1
|
Brooks SV, Guzman SD, Ruiz LP. Skeletal muscle structure, physiology, and function. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:3-16. [PMID: 37562874 DOI: 10.1016/b978-0-323-98818-6.00013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Contractions of skeletal muscles provide the stability and power for all body movements. Consequently, any impairment in skeletal muscle function results in some degree of instability or immobility. Factors that influence skeletal muscle structure and function are therefore of great interest scientifically and clinically. Injury, neuromuscular disease, and old age are among the factors that commonly contribute to impairments in skeletal muscle function. The goal of this chapter is to summarize the fundamentals of skeletal muscle structure and function to provide foundational knowledge for this Handbook volume. We examine the molecular interactions that provide the basis for the generation of force and movement, discuss mechanisms of the regulation of contraction at the level of myofibers, and introduce concepts of the activation and control of muscle function in vivo. Where appropriate, the chapter updates the emerging science that will increase understanding of muscle function.
Collapse
Affiliation(s)
- Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Steve D Guzman
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Lloyd P Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Hall TE, Martel N, Ariotti N, Xiong Z, Lo HP, Ferguson C, Rae J, Lim YW, Parton RG. In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nat Commun 2020; 11:3711. [PMID: 32709891 PMCID: PMC7381618 DOI: 10.1038/s41467-020-17486-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
The skeletal muscle T-tubule is a specialized membrane domain essential for coordinated muscle contraction. However, in the absence of genetically tractable systems the mechanisms involved in T-tubule formation are unknown. Here, we use the optically transparent and genetically tractable zebrafish system to probe T-tubule development in vivo. By combining live imaging of transgenic markers with three-dimensional electron microscopy, we derive a four-dimensional quantitative model for T-tubule formation. To elucidate the mechanisms involved in T-tubule formation in vivo, we develop a quantitative screen for proteins that associate with and modulate early T-tubule formation, including an overexpression screen of the entire zebrafish Rab protein family. We propose an endocytic capture model involving firstly, formation of dynamic endocytic tubules at transient nucleation sites on the sarcolemma, secondly, stabilization by myofibrils/sarcoplasmic reticulum and finally, delivery of membrane from the recycling endosome and Golgi complex.
Collapse
Affiliation(s)
- Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia. .,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Sébastien M, Aubin P, Brocard J, Brocard J, Marty I, Fauré J. Dynamics of triadin, a muscle-specific triad protein, within sarcoplasmic reticulum subdomains. Mol Biol Cell 2020; 31:261-272. [PMID: 31877066 PMCID: PMC7183767 DOI: 10.1091/mbc.e19-07-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In skeletal muscle, proteins of the calcium release complex responsible for the excitation-contraction (EC) coupling are exclusively localized in specific reticulum–plasma membrane (ER-PM) contact points named triads. The CRC protein triadin (T95) is localized in the sarcoplasmic reticulum (SR) subdomain of triads where it forms large multimers. However, the mechanisms leading to the steady-state accumulation of T95 in these specific areas of SR are largely unknown. To visualize T95 dynamics, fluorescent chimeras were expressed in triadin knockout myotubes, and their mobility was compared with the mobility of Sec61β, a membrane protein of the SR unrelated to the EC coupling process. At all stages of skeletal muscle cells differentiation, we show a permanent flux of T95 diffusing in the SR membrane. Moreover, we find evidence that a longer residence time in the ER-PM contact point is due to the transmembrane domain of T95 resulting in an overall triad localization.
Collapse
Affiliation(s)
- Muriel Sébastien
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Perrine Aubin
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Jacques Brocard
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Julie Brocard
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Isabelle Marty
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| | - Julien Fauré
- Grenoble Institut Neurosciences, Inserm, U1216, University Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France.,Grenoble Institut Neurosciences, Inserm, U1216, CHU Grenoble Alpes, University Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
4
|
Lainé J, Skoglund G, Fournier E, Tabti N. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes. Skelet Muscle 2018; 8:1. [PMID: 29304851 PMCID: PMC5756430 DOI: 10.1186/s13395-017-0147-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023] Open
Abstract
Background Human induced pluripotent stem cells-derived myogenic progenitors develop functional and ultrastructural features typical of skeletal muscle when differentiated in culture. Besides disease-modeling, such a system can be used to clarify basic aspects of human skeletal muscle development. In the present study, we focus on the development of the excitation-contraction (E-C) coupling, a process that is essential both in muscle physiology and as a tool to differentiate between the skeletal and cardiac muscle. The occurrence and maturation of E-C coupling structures (Sarcoplasmic Reticulum-Transverse Tubule (SR-TT) junctions), key molecular components, and Ca2+ signaling were examined, along with myofibrillogenesis. Methods Pax7+-myogenic progenitors were differentiated in culture, and developmental changes were examined from a few days up to several weeks. Ion channels directly involved in the skeletal muscle E-C coupling (RyR1 and Cav1.1 voltage-gated Ca2+ channels) were labeled using indirect immunofluorescence. Ultrastructural changes of differentiating cells were visualized by transmission electron microscopy. On the functional side, depolarization-induced intracellular Ca2+ transients mediating E-C coupling were recorded using Fura-2 ratiometric Ca2+ imaging, and myocyte contraction was captured by digital photomicrography. Results We show that the E-C coupling machinery occurs and operates within a few days post-differentiation, as soon as the myofilaments align. However, Ca2+ transients become effective in triggering myocyte contraction after 1 week of differentiation, when nascent myofibrils show alternate A-I bands. At later stages, myofibrils become fully organized into adult-like sarcomeres but SR-TT junctions do not reach their triadic structure and typical A-I location. This is mirrored by the absence of cross-striated distribution pattern of both RyR1 and Cav1.1 channels. Conclusions The E-C coupling machinery occurs and operates within the first week of muscle cells differentiation. However, while early development of SR-TT junctions is coordinated with that of nascent myofibrils, their respective maturation is not. Formation of typical triads requires other factors/conditions, and this should be taken into account when using in-vitro models to explore skeletal muscle diseases, especially those affecting E-C coupling. Electronic supplementary material The online version of this article (10.1186/s13395-017-0147-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeanne Lainé
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France
| | - Gunnar Skoglund
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France
| | - Emmanuel Fournier
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France
| | - Nacira Tabti
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France. .,UPEC, Créteil, France.
