1
|
Hutin E, Poirier T, Meimoun M, Mardale V, Ghédira M. Model-based cueing-as-needed for walking in Parkinson's disease: A randomized cross-over study. Rev Neurol (Paris) 2024; 180:798-806. [PMID: 38834484 DOI: 10.1016/j.neurol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Correcting of the lack of regularity in steps is a key component of gait rehabilitation in Parkinson's disease. We proposed to introduce adaptive spatial auditory cueing (ASAC) based on verbal instruction "lengthen the step" automatically delivered when the stride length decreased below a predetermined threshold. OBJECTIVES The present study compared the effect of usual rhythmic auditory cueing versus ASAC used during a walking training in Parkinson's disease. METHODS Fifteen patients with Parkinson's disease performed both interventions in randomized order, one week apart: a 20-minute walking training with rhythmic auditory cueing, in form of a metronome adjusted on 110% of the patient's own cadence, or ASAC delivered when the stride length is less than 110% of the patient's own stride length. Assessment criteria were walking distance covered during the intervention, speed, step length, cadence, coefficients of variation of step length and step duration, and indexes of spatial and temporal asymmetry during a walking test before and just after the intervention. RESULTS The walking distance is higher with ASAC compared with rhythmic auditory cueing (rhythmic auditory cueing, 905 (203) m, mean (standard deviation); ASAC, 1043 (212) m; P=0.002). Between-intervention comparison showed some similar effects on walking after the intervention including free speed and step length increases (P<0.05). CONCLUSION The distance covered during 20-minute walking with ASAC increases by 15% compared to the use of classical rhythmic auditory cueing, while the immediate therapeutic effects show similar spatial-temporal benefits on short-distance walking. Auditory biofeedback cueing promoting the increase in step length might improve gait relearning in Parkinson's disease.
Collapse
Affiliation(s)
- E Hutin
- Laboratoire Analyse et Restauration du Mouvement (ARM), Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri-Mondor, AP-HP, 1, rue Gustave-Eiffel, 94010 Créteil cedex, France.
| | - T Poirier
- Institut de Formation en Masso-Kinésithérapie Saint-Michel, 68, rue du Commerce, 75015 Paris, France
| | - M Meimoun
- Laboratoire Analyse et Restauration du Mouvement (ARM), Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri-Mondor, AP-HP, 1, rue Gustave-Eiffel, 94010 Créteil cedex, France
| | - V Mardale
- Laboratoire Analyse et Restauration du Mouvement (ARM), Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri-Mondor, AP-HP, 1, rue Gustave-Eiffel, 94010 Créteil cedex, France; Service de Médecine Physique et de Réadaptation, Hôpital Dupuytren, AP-HP, 1, avenue Eugène-Delacroix, 91210 Draveil, France
| | - M Ghédira
- Laboratoire Analyse et Restauration du Mouvement (ARM), Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri-Mondor, AP-HP, 1, rue Gustave-Eiffel, 94010 Créteil cedex, France
| |
Collapse
|
2
|
Tran S, Heida TC, Heijs JJA, Al-Ozzi T, Sumarac S, Alanazi FI, Kalia SK, Hodaie M, Lozano AM, Milosevic L, Chen R, Hutchison WD. Subthalamic and pallidal neurons are modulated during externally cued movements in Parkinson's disease. Neurobiol Dis 2024; 190:106384. [PMID: 38135193 DOI: 10.1016/j.nbd.2023.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
External sensory cues can reduce freezing of gait in people with Parkinson's disease (PD), yet the role of the basal ganglia in these movements is unclear. We used microelectrode recordings to examine modulations in single unit (SU) and oscillatory local field potentials (LFP) during auditory-cued rhythmic pedaling movements of the feet. We tested five blocks of increasing cue frequencies (1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, and 3 Hz) in 24 people with PD undergoing deep brain stimulation surgery of the subthalamic nucleus (STN) or globus pallidus internus (GPi). Single unit firing and beta band LFPs (13-30 Hz) in response to movement onsets or cue onsets were examined. We found that the timing accuracy of foot pedaling decreased with faster cue frequencies. Increasing cue frequencies also attenuated firing rates in both STN and GPi neurons. Peak beta power in the GPi and STN showed different responses to the task. GPi beta power showed persistent suppression with fast cues and phasic modulation with slow cues. STN beta power showed enhanced beta synchronization following movement. STN beta power also correlated with rate of pedaling. Overall, we showed task-related responses in the GPi and STN during auditory-cued movements with differential roles in sensory and motor control. The results suggest a role for both input and output basal ganglia nuclei in auditory rhythmic pacing of gait-like movements in PD.
