produces the scolopale cell and the mother cell (cell 2'' 2''') of a second pair of sensory cells; the latter are the definitive sensory cells. The end result is the total of 5 cells characteristic of the adult scolopidium. Secretion of the scolopale and cap together with the migration of the sensory cell perikarya into the antennal lumen complete development.
Collapse
|
13
|
|