| |
Collapse
|
5
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
6
|
Guo X, Greene K, Akanda N, Smith A, Stancescu M, Lambert S, Vandenburgh H, Hickman J. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System. Biomater Sci 2014; 2:131-138. [PMID: 24516722 DOI: 10.1039/c3bm60166h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Keshel Greene
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Alec Smith
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| | - Stephen Lambert
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; College of Medicine, University of Central Florida, 12201 Research Parkway, Suite 479, Room 463, Orlando, FL 32826, USA
| | - Herman Vandenburgh
- Brown University, Professor Emeritus, Department of Pathology and Lab Medicine, Providence, Rhode Island, 02913 USA ; Myomics, 148 West River Str, Providence, Rhode Island 02904
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| |
Collapse
|
7
|
Fourest-Lieuvin A, Rendu J, Osseni A, Pernet-Gallay K, Rossi D, Oddoux S, Brocard J, Sorrentino V, Marty I, Fauré J. Role of triadin in the organization of reticulum membrane at the muscle triad. J Cell Sci 2012; 125:3443-53. [PMID: 22505613 DOI: 10.1242/jcs.100958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal cisternae represent one of the functional domains of the skeletal muscle sarcoplasmic reticulum (SR). They are closely apposed to plasma membrane invaginations, the T-tubules, with which they form structures called triads. In triads, the physical interaction between the T-tubule-anchored voltage-sensing channel DHPR and the SR calcium channel RyR1 is essential because it allows the depolarization-induced calcium release that triggers muscle contraction. This interaction between DHPR and RyR1 is based on the peculiar membrane structures of both T-tubules and SR terminal cisternae. However, little is known about the molecular mechanisms governing the formation of SR terminal cisternae. We have previously shown that ablation of triadins, a family of SR transmembrane proteins that interact with RyR1, induced skeletal muscle weakness in knockout mice as well as a modification of the shape of triads. Here we explore the intrinsic molecular properties of the longest triadin isoform Trisk 95. We show that when ectopically expressed, Trisk 95 can modulate reticulum membrane morphology. The membrane deformations induced by Trisk 95 are accompanied by modifications of the microtubule network organization. We show that multimerization of Trisk 95 by disulfide bridges, together with interaction with microtubules, are responsible for the ability of Trisk 95 to structure reticulum membrane. When domains responsible for these molecular properties are deleted, anchoring of Trisk 95 to the triads in muscle cells is strongly decreased, suggesting that oligomers of Trisk 95 and microtubules contribute to the organization of the SR terminal cisternae in a triad.
Collapse
Affiliation(s)
- Anne Fourest-Lieuvin
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble 38042, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo X, Gonzalez M, Stancescu M, Vandenburgh HH, Hickman JJ. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials 2011; 32:9602-11. [PMID: 21944471 DOI: 10.1016/j.biomaterials.2011.09.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022]
Abstract
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair.
Collapse
Affiliation(s)
- Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | |
Collapse
|
9
|
Sadikot T, Hammond CR, Ferrari MB. Distinct roles for telethonin N-versus C-terminus in sarcomere assembly and maintenance. Dev Dyn 2010; 239:1124-35. [PMID: 20235223 DOI: 10.1002/dvdy.22263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminus of telethonin forms a unique structure linking two titin N-termini at the Z-disc. While a specific role for the C-terminus has not been established, several studies indicate it may have a regulatory function. Using a morpholino approach in Xenopus, we show that telethonin knockdown leads to embryonic paralysis, myocyte defects, and sarcomeric disruption. These myopathic defects can be rescued by expressing full-length telethonin mRNA in morpholino background, indicating that telethonin is required for myofibrillogenesis. However, a construct missing C-terminal residues is incapable of rescuing motility or sarcomere assembly in cultured myocytes. We, therefore, tested two additional constructs: one where four C-terminal phosphorylatable residues were mutated to alanines and another where terminal residues were randomly replaced. Data from these experiments support that the telethonin C-terminus is required for assembly, but in a context-dependent manner, indicating that factors and forces present in vivo can compensate for C-terminal truncation or mutation.
Collapse
Affiliation(s)
- Takrima Sadikot
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
10
|
Yap SV, Vafiadaki E, Strong J, Kontrogianni-Konstantopoulos A. HAX-1: a multifaceted antiapoptotic protein localizing in the mitochondria and the sarcoplasmic reticulum of striated muscle cells. J Mol Cell Cardiol 2009; 48:1266-79. [PMID: 19913549 DOI: 10.1016/j.yjmcc.2009.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/23/2009] [Accepted: 10/30/2009] [Indexed: 11/27/2022]
Abstract
HAX-1 comprises a family of ubiquitously expressed proteins with antiapoptotic properties. In the current study, we investigated HAX-1's temporospatial distribution in rat striated muscles during development and in adulthood. In cardiocytes, HAX-1 is organized at the level of Z-disks throughout embryogenesis and adulthood; however, in skeletal myofibers, it is in register with M-bands during embryonic and early postnatal life and Z-disks during late postnatal and adult life. Immunoelectron microscopy and subcellular fractionation demonstrated that HAX-1 proteins localize at the mitochondrial and sarcoplasmic reticulum (SR) membranes, as well as at sites where the two are closely apposed. Variants I and II selectively concentrate in the mitochondrial membranes, whereas variants III, IV, and V localize in both organelles, albeit to varying extents. Deletion analysis combined with cellular transfections indicated that elimination of HAX-1's NH(2)-terminus abolishes its mitochondrial targeting and attenuates its antiapoptotic capacity, while removal of its binding site for the SR protein phospholamban (PLN) prevents its translocation to the SR. Consistent with this, HAX-1 is preferentially lost from the SR of PLN-deficient hearts. Our findings are the first to present a comprehensive characterization of HAX-1's expression in striated muscles and to provide insights on the mechanisms through which it may modulate apoptosis.
Collapse
Affiliation(s)
- Solomon V Yap
- University of Maryland, School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
11
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
12
|
Das M, Rumsey JW, Bhargava N, Stancescu M, Hickman JJ. Skeletal muscle tissue engineering: a maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials 2009; 30:5392-402. [PMID: 19625080 DOI: 10.1016/j.biomaterials.2009.05.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/25/2009] [Indexed: 01/17/2023]
Abstract
The use of defined in vitro systems to study the developmental and physiological characteristics of a variety of cell types is increasing, due in large part to their ease of integration with tissue engineering, regenerative medicine, and high-throughput screening applications. In this study, myotubes derived from fetal rat hind limbs were induced to develop several aspects of mature muscle including: sarcomere assembly, development of the excitation-contraction coupling apparatus and myosin heavy chain (MHC) class switching. Utilizing immunocytochemical analysis, anisotropic and isotropic band formation (striations) within the myotubes was established, indicative of sarcomere formation. In addition, clusters of ryanodine receptors were colocalized with dihydropyridine complex proteins which signaled development of the excitation-contraction coupling apparatus and transverse tubule biogenesis. The myotubes also exhibited MHC class switching from embryonic to neonatal MHC. Lastly, the myotubes survived significantly longer in culture (70-90 days) than myotubes from our previously developed system (20-25 days). These results were achieved by modifying the culture timeline as well as the development of a new medium formulation. This defined model system for skeletal muscle maturation supports the goal of developing physiologically relevant muscle constructs for use in tissue engineering and regenerative medicine as well as for high-throughput screening applications.
Collapse
Affiliation(s)
- Mainak Das
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Suite 402, Research Pavilion, 12424 Research Parkway, Orlando, FL 32826, USA
| | | | | | | | | |
Collapse
|
13
|
Rigoard P, Buffenoir K, Wager M, Bauche S, Giot JP, Lapierre F. [Molecular architecture of the sarcoplasmic reticulum and its role in the ECC]. Neurochirurgie 2009; 55 Suppl 1:S83-91. [PMID: 19233437 DOI: 10.1016/j.neuchi.2008.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/09/2008] [Indexed: 11/16/2022]
Abstract
The sarcoplasmic reticulum (SR) plays a fundamental role in excitation-contraction coupling, which propagates the electric signal conversion along the muscle fiber's plasmic membrane to a mechanical event manifested as a muscle contraction. It plays a crucial role in calcium homeostasis and intracellular calcium storage control (storage, liberation and uptake) necessary for fiber muscle contraction and then relaxation. These functions take place at the triad, made up of individualized SR subdomains where the protein-specific organization provides efficient and fast coupling. Ryanodine receptors (RyR) and dihydropyridine receptors (DHPR) mainly act in calcium exchanges in the SR. This particular structural and molecular architecture must be correlated to its functional specificity.