Collapse
Affiliation(s)
- Stephanie Tran
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Tjitske C Heida
- Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands
| | - Janne J A Heijs
- Department of Biomedical Signals and Systems, University of Twente, Enschede, the Netherlands
| | - Tameem Al-Ozzi
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Srdjan Sumarac
- Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Canada
| | - Frhan I Alanazi
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Canada; Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Canada; Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Canada; Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada
| | - Luka Milosevic
- Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Canada
| | - Robert Chen
- Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada; Dept of Neurology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - William D Hutchison
- Departments of Surgery and Physiology, Temerty Faculty of Medicine, University of Toronto, Canada, and Krembil Brain Institute, Leonard Ave, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
St. George LB, Clayton HM, Sinclair JK, Richards J, Roy SH, Hobbs SJ. Electromyographic and Kinematic Comparison of the Leading and Trailing Fore- and Hindlimbs of Horses during Canter. Animals (Basel) 2023; 13:1755. [PMID: 37889657 PMCID: PMC10252091 DOI: 10.3390/ani13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 10/29/2023] Open
Abstract
This study compared muscle activity and movement between the leading (Ld) and trailing (Tr) fore- (F) and hindlimbs (H) of horses cantering overground. Three-dimensional kinematic and surface electromyography (sEMG) data were collected from right triceps brachii, biceps femoris, middle gluteal, and splenius from 10 ridden horses during straight left- and right-lead canter. Statistical parametric mapping evaluated between-limb (LdF vs. TrF, LdH vs. TrH) differences in time- and amplitude-normalized sEMG and joint angle-time waveforms over the stride. Linear mixed models evaluated between-limb differences in discrete sEMG activation timings, average rectified values (ARV), and spatio-temporal kinematics. Significantly greater gluteal ARV and activity duration facilitated greater limb retraction, hip extension, and stifle flexion (p < 0.05) in the TrH during stance. Earlier splenius activation during the LdF movement cycle (p < 0.05), reflected bilateral activation during TrF/LdH diagonal stance, contributing to body pitching mechanisms in canter. Limb muscles were generally quiescent during swing, where significantly greater LdF/H protraction was observed through greater elbow and hip flexion (p < 0.05), respectively. Alterations in muscle activation facilitate different timing and movement cycles of the leading and trailing limbs, which justifies equal training on both canter leads to develop symmetry in muscular strength, enhance athletic performance, and mitigate overuse injury risks.
Collapse
Affiliation(s)
- Lindsay B. St. George
- Research Centre for Applied Sport, Physical Activity and Performance, University of Central Lancashire, Preston PR1 2HE, UK (S.J.H.)
| | - Hilary M. Clayton
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan K. Sinclair
- Research Centre for Applied Sport, Physical Activity and Performance, University of Central Lancashire, Preston PR1 2HE, UK (S.J.H.)
| | - Jim Richards
- Allied Health Research Unit, University of Central Lancashire, Preston PR1 2HE, UK
| | | | - Sarah Jane Hobbs
- Research Centre for Applied Sport, Physical Activity and Performance, University of Central Lancashire, Preston PR1 2HE, UK (S.J.H.)