Collapse
Affiliation(s)
- P Rigoard
- Service de neurochirurgie, CHU La Milétrie, 2, rue de la Milétrie, BP 577, 86021 Poitiers cedex, France.
| | | | | | | | | | | |
Collapse
|
14
|
Vlahovich N, Kee AJ, Van der Poel C, Kettle E, Hernandez-Deviez D, Lucas C, Lynch GS, Parton RG, Gunning PW, Hardeman EC. Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation-contraction coupling in skeletal muscle. Mol Biol Cell 2009; 20:400-9. [PMID: 19005216 PMCID: PMC2613127 DOI: 10.1091/mbc.e08-06-0616] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/17/2008] [Accepted: 10/31/2008] [Indexed: 01/11/2023] Open
Abstract
The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation-contraction coupling in skeletal muscle.
Collapse
Affiliation(s)
- Nicole Vlahovich
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- University of Western Sydney, Parramatta, NSW, Australia
| | - Anthony J. Kee
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Chris Van der Poel
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Emma Kettle
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Delia Hernandez-Deviez
- Institute for Molecular Biosciences, University of Queensland and Centre for Microscopy and Microanalysis, Brisbane, QLD, Australia
| | - Christine Lucas
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Gordon S. Lynch
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Robert G. Parton
- Institute for Molecular Biosciences, University of Queensland and Centre for Microscopy and Microanalysis, Brisbane, QLD, Australia
| | - Peter W. Gunning
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, NSW, Australia
- **Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia; and
| | - Edna C. Hardeman
- *Muscle Development Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Cai C, Masumiya H, Weisleder N, Pan Z, Nishi M, Komazaki S, Takeshima H, Ma J. MG53 regulates membrane budding and exocytosis in muscle cells. J Biol Chem 2008; 284:3314-3322. [PMID: 19029292 DOI: 10.1074/jbc.m808866200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membrane recycling and remodeling contribute to multiple cellular functions, including cell fusion events during myogenesis. We have identified a tripartite motif (TRIM72) family member protein named MG53 and defined its role in mediating the dynamic process of membrane fusion and exocytosis in striated muscle. MG53 is a muscle-specific protein that contains a TRIM motif at the amino terminus and a SPRY motif at the carboxyl terminus. Live cell imaging of green fluorescent protein-MG53 fusion construct in cultured myoblasts showed that although MG53 contains no transmembrane segment it is tightly associated with intracellular vesicles and sarcolemmal membrane. RNA interference-mediated knockdown of MG53 expression impeded myoblast differentiation, whereas overexpression of MG53 enhanced vesicle trafficking to and budding from sarcolemmal membrane. Co-expression studies indicated that MG53 activity is regulated by a functional interaction with caveolin-3. Our data reveal a new function for TRIM family proteins in regulating membrane trafficking and fusion in striated muscles.
Collapse
Affiliation(s)
- Chuanxi Cai
- Departments of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Haruko Masumiya
- Department of Medical Chemistry, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan
| | - Noah Weisleder
- Departments of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Zui Pan
- Departments of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Miyuki Nishi
- Department of Medical Chemistry, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan; Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical University, Saitama 350-0495, Japan
| | - Hiroshi Takeshima
- Department of Medical Chemistry, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan; Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan.
| | - Jianjie Ma
- Departments of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854; Department of Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
16
|
Stroffekova K. Ca2+/CaM-dependent inactivation of the skeletal muscle L-type Ca2+ channel (Cav1.1). Pflugers Arch 2007; 455:873-84. [PMID: 17899167 DOI: 10.1007/s00424-007-0344-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Ca2+-dependent modulation via calmodulin (CaM) has been documented for most high-voltage-activated Ca2+ channels, but whether the skeletal muscle L-type channel (Cav1.1) exhibits this property has been unknown. In this paper, whole-cell current and fluorescent resonance energy transfer (FRET) recordings were obtained from cultured mouse myotubes to test for potential involvement of CaM in function of Cav1.1. When prolonged depolarization (800 ms) was used to evoke Cav1.1 currents in normal myotubes, the fraction of current remaining at the end of the pulse displayed classic signs of Ca2+-dependent inactivation (CDI), including U-shaped voltage dependence, maximal inactivation (approximately 30%) at potentials eliciting maximal inward current, and virtual elimination of inactivation when Ba2+ replaced external Ca2+ or when 10 mM BAPTA was included in the pipette solution. Furthermore, CDI was virtually eliminated (from 30 to 8%) in normal myotubes overexpressing mutant CaM (CaM1234) that does not bind Ca2+, whereas CDI was unaltered in myotubes overexpressing wild-type CaM (CaMwt). In addition, a significant FRET signal (E=4.06%) was detected between fluorescently tagged Cav1.1 and CaMwt coexpressed in dysgenic myotubes, demonstrating for the first time that these two proteins associate in vivo. These findings show that CaM associates with and modulates Cav1.1.
Collapse
Affiliation(s)
- Katarina Stroffekova
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA.
| |
Collapse
|
17
|
Lo HP, Cooper ST, Evesson FJ, Seto JT, Chiotis M, Tay V, Compton AG, Cairns AG, Corbett A, MacArthur DG, Yang N, Reardon K, North KN. Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord 2007; 18:34-44. [PMID: 17897828 DOI: 10.1016/j.nmd.2007.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 07/23/2007] [Accepted: 08/17/2007] [Indexed: 11/19/2022]
Abstract
We characterized the frequency of limb-girdle muscular dystrophy (LGMD) subtypes in a cohort of 76 Australian muscular dystrophy patients using protein and DNA sequence analysis. Calpainopathies (8%) and dysferlinopathies (5%) are the most common causes of LGMD in Australia. In contrast to European populations, cases of LGMD2I (due to mutations in FKRP) are rare in Australasia (3%). We have identified a cohort of patients in whom all common disease candidates have been excluded, providing a valuable resource for identification of new disease genes. Cytoplasmic localization of dysferlin correlates with fiber regeneration in a subset of muscular dystrophy patients. In addition, we have identified a group of patients with unidentified forms of LGMD and with markedly abnormal dysferlin localization that does not correlate with fiber regeneration. This pattern is mimicked in primary caveolinopathy, suggesting a subset of these patients may also possess mutations within proteins required for membrane targeting of dysferlin.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Neuromuscular Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou J, Yi J, Royer L, Launikonis BS, González A, García J, Ríos E. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 2005; 290:C539-53. [PMID: 16148029 DOI: 10.1152/ajpcell.00592.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca(2+) release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca(2+) release. Murine primary cultures were confocally imaged for Ca(2+) detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca(2+) sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca(2+) saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 microM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca(2+) saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca(2+)] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca(2+)] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca(2+) release channels and/or their susceptibility to Ca(2+)-induced activation, thereby suppressing the production of Ca(2+) sparks.