| |
Collapse
|
4
|
Igusa T, Kobayashi T, Uchida H, Tsuchiya K, Akiba T, Sema S, Kaneko S, Yoshita T, Nagai S, Tanaka Y, Kikuchi S, Hirao K. Effect of gait training using rhythmic auditory stimulation on gait speed in older adults admitted to convalescent rehabilitation wards: A study protocol for a pilot randomized controlled clinical trial. Contemp Clin Trials Commun 2023; 33:101125. [PMID: 37091510 PMCID: PMC10119504 DOI: 10.1016/j.conctc.2023.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Background Decreased walking speed in older patients admitted to convalescent rehabilitation wards (CRWs) is one of the factors that inhibit home discharge. Therefore, interventions to improve gait speed in older patients admitted to CRWs are important, and rhythmic auditory stimulation (RAS) may be an effective intervention strategy. However, the effect of RAS on gait speed in older patients admitted to CRWs is not well known. Therefore, this study protocol aims to determine the feasibility of the RAS-based gait practice for older patients admitted to the CRW. Methods The study is designed as a single-center, open-label, pilot, randomized, parallel-group study. Participants will be 30 patients aged ≥65 years admitted to the CRW and randomly assigned to the experimental group (RAS-based gait practice; n = 15) or the control group (normal gait practice; n = 15). In both groups, interventions will be conducted for 30 min per session, 5 times per week for 3 weeks. The primary outcome is the change in the 10-m walk test 3 weeks after the baseline assessment. Secondary outcome is the change in the score of the Medical Outcome Study 8-Item Short-Form Health Survey and the Japanese version of the modified Gait Efficacy Scale from baseline assessment to 3 weeks later. Discussion This exploratory RCT was developed using strict scientific standards and is based on defined protocols. Thus, this study will be used to assess the viability of a larger investigation into RAS-based gait practice. If our theory is accurate, this study could serve as a foundation for establishing RAS-based gait practice in CRWs as a common rehabilitation strategy. Trial registration This study was registered in the University Hospital Medical Information Network (UMIN) clinical trials registry in Japan (UMIN000049089).
Collapse
Affiliation(s)
- Takumi Igusa
- Graduate School of Health Sciences, Gunma University, Maebashi, Japan
- Department of Rehabilitation, Medical Corporation Taiseikai, Uchida Hospital, Numata, Japan
| | - Takuya Kobayashi
- Graduate School of Health Sciences, Gunma University, Maebashi, Japan
- Department of Rehabilitation, Japan Community Healthcare Organization, Gunma Chuo Hospital, Maebashi, Japan
| | - Hiroyuki Uchida
- Department of Rehabilitation, Kurashiki Heisei Hospital, Kurashiki, Japan
| | - Kenji Tsuchiya
- Department of Rehabilitation, Faculty of Health Sciences, Nagano University of Health and Medicine, Nagano, Japan
| | - Takanari Akiba
- Department of Rehabilitation, Japan Community Healthcare Organization, Gunma Chuo Hospital, Maebashi, Japan
| | - Shota Sema
- Department of Rehabilitation, Medical Corporation Taiseikai, Uchida Hospital, Numata, Japan
| | - Shunsuke Kaneko
- Department of Rehabilitation, Medical Corporation Taiseikai, Uchida Hospital, Numata, Japan
| | - Taiki Yoshita
- Department of Rehabilitation, Medical Corporation Taiseikai, Uchida Hospital, Numata, Japan
| | - Sakyo Nagai
- Department of Rehabilitation, Medical Corporation Taiseikai, Uchida Hospital, Numata, Japan
| | - Yukiko Tanaka
- Department of Rehabilitation, Medical Corporation Taiseikai, Uchida Hospital, Numata, Japan
| | - Senichiro Kikuchi
- Graduate School of Health Sciences, Gunma University, Maebashi, Japan
| | - Kazuki Hirao
- Graduate School of Health Sciences, Gunma University, Maebashi, Japan
- Corresponding author. Graduate School of Health Sciences, Gunma University, 3-39-22 Showa, Maebashi, Gunma, 371-8514, Japan.