Collapse
Affiliation(s)
- Jingsong Zhou
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Guzzo R, Wigle J, Salih M, Moore E, Tuana B. Regulated expression and temporal induction of the tail-anchored sarcolemmal-membrane-associated protein is critical for myoblast fusion. Biochem J 2004; 381:599-608. [PMID: 15086317 PMCID: PMC1133868 DOI: 10.1042/bj20031723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 03/15/2004] [Accepted: 04/15/2004] [Indexed: 11/17/2022]
Abstract
Sarcolemmal-membrane-associated proteins (SLMAPs) define a new class of coiled-coil tail-anchored membrane proteins generated by alternative splicing mechanisms. An in vivo expression analysis indicated that SLMAPs are present in somites (11 days post-coitum) as well as in fusing myotubes and reside at the level of the sarcoplasmic reticulum and transverse tubules in adult skeletal muscles. Skeletal-muscle myoblasts were found to express a single 5.9 kb transcript, which encodes the full-length approximately 91 kDa SLMAP3 isoform. Myoblast differentiation was accompanied by the stable expression of the approximately 91 kDa SLMAP protein as well as the appearance of an approximately 80 kDa isoform. Deregulation of SLMAPs by ectopic expression in myoblasts resulted in a potent inhibition of fusion without affecting the expression of muscle-specific genes. Membrane targeting of the de-regulated SLMAPs was not critical for the inhibition of myotube development. Protein-protein interaction assays indicated that SLMAPs are capable of self-assembling, and the de-regulated expression of mutants that were not capable of forming SLMAP homodimers also inhibited myotube formation. These results imply that regulated levels and the temporal induction of SLMAP isoforms are important for normal muscle development.
Collapse
Affiliation(s)
- Rosa M. Guzzo
- *Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Jeffery Wigle
- *Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Maysoon Salih
- *Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Edwin D. Moore
- †Department of Physiology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Balwant S. Tuana
- *Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, ON, Canada K1H 8M5
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
20
|
Spangenburg EE, Bowles DK, Booth FW. Insulin-like growth factor-induced transcriptional activity of the skeletal alpha-actin gene is regulated by signaling mechanisms linked to voltage-gated calcium channels during myoblast differentiation. Endocrinology 2004; 145:2054-63. [PMID: 14684598 DOI: 10.1210/en.2003-1476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IGF-I activates signaling pathways that increase the expression of muscle-specific genes in differentiating myoblasts. Induction of skeletal alpha-actin expression occurs during differentiation through unknown mechanisms. The purpose of this investigation was to examine the mechanisms that IGF-I uses to induce skeletal alpha-actin gene expression in C2C12 myoblasts. IGF-I increased skeletal alpha-actin promoter activity by 107% compared with the control condition. Ni(+) [T-type voltage-gated Ca(2+) channel (VGCC) inhibitor] reduced basal-induced activation of the skeletal alpha-actin promoter by approximately 84%, and nifedipine (L-type VGCC inhibitor) inhibited IGF-I-induced activation of the skeletal alpha-actin promoter by 29-48%. IGF-I failed to increase skeletal alpha-actin promoter activity in differentiating dysgenic (lack functional L-type VGCC) myoblasts; 30 mm K(+) and 30 mm K(+)+IGF-I increased skeletal alpha-actin promoter activity by 162% and 76% compared with non-IGF-I or IGF-I-only conditions, respectively. IGF-I increased calcineurin activity, which was inhibited by cyclosporine A. Further, cyclosporine A inhibited K(+)+IGF-I-induced activation of the skeletal alpha-actin promoter. Constitutively active calcineurin increased skeletal alpha-actin promoter activity by 154% and rescued the nifedipine-induced inhibition of L-type VGCC but failed to rescue the Ni(+)-inhibition of T-type VGCC. IGF-I-induced nuclear factor of activated T-cells transcriptional activity was not inhibited by nifedipine or Ni(+). IGF-I failed to increase serum response factor transcriptional activity; however, serum response factor activity was reduced in the presence of Ni(+). These data suggest that IGF-I-induced activation of the skeletal alpha-actin promoter is regulated by the L-type VGCC and calcineurin but independent of nuclear factor of activated T-cell transcriptional activity as C2C12 myoblasts differentiate into myotubes.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Biomedical Sciences, University of Missouri, Columbia 65211, USA.
| | | | | |
Collapse
|
21
|
Shin DH, Kim JS, Kwon BS, Lee KS, Kim JW, Kim MH, Cho SS, Lee WJ. Caveolin-3 expression during early chicken development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 141:83-9. [PMID: 12644251 DOI: 10.1016/s0165-3806(02)00645-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caveolin-3, a protein that is correlated with caveolae, is found in muscle cells, especially during their differentiation. Although the distribution of caveolin-3 has been studied in cases such as adult and late embryonic mammalians, the expression of caveolin-3 has not been clearly defined during chicken development. In this study, we detected intense caveolin-3 immunoreactivity (IR) as early as embryonic day 4 (E4), most of the signals were localized within the neural tube and myotome. While IRs in the brain occurred in radial glia at E6, these intensities were reduced to an almost undetectable level at E8. In the case of muscle cells, the exclusive localization of caveolin-3 in the cytoplasmic membrane was detected even at E11, much earlier than in mammalian muscle tissues. Although the caveolin-3 IR pattern was similar to that reported by previous studies, we found some interesting mismatches in the case of avian tissues. Although we are unable to explain caveolin-3 expression patterns in the early embryonic stages, this study could provide a basis for further study on the function of caveolin-3 in avian embryogenesis.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Anatomy, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Flucher BE, Weiss RG, Grabner M. Cooperation of two-domain Ca(2+) channel fragments in triad targeting and restoration of excitation- contraction coupling in skeletal muscle. Proc Natl Acad Sci U S A 2002; 99:10167-72. [PMID: 12119388 PMCID: PMC126642 DOI: 10.1073/pnas.122345799] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific incorporation of the skeletal muscle voltage-dependent Ca(2+) channel in the triad is a prerequisite of normal excitation-contraction (EC) coupling. Sequences involved in membrane expression and in targeting of Ca(2+) channels into skeletal muscle triads have been described in different regions of the alpha(1S) subunit. Here we studied the targeting properties of two-domain alpha(1S) fragments, green fluorescent protein (GFP)-I x II (1-670) and III x IV (691-1873) expressed alone or in combination in dysgenic (alpha(1S)-null) myotubes. Immunofluorescence analysis showed that GFP-I x II or III x IV expressed separately were not targeted into triads. In contrast, on coexpression the two alpha(1S) fragments were colocalized with one another and with the ryanodine receptor in the triads. Coexpression of GFP-I x II and III x IV also fully restored Ca(2+) currents and depolarization-induced Ca(2+) transients, despite the severed connection between the two channel halves and the absence of amino acids 671-690 from either alpha(1S) fragment. Thus, triad targeting, like the rescue of function, requires the cooperation and coassembly of the two complementary channel fragments. Transferring the C terminus of alpha(1S) to the N-terminal two-domain fragment (GFP-I x II x tail), or transferring the I-II connecting loop containing the beta interaction domain to the C-terminal fragment (III x IV x beta in) did not improve the targeting properties of the individually expressed two-domain channel fragments. Thus, the cooperation of GFP-I.II and III.IV in targeting cannot be explained solely by a sequential action of the beta subunit by means of the I-II loop in releasing the channel from the sarcoplasmic reticulum and of the C terminus in triad targeting.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
23
|
Ginkel LM, Wordeman L. Expression and partial characterization of kinesin-related proteins in differentiating and adult skeletal muscle. Mol Biol Cell 2000; 11:4143-58. [PMID: 11102514 PMCID: PMC15063 DOI: 10.1091/mbc.11.12.4143] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Using pan-kinesin antibodies to screen a differentiating C2C12 cell library, we identified the kinesin proteins KIF3A, KIF3B, and conventional kinesin heavy chain to be present in differentiating skeletal muscle. We compared the expression and subcellular localization characteristics of these kinesins in myogenic cells to others previously identified in muscle, neuronal, and mitotic systems (KIF1C, KIF3C, and mitotic-centromere-associated kinesin). Because members of the KIF3 subfamily of kinesin-related proteins showed altered subcellular fractionation characteristics in differentiating cells, we focused our study of kinesins in muscle on the function of kinesin-II. Kinesin-II is a motor complex comprised of dimerized KIF3A and KIF3B proteins and a tail-associated protein, KAP. The Xenopus homologue of KIF3B, Xklp3, is predominantly localized to the region of the Golgi apparatus, and overexpression of motorless-Xklp3 in Xenopus A6 cells causes mislocalization of Golgi components (). In C2C12 myoblasts and myotubes, KIF3B is diffuse and punctate, and not primarily associated with the Golgi. Overexpression of motorless-KIF3B does not perturb localization of Golgi components in myogenic cells, and myofibrillogenesis is normal. In adult skeletal muscle, KIF3B colocalizes with the excitation-contraction-coupling membranes. We propose that these membranes, consisting of the transverse-tubules and sarcoplasmic reticulum, are dynamic structures in which kinesin-II may function to actively assemble and maintain in myogenic cells.
Collapse
Affiliation(s)
- L M Ginkel
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
24
|
Daniels MP, Lowe BT, Shah S, Ma J, Samuelsson SJ, Lugo B, Parakh T, Uhm CS. Rodent nerve-muscle cell culture system for studies of neuromuscular junction development: refinements and applications. Microsc Res Tech 2000; 49:26-37. [PMID: 10757876 DOI: 10.1002/(sici)1097-0029(20000401)49:1<26::aid-jemt4>3.0.co;2-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Understanding of vertebrate neuromuscular junction (NMJ) development has been advanced by experimentation with cultures of dissociated embryonic nerve and skeletal muscle cells, particularly those derived from Xenopus and chick embryos. We previously developed a rodent (rat) nerve-muscle coculture system that is characterized by extensive induction of acetylcholine receptor (AChR) aggregation at sites of axonal contact with myotubes (Dutton et al., 1995). In this article, we report modifications of this culture system and examples of its application to the study of NMJ development: (1) We describe improved methods for the enrichment of myoblasts to give higher yields of myotubes with equal or greater purity. (2) We demonstrate lipophilic dye labeling of axons in cocultures by injection of dye into neuron aggregates and show the feasibility of studying the growth of living axons on myotubes during synapse formation. (3) We describe the preparation of a better-defined coculture system containing myotubes with purified rat motoneurons and characterize the system with respect to axon-induced AChR aggregation. (4) We demonstrate dependence of the pattern of axon-induced AChR aggregation on muscle cell species, by the use of chick-rat chimeric co-cultures. (5) We provide evidence for the role of alternatively-spliced agrin isoforms in synapse formation by using single cell RT-PCR with neurons collected from co-cultures after observation of axon-induced AChR aggregation. Microsc. Res. Tech. 49:26-37, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- M P Daniels
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-4036, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bulteau L, Raymond G, Cognard C. Antisense oligonucleotides against ‘cardiac’ and ‘skeletal’ DHP-receptors reveal a dual role for the ‘skeletal’ isoform in EC coupling of skeletal muscle cells in primary culture. J Cell Sci 1998; 111 ( Pt 15):2149-58. [PMID: 9664036 DOI: 10.1242/jcs.111.15.2149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two dihydropyridine receptor mRNA isoforms (cardiac and skeletal) are expressed in rat skeletal muscle cells in primary culture. The progressive changes in excitation-contraction coupling mode from dual mode (‘skeletal’ and ‘cardiac’) to predominant ‘skeletal’ one during in vitro myogenesis are thought to be linked to the developmental changes in the relative expression of the two types of molecular entity previously observed in this preparation. In order to test this hypothesis, myotube cultures (5- to 7-day-old) were treated with antisense phosphorothioated oligodeoxynucleotides against cardiac or skeletal alpha1 subunit of L-type calcium channel. The oligodeoxynucleotide uptake by cells was checked by means of imaging of fluorescent oligodeoxynucleotide derivatives within the cells. Optimum concentration used (10 microM in the extracellular medium) and incubation time (70 hours) were empirically determined. Antisense directed against the cardiac type led to a 54% decrease in the averaged L-type calcium current peak density at −10 mV. The same type of experiment was performed with antisense against the skeletal isoform and led to a same order of inhibition (46%). This result clearly shows that the two isoforms can work as a calcium channel. Conversely, analysis of the shape of T-V (relative contractile amplitude versus membrane potential) curves shows that the treatment with ‘skeletal’ antisense depressed the contractile response in the medium membrane potential range whereas treatment with ‘cardiac’ antisense had no effect. This and other results taken together suggest that the skeletal isoform of dihydropyridine receptor is involved in both ‘cardiac’ and ‘skeletal’ types of EC coupling mechanisms at work in early stages of myotubes in vitro development. The type of coupling probably depends on the proximity of the skeletal dihydropyridine receptor and the ryanodine receptor.
Collapse
Affiliation(s)
- L Bulteau
- Biomembranes Laboratory, UMR 6558 University of Poitiers/CNRS, F-86022 Poitiers cedex, France.
| | | | | |
Collapse
|
26
|
Protasi F, Franzini-Armstrong C, Allen PD. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J Cell Biol 1998; 140:831-42. [PMID: 9472035 PMCID: PMC2141739 DOI: 10.1083/jcb.140.4.831] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In muscle cells, excitation-contraction (e-c) coupling is mediated by "calcium release units," junctions between the sarcoplasmic reticulum (SR) and exterior membranes. Two proteins, which face each other, are known to functionally interact in those structures: the ryanodine receptors (RyRs), or SR calcium release channels, and the dihydropyridine receptors (DHPRs), or L-type calcium channels of exterior membranes. In skeletal muscle, DHPRs form tetrads, groups of four receptors, and tetrads are organized in arrays that face arrays of feet (or RyRs). Triadin is a protein of the SR located at the SR-exterior membrane junctions, whose role is not known. We have structurally characterized calcium release units in a skeletal muscle cell line (1B5) lacking Ry1R. Using immunohistochemistry and freeze-fracture electron microscopy, we find that DHPR and triadin are clustered in foci in differentiating 1B5 cells. Thin section electron microscopy reveals numerous SR-exterior membrane junctions lacking foot structures (dyspedic). These results suggest that components other than Ry1Rs are responsible for targeting DHPRs and triadin to junctional regions. However, DHPRs in 1B5 cells are not grouped into tetrads as in normal skeletal muscle cells suggesting that anchoring to Ry1Rs is necessary for positioning DHPRs into ordered arrays of tetrads. This hypothesis is confirmed by finding a "restoration of tetrads" in junctional domains of surface membranes after transfection of 1B5 cells with cDNA encoding for Ry1R.