| |
Collapse
|
5
|
Diaz K, Stegemöller EEL. Electromyographic measures of asymmetric muscle control of swallowing in Parkinson’s disease. PLoS One 2022; 17:e0262424. [PMID: 35180221 PMCID: PMC8856551 DOI: 10.1371/journal.pone.0262424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction During the early stages, Parkinson’s disease (PD) is well recognized as an asymmetric disease with unilateral onset of resting tremor with varying degrees of rigidity, and bradykinesia. However, it remains unknown if other impairments, such as swallowing impairment (i.e., dysphagia), also present asymmetrically. Purpose The primary aim of this study was to examine muscle activity associated with swallow on the most affected side (MAS) and least affected side (LAS) in persons with PD. A secondary aim was to explore the relationship between differences in muscle activity associated with swallow and subjective reports of swallowing impairment and disease severity. Methods Function of muscles associated with swallowing was assessed using surface electromyography placed over the right and left submental and laryngeal regions during three swallows for a THIN and THICK condition. The Swallowing Quality of Life (SWAL-QOL) questionnaire and the Unified Parkinson’s Disease Rating Scale (UPDRS) were collected as measures of subjective swallow impairment and disease severity, respectively. Results Thirty-five participants diagnosed with idiopathic PD and on a stable antiparkinsonian medication regimen completed this study. Results revealed no significant mean difference in muscle activity during swallow between the more and less affected side. For the laryngeal muscle region, a significant difference in coefficient of variation between the MAS and LAS was revealed for peak amplitude for the THIN swallow condition. For the laryngeal muscle region, a significant association was revealed between muscle activity and disease severity but not subjective reports of swallowing impairment. Conclusion Superficially it appears that swallowing impairment present symmetrical during the early stages of PD, however, our variability data indicates otherwise. These results will be used to inform future studies in specific types of swallowing impairment (i.e., oral dysphagia, pharyngeal dysphagia, and esophageal dysphagia), disease progression, and overall asymmetry.
Collapse
Affiliation(s)
- Kasandra Diaz
- Department of Kinesiology, Iowa State University, Ames, IA, United States of America
- * E-mail:
| | | |
Collapse
|
6
|
Rösch AD, Taub E, Gschwandtner U, Fuhr P. Evaluating a Speech-Specific and a Computerized Step-Training-Specific Rhythmic Intervention in Parkinson's Disease: A Cross-Over, Multi-Arms Parallel Study. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:783259. [PMID: 36188780 PMCID: PMC9397933 DOI: 10.3389/fresc.2021.783259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
Background: Recent studies suggest movements of speech and gait in patients with Parkinson's Disease (PD) are impaired by a common underlying rhythmic dysfunction. If this being the case, motor deficits in speech and gait should equally benefit from rhythmic interventions regardless of whether it is a speech-specific or step-training-specific approach. Objective: In this intervention trial, we studied the effects of two rhythmic interventions on speech and gait. These rhythmic intervention programs are similar in terms of intensity and frequency (i.e., 3x per week, 45 min-long sessions for 4 weeks in total), but differ regarding therapeutic approach (rhythmic speech vs. rhythmic balance-mobility training). Methods: This study is a cross-over, parallel multi-arms, single blind intervention trial, in which PD patients treated with rhythmic speech-language therapy (rSLT; N = 16), rhythmic balance-mobility training (rBMT; N = 10), or no therapy (NT; N = 18) were compared to healthy controls (HC; N = 17; matched by age, sex, and education: p > 0.82). Velocity and cadence in speech and gait were evaluated at baseline (BL), 4 weeks (4W-T1), and 6 months (6M-T2) and correlated. Results: Parameters in speech and gait (i.e., speaking and walking velocity, as well as speech rhythm with gait cadence) were positively correlated across groups (p < 0.01). Statistical analyses involved repeated measures ANOVA across groups and time, as well as independent and one-samples t-tests for within groups analyses. Statistical analyses were amplified using Reliable Change (RC) and Reliable Change Indexes (RCI) to calculate true clinically significant changes due to the treatment on a patient individual level. Rhythmic intervention groups improved across variables and time (total Mean Difference: 3.07 [SD 1.8]; 95% CI 0.2–11.36]) compared to the NT group, whose performance declined significantly at 6 months (p < 0.01). HC outperformed rBMT and NT groups across variables and time (p < 0.001); the rSLT performed similarly to HC at 4 weeks and 6 months in speech rhythm and respiration. Conclusions: Speech and gait deficits in PD may share a common mechanism in the underlying cortical circuits. Further, rSLT was more beneficial to dysrhythmic PD patients than rBMT, likely because of the nature of the rhythmic cue.