Collapse
Affiliation(s)
- F Protasi
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA.
| | | | | |
Collapse
|
27
|
Protasi F, Franzini-Armstrong C, Flucher BE. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. J Cell Biol 1997; 137:859-70. [PMID: 9151688 PMCID: PMC2139832 DOI: 10.1083/jcb.137.4.859] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rapid release of calcium from the sarcoplasmic reticulum (SR) of skeletal muscle fibers during excitation-contraction (e-c) coupling is initiated by the interaction of surface membrane calcium channels (dihydropyridine receptors; DHPRs) with the calcium release channels of the SR (ryanodine receptors; RyRs, or feet). We studied the early differentiation of calcium release units, which mediate this interaction, in BC3H1 cells. Immunofluorescence labelings of differentiating myocytes with antibodies against alpha1 and alpha2 subunits of DHPRs, RyRs, and triadin show that the skeletal isoforms of all four proteins are abundantly expressed upon differentiation, they appear concomitantly, and they are colocalized. The transverse tubular system is poorly organized, and thus clusters of e-c coupling proteins are predominantly located at the cell periphery. Freeze fracture analysis of the surface membrane reveals tetrads of large intramembrane particles, arranged in orderly arrays. These appear concomitantly with arrays of feet (RyRs) and with the appearance of DHPR/RyS clusters, confirming that the four components of the tetrads correspond to skeletal muscle DHPRs. The arrangement of tetrads and feet in developing junctions indicates that incorporation of DHPRs in junctional domains of the surface membrane proceeds gradually and is highly coordinated with the formation of RyR arrays. Within the arrays, tetrads are positioned at a spacing of twice the distance between the feet. The incorporation of individual DHPRs into tetrads occurs exclusively at positions corresponding to alternate feet, suggesting that the assembly of RyR arrays not only guides the assembly of tetrads but also determines their characteristic spacing in the junction.
Collapse
Affiliation(s)
- F Protasi
- Department of Cell Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA.
| | | | | |
Collapse
|
28
|
Oppenheim RW, Prevette D, Houenou LJ, Pincon-Raymond M, Dimitriadou V, Donevan A, O'Donovan M, Wenner P, Mckemy DD, Allen PD. Neuromuscular development in the avian paralytic mutant crooked neck dwarf (cn/cn): further evidence for the role of neuromuscular activity in motoneuron survival. J Comp Neurol 1997; 381:353-72. [PMID: 9133573 DOI: 10.1002/(sici)1096-9861(19970512)381:3<353::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuromuscular transmission and muscle activity during early stages of embryonic development are known to influence the differentiation and survival of motoneurons and to affect interactions with their muscle targets. We have examined neuromuscular development in an avian genetic mutant, crooked neck dwarf (cn/cn), in which a major phenotype is the chronic absence of the spontaneous, neurally mediated movements (motility) that are characteristic of avian and other vertebrate embryos and fetuses. The primary genetic defect in cn/cn embryos responsible for the absence of motility appears to be the lack of excitation-contraction coupling. Although motility in mutant embryos is absent from the onset of activity on embryonic days (E) 3-4, muscle differentiation appears histologically normal up to about E8. After E8, however, previously separate muscles fuse or coalesce secondarily, and myotubes exhibit a progressive series of histological and ultrastructural degenerative changes, including disarrayed myofibrils, dilated sarcoplasmic vesicles, nuclear membrane blebbing, mitochondrial swelling, nuclear inclusions, and absence of junctional end feet. Mutant muscle cells do not develop beyond the myotube stage, and by E18-E20 most muscles have almost completely degenerated. Prior to their breakdown and degeneration, mutant muscles are innervated and synaptic contacts are established. In fact, quantitative analysis indicates that, prior to the onset of muscle degeneration, mutant muscles are hyperinnervated. There is increased branching of motoneuron axons and an increased number of synaptic contacts in the mutant muscle on E8. Naturally occurring cell death of limb-innervating motoneurons is also significantly reduced in cn/cn embryos. Mutant embryos have 30-40% more motoneurons in the brachial and lumbar spinal cord by the end of the normal period of cell death. Electrophysiological recordings (electromyographic and direct records form muscle nerves) failed to detect any differences in the activity of control vs. mutant embryos despite the absence of muscular contractile activity in the mutant embryos. The alpha-ryanodine receptor that is genetically abnormal in homozygote cn/cn embryos is not normally expressed in the spinal cord. Taken together, these data argue against the possibility that the mutant phenotype described here is caused by the perturbation of a central nervous system (CNS)-expressed alpha-ryanodine receptor. The hyperinnervation of skeletal muscle and the reduction of motoneuron death that are observed in cn/cn embryos also occur in genetically paralyzed mouse embryos and in pharmacologically paralyzed avian and rat embryos. Because a primary common feature in all three of these models is the absence of muscle activity, it seems likely that the peripheral excitation of muscle by motoneurons during normal development is a major factor in regulating retrograde muscle-derived (or muscle-associated) signals that control motoneuron differentiation and survival.
Collapse
Affiliation(s)
- R W Oppenheim
- Department of Neurobiology and Anatomy, Wake Forest University, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Parton RG, Way M, Zorzi N, Stang E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J Biophys Biochem Cytol 1997; 136:137-54. [PMID: 9008709 PMCID: PMC2132459 DOI: 10.1083/jcb.136.1.137] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Caveolae, flask-shaped invaginations of the plasma membrane, are particularly abundant in muscle cells. We have recently cloned a muscle-specific caveolin, termed caveolin-3, which is expressed in differentiated muscle cells. Specific antibodies to caveolin-3 were generated and used to characterize the distribution of caveolin-3 in adult and differentiating muscle. In fully differentiated skeletal muscle, caveolin-3 was shown to be associated exclusively with sarcolemmal caveolae. Localization of caveolin-3 during differentiation of primary cultured muscle cells and development of mouse skeletal muscle in vivo suggested that caveolin-3 is transiently associated with an internal membrane system. These elements were identified as developing transverse-(T)-tubules by double-labeling with antibodies to the alpha 1 subunit of the dihydropyridine receptor in C2C12 cells. Ultrastructural analysis of the caveolin-3-labeled elements showed an association of caveolin-3 with elaborate networks of interconnected caveolae, which penetrated the depths of the muscle fibers. These elements, which formed regular reticular structures, were shown to be surface-connected by labeling with cholera toxin conjugates. The results suggest that caveolin-3 transiently associates with T-tubules during development and may be involved in the early development of the T-tubule system in muscle.
Collapse
Affiliation(s)
- R G Parton
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
30
|
Kaprielian Z, Robinson SW, Fambrough DM, Kessler PD. Movement of Ca(2+)-ATPase molecules within the sarcoplasmic/endoplasmic reticulum in skeletal muscle. J Cell Sci 1996; 109 ( Pt 10):2529-37. [PMID: 8923214 DOI: 10.1242/jcs.109.10.2529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum undergoes rapid, microscopic changes in its structure, including extension and anastomosis of tubular elements. Such dynamism is expected to manifest itself also as rapid intermixing of membrane components, at least within subdomains of the endoplasmic reticulum. Here we present evidence of a similar dynamism in the sarcoplasmic reticulum of developing skeletal muscle. The sarcoplasmic reticulum is sometimes considered a specialized type of endoplasmic reticulum, but it appears to be a rather static set of membrane-bound elements, repetitively arranged to enwrap each sarcomere of each myofibril. Both endoplasmic reticulum and sarcoplasmic reticulum contain P-type Ca(2+)-ATPases that transport calcium from the cytosol into their lumen. In the experiments reported here, chicken and mouse cells were fused by polyethylene glycol, natural myogenic cell fusion, or Sendai virus. The redistribution of Ca(2+)-ATPase molecules between chick and mouse endoplasmic reticulum/sarcoplasmic reticulum was followed by immunofluorescence microscopy in which species-specific monoclonal antibodies to chick and mouse Ca(2+)-ATPases were used. Redistribution was time- and temperature-dependent but independent of protein synthesis as well as the method of cell fusion. Intermixing occurred on a time scale of tens of minutes at 37 degrees C. These results verify the dynamic nature of the sarcoplasmic reticulum and illustrate an aspect of the special relationship between endoplasmic reticulum and sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Z Kaprielian
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
31
|
Flucher BE, Franzini-Armstrong C. Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci U S A 1996; 93:8101-6. [PMID: 8755610 PMCID: PMC38882 DOI: 10.1073/pnas.93.15.8101] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During excitation-contraction (e-c) coupling of striated muscle, depolarization of the surface membrane is converted into Ca2+ release from internal stores. This process occurs at intracellular junctions characterized by a specialized composition and structural organization of membrane proteins. The coordinated arrangement of the two key junctional components--the dihydropyridine receptor (DHPR) in the surface membrane and the ryanodine receptor (RyR) in the sarcoplasmic reticulum--is essential for their normal, tissue-specific function in e-c coupling. The mechanisms involved in the formation of the junctions and a potential participation of DHPRs and RyRs in this process have been subject of intensive studies over the past 5 years. In this review we discuss recent advances in understanding the organization of these molecules in skeletal and cardiac muscle, as well as their concurrent and independent assembly during development of normal and mutant muscle. From this information we derive a model for the assembly of the junctions and the establishment of the precise structural relationship between DHPRs and RyRs that underlies their interaction in e-c coupling.