Collapse
Affiliation(s)
- Anne Dorothée Rösch
- Department of Clinical Neurophysiology/Neurology, Hospital of the University of Basel, Basel, Switzerland
| | - Ethan Taub
- Department of Neurosurgery, Hospital of the University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Clinical Neurophysiology/Neurology, Hospital of the University of Basel, Basel, Switzerland
- *Correspondence: Ute Gschwandtner
| | - Peter Fuhr
- Department of Clinical Neurophysiology/Neurology, Hospital of the University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Keloth SM, Arjunan SP, Raghav S, Kumar DK. Muscle activation strategies of people with early-stage Parkinson's during walking. J Neuroeng Rehabil 2021; 18:133. [PMID: 34496882 PMCID: PMC8425033 DOI: 10.1186/s12984-021-00932-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Some people with Parkinson’s disease (PD) frequently have an unsteady gait with shuffling, reduced strength, and increased rigidity. This study has investigated the difference in the neuromuscular strategies of people with early-stage PD, healthy older adults (HOA) and healthy young adult (HYA) during short-distance walking. Method Surface electromyogram (sEMG) was recorded from tibialis anterior (TA) and medial gastrocnemius (MG) muscles along with the acceleration data from the lower leg from 72 subjects—24 people with early-stage PD, 24 HOA and 24 HYA during short-distance walking on a level surface using wearable sensors. Results There was a significant increase in the co-activation, a reduction in the TA modulation and an increase in the TA-MG lateral asymmetry among the people with PD during a level, straight-line walking. For people with PD, the gait impairment scale was low with an average postural instability and gait disturbance (PIGD) score = 5.29 out of a maximum score of 20. Investigating the single and double support phases of the gait revealed that while the muscle activity and co-activation index (CI) of controls modulated over the gait cycle, this was highly diminished for people with PD. The biggest difference between CI of controls and people with PD was during the double support phase of gait. Discussion The study has shown that people with early-stage PD have high asymmetry, reduced modulation, and higher co-activation. They have reduced muscle activity, ability to inhibit antagonist, and modulate their muscle activities. This has the potential for diagnosis and regular assessment of people with PD to detect gait impairments using wearable sensors.
Collapse
Affiliation(s)
- Sana M Keloth
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Sridhar P Arjunan
- Department of Electronics and Instrumentation, SRM Institute of Science and Technology, Chennai, India
| | | | - Dinesh Kant Kumar
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Patterns of enhancement in paretic shoulder kinematics after stroke with musical cueing. Sci Rep 2020; 10:18109. [PMID: 33093633 PMCID: PMC7582907 DOI: 10.1038/s41598-020-75143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022] Open
Abstract
Musical cueing has been widely utilised in post-stroke motor rehabilitation; however, the kinematic evidence on the effects of musical cueing is sparse. Further, the element-specific effects of musical cueing on upper-limb movements have rarely been investigated. This study aimed to kinematically quantify the effects of no auditory, rhythmic auditory, and melodic auditory cueing on shoulder abduction, holding, and adduction in patients who had experienced hemiparetic stroke. Kinematic data were obtained using inertial measurement units embedded in wearable bands. During the holding phase, melodic auditory cueing significantly increased the minimum Euler angle and decreased the range of motion compared with the other types of cueing. Further, the root mean square error in the angle measurements was significantly smaller and the duration of movement execution was significantly shorter during the holding phase when melodic auditory cueing was provided than when the other types of cueing were used. These findings indicated the important role of melodic auditory cueing for enhancing movement positioning, variability, and endurance. This study provides the first kinematic evidence on the effects of melodic auditory cueing on kinematic enhancement, thus suggesting the potential use of pitch-related elements in psychomotor rehabilitation.