Collapse
Affiliation(s)
- B E Flucher
- Department of Biochemical Pharmacology, University of Innsbruck, Austria
| | | |
Collapse
|
32
|
Interaction of force transmission and sarcomere assembly at the muscle-tendon junctions of carp (Cyprinus carpio): ultrastructure and distribution of titin (connectin) and α-actinin. Cell Tissue Res 1995. [DOI: 10.1007/bf00417869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Briggs RT, Scordilis SP, Powell JA. Myofibrillogenesis in rodent skeletal muscle in vitro: two pathways involving thick filament aggregates. Tissue Cell 1995; 27:91-104. [PMID: 7740537 DOI: 10.1016/s0040-8166(95)80014-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thick filament aggregates play an important role in myofibrillogenesis in rodent skeletal muscle in vitro. This ultrastructural study describes these aggregates, shows their involvement in the process of myofibril formation, and correlates their appearance and function with current models of myofibrillogenesis. Initially, following myoblast fusion in normal mouse skeletal muscle in vitro, abundant stress fiber-like structures (SFLS) are found near the periphery of early myotubes. These undergo internal rearrangements, forming subcortical sarcomeres and early myofibrils. However, additional thick filaments are synthesized, and some join appositionally to the nascent myofibrils, increasing their diameter. More interiorly, this thick filament synthesis accelerates, with filaments aligning into aggregates resembling discrete A-bands, usually with M-lines and M-regions. The ends of these 'A-band' aggregates are infiltrated with ribosomes and capped by flocculent material. Ultimately, aggregates are incorporated into preexisting myofibrils or associate end-to-end to form new, parallel myofibrils, the flocculent material forming putative I-bands with diminished Z-lines and few thin filaments. As differentiation continues, Z-lines and thin filaments appear, forming true myofibrils. Dysgenic mouse skeletal muscle develops similarly, but when this non-contractile cell matures (i.e., generates action potentials), filaments and their organization break down. Cloned myogenic rat L5/A10 cells also follow this developmental pattern, but in mature, contracting myotubes, Z-lines remain irregular and thin filaments are reduced. In all three types of muscle developing in vitro, thick filament aggregates are a common and predominant feature and as such appear to constitute an additional or alternate pathway to previously described models of myofibrillogenesis.
Collapse
Affiliation(s)
- R T Briggs
- Department of Biological Sciences, Smith College, Northampton, MA 01063
| | | | | |
Collapse
|
34
|
Flucher BE, Andrews SB, Daniels MP. Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Mol Biol Cell 1994; 5:1105-18. [PMID: 7865878 PMCID: PMC301134 DOI: 10.1091/mbc.5.10.1105] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The relationship between the molecular composition and organization of the triad junction and the development of excitation-contraction (E-C) coupling was investigated in cultured skeletal muscle. Action potential-induced calcium transients develop concomitantly with the first expression of the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR), which are colocalized in clusters from the time of their earliest appearance. These DHPR/RyR clusters correspond to junctional domains of the transverse tubules (T-tubules) and sarcoplasmic reticulum (SR), respectively. Thus, at first contact T-tubules and SR form molecularly and structurally specialized membrane domains that support E-C coupling. The earliest T-tubule/SR junctions show structural characteristics of mature triads but are diverse in conformation and typically are formed before the extensive development of myofibrils. Whereas the initial formation of T-tubule/SR junctions is independent of association with myofibrils, the reorganization into proper triads occurs as junctions become associated with the border between the A band and the I band of the sarcomere. This final step in triad formation manifests itself in an increased density and uniformity of junctions in the cytoplasm, which in turn results in increased calcium release and reuptake rates.
Collapse
Affiliation(s)
- B E Flucher
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
35
|
Brillantes AM, Bezprozvannaya S, Marks AR. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling. Circ Res 1994; 75:503-10. [PMID: 8062423 DOI: 10.1161/01.res.75.3.503] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two types of calcium channels signal excitation-contraction (E-C) coupling in striated muscle: dihydropyridine receptors (DHPRs, voltage-gated L-type calcium channels on the transverse tubule) and ryanodine receptors (RyRs, calcium release channels on the sarcoplasmic reticulum). Sarcolemmal depolarization activates the DHPR; subsequently, the RyR is activated and releases calcium that activates muscle contraction. We show in the present study that expression of the E-C coupling calcium channels is upregulated during myogenic development in the rabbit. Skeletal and cardiac muscle isoforms of the following genes were examined: the DHPR alpha 1, alpha 2, beta, and gamma subunits and the RyR. Distinct cardiac and skeletal muscle-specific cDNAs were isolated, encoding each of the DHPR subunits and the RyR. The skeletal muscle DHPR alpha 1, alpha 2, beta, and gamma subunits and the cardiac DHPR alpha 1 subunit mRNA levels increased on the day of birth and at the adult stage compared with fetal levels. The skeletal and cardiac RyR mRNA levels increased on the day of birth and at adult stages compared with fetal levels. Ryanodine binding sites increased in both skeletal and cardiac muscle. We now provide a molecular explanation for the physiological "maturation" of the E-C coupling apparatus observed at the day of birth and during early postnatal development in both skeletal and cardiac muscles. Low levels of calcium channel expression in fetal cardiac and skeletal muscle make these tissues more sensitive to pharmacological therapy with calcium channel blockers, a phenomenon that has been reported in human neonates.
Collapse
Affiliation(s)
- A M Brillantes
- Department of Medicine, Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029
| | | | | |
Collapse
|
36
|
Jaimovich E, Rojas E. Intracellular Ca2+ transients induced by high external K+ and tetracaine in cultured rat myotubes. Cell Calcium 1994; 15:356-68. [PMID: 8033194 DOI: 10.1016/0143-4160(94)90011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cultured myotubes from rat neonatal skeletal muscle were used to measure intracellular Ca2+ concentration ([Ca2+]i) and membrane potentials (Vm) using the Indo-1 microfluorimetry method and the nystatin perforated membrane patch technique, respectively. Sudden increases in external [K+]o from 5 mM to either 22, 42 or 84 mM elicited transient elevations in [Ca2+]i from a resting level of 106.2 +/- 10.3 nM (n = 41) to peak values of 297, 409 and 454 nM, respectively. Vm changes induced by elevated [K+]o followed the Nernst equation for [K+]o. The complex Ca2+ release response induced by elevated [K+]o can be described by a minimal model involving two components with different kinetics. This analysis revealed that the extent of the Ca2+ release by the fast component bears a sigmoidal relationship with Vm (midpoint at -47.5 mV and an effective valence of 4). Furthermore, while the fast transitory component was rather insensitive to [Ca2+]o and nifedipine, the slow component was profoundly inhibited by the dihydropyridine (10 microM) both in normal and in a Ca2+ deficient medium. Tetracaine (0.05 to 2 mM), a blocker of the charge movement associated with excitation-contraction (E-C) coupling, elicited a fast elevation in [Ca2+]i followed by a rise at a constant rate to levels as high as 1-2 microM, and the changes in [Ca2+]i were readily reversible. Simultaneous measurements of Vm and [Ca2+]i suggest that the fast component is coupled to the rapid depolarization of the membrane induced by the anesthetic. We concluded that tetracaine triggers the release of Ca2+ from internal stores by at least two different mechanisms, one of which is associated with the depolarizing effects of the drug.
Collapse
Affiliation(s)
- E Jaimovich
- Laboratory of Cell Biology and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda
| | | |
Collapse
|
37
|
Ioshii SO, Imanaka-Yoshida K, Yoshida T. Organization of calsequestrin-positive sarcoplasmic reticulum in rat cardiomyocytes in culture. J Cell Physiol 1994; 158:87-96. [PMID: 8263032 DOI: 10.1002/jcp.1041580112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sarcoplasmic reticulum (SR) regulates the levels of cytoplasmic free Ca2+ ions in muscle cells. Calsequestrin is a major Ca(2+)-storing protein and is localized at special sites in the SR. To investigate the development of calsequestrin-positive SR and its interaction with the cytoskeleton, we examined the distribution of calsequestrin in cultured cardiomyocytes from newborn rats by immunofluorescence with anticalsequestrin and antitubulin antibodies and rhodamine-phalloidin. In frozen sections of neonatal rat heart, anticalsequestrin immunostaining was apparent as cross-striations at Z-lines. When newborn cardiomyocytes were isolated, calsequestrin-positive SR was disorganized and was apparent as small vesicles beneath the sarcolemma, whereas myofibrils accumulated in the center of the cells. As the cells spread in culture, calsequestrin-positive vesicles spread to the periphery of the cytoplasm, becoming associated with the developing myofibrils. In mature cells, calsequestrin was closely associated with myofibrils, showing cross-striations at the Z-lines. Double-labeling using anticalsequestrin and antitubulin antibodies demonstrated that the distribution of calsequestrin-positive structures was similar to that of the microtubular arrays. When the microtubules were depolymerized by nocodazole at an early stage, the extension of the SR to the cell periphery was inhibited. In mature cardiomyocytes, nocodazole appeared not to affect the distribution of the SR. These results indicate that the calsequestrin-positive SR in cardiomyocytes is organized at the proper sites of myofibrils during myofibrillogenesis and that the microtubules might serve as tracts for the transport of components of the SR.
Collapse
Affiliation(s)
- S O Ioshii
- Department of Pathology, Mie University School of Medicine, Japan
| | | | | |
Collapse
|
38
|
Flucher BE, Andrews SB, Fleischer S, Marks AR, Caswell A, Powell JA. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. J Cell Biol 1993; 123:1161-74. [PMID: 8245124 PMCID: PMC2119885 DOI: 10.1083/jcb.123.5.1161] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95-kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate in E-C coupling or in interactions responsible for the formation of SR/T-tubule junctions. Immunofluorescence labeling of normal mouse myotubes shows that the RyR and triadin co-aggregate with the DHPR in punctate clusters upon formation of functional junctions. Dysgenic myotubes with a deficiency in the alpha 1 subunit of the DHPR show reduced expression and clustering of RyR and triadin; however, both proteins are still capable of forming clusters and attaining mature cross-striated distributions. Thus, the molecular organization of the RyR and triadin in the terminal cisternae of SR as well as its association with the T-tubules are independent of interactions with the DHPR alpha 1 subunit. Analysis of calcium transients in dysgenic myotubes with fluorescent calcium indicators reveals spontaneous and caffeine-induced calcium release from intracellular stores similar to those of normal muscle; however, depolarization-induced calcium release is absent. Thus, characteristic calcium release properties of the RyR do not require interactions with the DHPR; neither do they require the normal organization of the RyR in the terminal SR cisternae. In hybrids of dysgenic myotubes fused with normal cells, both action potential-induced calcium transients and the normal clustered organization of the RyR are restored in regions expressing the DHPR alpha 1 subunit.
Collapse
Affiliation(s)
- B E Flucher
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
39
|
Flucher BE, Andrews SB. Characterization of spontaneous and action potential-induced calcium transients in developing myotubes in vitro. CELL MOTILITY AND THE CYTOSKELETON 1993; 25:143-57. [PMID: 8324830 DOI: 10.1002/cm.970250204] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the onset and maturation of action potential- and calcium-induced calcium release from the sarcoplasmic reticulum during the differentiation of excitation-contraction coupling in skeletal muscle. Microfluorometry and video imaging of cultured myotubes loaded with the fluorescent calcium indicator fluo-3 revealed the dynamics, time course, and physiological properties of calcium transients as well as their changes during development. Spontaneous and stimulated contractions in well-differentiated myotubes are accompanied by brief (200-500 ms) increases in the concentration of free cytoplasmic calcium. These transients are modulated by sub-threshold concentrations of caffeine, resulting in a plateau of elevated calcium. Two novel types of calcium transients were observed in non-contracting myotubes. 1) Fast localized transients (FLTs) are radially restricted focal release events that occur spontaneously within the myoplasm at various densities and frequencies. 2) Upon addition of caffeine, propagating calcium waves are generated (35-70 microns/s velocity), which are accompanied by contractures. Aside from caffeine sensitivity, calcium waves and contraction-related sustained release events are similar in amplitude and duration, as well as in their inactivation and refractory properties. Thus, these transients may represent calcium-induced calcium release in quiescent and active myotubes, respectively. Following one calcium-induced calcium release event, myotubes become refractory to new calcium-induced transients; however, action potential-induced transients and FLTs are not blocked. This suggests that these transients occur by distinct release mechanisms and that dual modes of calcium release exist prior to the coupling of calcium release to excitation.
Collapse
Affiliation(s)
- B E Flucher
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
40
|
Flucher BE. Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad. Dev Biol 1992; 154:245-60. [PMID: 1426638 DOI: 10.1016/0012-1606(92)90065-o] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increased interest in the mechanism of excitation-contraction (E-C) coupling over the last few years has been accompanied by numerous investigations into the development of the underlying cellular structures. Areas of particular interest include: (1) the compartmentalization and specialization of an external and an internal membrane system, the T-tubules, and the sarcoplasmic reticulum, respectively; (2) interactions between the membrane proteins of both systems upon the formation of a junction, the triad; and (3) membrane-cytoskeletal interactions leading to the orderly arrangement of the triads with respect to the myofibrils. Structural studies using newly available specific molecular probes and a variety of in vivo and in vitro model systems have provided new insights into the cellular and molecular mechanisms involved in the development of the E-C coupling apparatus in skeletal muscle.
Collapse
Affiliation(s)
- B E Flucher
- Laboratory of Neurobiology, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Benders AG, van Kuppevelt TH, Oosterhof A, Wevers RA, Veerkamp JH. Adenosine triphosphatases during maturation of cultured human skeletal muscle cells and in adult human muscle. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1112:89-98. [PMID: 1329967 DOI: 10.1016/0005-2736(92)90258-n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.
Collapse
Affiliation(s)
- A G Benders
- Department of Biochemistry, University of Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|