Collapse
|
9
|
Lima DP, de Almeida SB, Bonfadini JDC, Sobreira EST, Damasceno PG, Viana Júnior AB, de Alencar MS, de Luna JRG, Rodrigues PGB, Pereira IDS, Gadelha ALDC, de Oliveira LM, Chaves ÉCB, Carneiro VG, Monteiro RR, Costa TADM, Helal L, Signorile J, Lima LAO, Sobreira-Neto MA, Braga-Neto P. Effects of a power strength training using elastic resistance exercises on the motor and non-motor symptoms in patients with Parkinson's disease H&Y 1-3: study protocol for a randomised controlled trial (PARK-BAND Study). BMJ Open 2020; 10:e039941. [PMID: 33046475 PMCID: PMC7552828 DOI: 10.1136/bmjopen-2020-039941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disorder in Brazil. Physical activity is a complementary intervention in managing inherent declines associated with the disease like strength, balance, gait, and functionality and benefit health-related outcomes. Here, we report the PARK-BAND Study protocol, which aims to investigate potential benefits of power training using elastic devices in participants with PD. Our intervention will be provided in patients with PD using elastic devices like elastic bands and tubes. Therefore, we used the term Park from Parkinson's disease and band from elastic bands. METHODS AND ANALYSIS This randomised single-blind single-centre two-arm parallel, superiority trial will include 50 participants with PD attending the clinical setting. Those who meet the eligibility criteria and provide consent to participate will be randomised in a 1:1 ratio to either the exercise group, which will receive power training programme or the health education group, which will receive the education programme. Randomisation will be performed by permuted block randomisation with a block size of eight. Both groups will receive a 12-week intervention. The exercise group will have two sessions per week and the health education group will have one session per week. Changes from baseline in bradykinesia, as assessed by the Unified Parkinson's Disease Rating Scale motor examination subscore and physical functional performance, will be the primary outcomes. Secondary outcomes include other neurological, neurophysiological and physical variables, as well as the quality of life, depression, cognition, sleep quality and disturbances, assessed before and after interventions. We hypothesise that the exercise group will have greater improvement in primary and secondary outcomes than the health education group. ETHICS AND DISSEMINATION The study is approved by the Research Ethics Committee of Hospital Universitário Walter Cantidio and all participants will provide their written informed consent (register number 91075318.1.0000.5045).Trial results will be disseminated via peer reviewed journal articles and conference presentations, reports for organisations involved with PD and for participants. TRIAL REGISTRATION NUMBER Registro Brasileiro de Ensaios Clínicos Registry (RBR-5w2sqt); Pre-results.
Collapse
Affiliation(s)
- Danielle Pessoa Lima
- Geriatric Division, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
- Medical School, Universidade de Fortaleza, Fortaleza, Brazil
| | - Samuel Brito de Almeida
- Clinical Research Unit, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | - Janine de Carvalho Bonfadini
- Clinical Research Unit, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | | | - Patrícia Gomes Damasceno
- Division of Neurology, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | - Antonio Brazil Viana Júnior
- Clinical Research Unit, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | - Madeleine Sales de Alencar
- Geriatric Division, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | - João Rafael Gomes de Luna
- Geriatric Division, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | | | - Isabelle de Sousa Pereira
- Medical School, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | | | - Liliane Maria de Oliveira
- School of Kinesiology, Universidade Estácio de Sá Sistema Integrado de Bibliotecas do Centro Universitário Estácio do Ceará, Fortaleza, Ceará, Brazil
| | - Érica Carneiro Barbosa Chaves
- School of Kinesiology, Universidade Estácio de Sá Sistema Integrado de Bibliotecas do Centro Universitário Estácio do Ceará, Fortaleza, Ceará, Brazil
| | | | - Rayane Rodrigues Monteiro
- School of Kinesiology, Universidade Estácio de Sá Sistema Integrado de Bibliotecas do Centro Universitário Estácio do Ceará, Fortaleza, Ceará, Brazil
| | - Thatyara Almeida de Macedo Costa
- School of Nutrition, Universidade Estácio de Sá Sistema Integrado de Bibliotecas do Centro Universitário Estácio do Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Helal
- School of Kinesiology, Universidade do Extremo Sul Catarinense, Criciuma, Brazil
| | - Joseph Signorile
- Kinesiology and Sport Sciences, University of Miami, Coral Gables, Florida, USA
| | | | - Manoel Alves Sobreira-Neto
- Division of Neurology, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
| | - Pedro Braga-Neto
- Division of Neurology, Universidade Federal do Ceará, Hospital Universitário Walter Cantídio, Fortaleza, Brazil
- Medical School, Universidade Estadual do Ceará, Curso de Medicina, Fortaleza, Brazil
| |
Collapse
|
10
|
Keloth SM, Radcliffe PJ, Raghav S, Arjunan SP, Kumar D. Differentiating between Parkinson's disease patients and controls using variability in muscle activation during walking. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3158-3161. [PMID: 33018675 DOI: 10.1109/embc44109.2020.9176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Surface electromyography (sEMG) of the lower limb muscles has been proposed to evaluate motor dysfunctions in Parkinson's disease (PD) patients. Variability in the sEMG could be used as an indicator of poor muscle coordination, but previous studies have reported conflicting results. This study has examined the variability of muscle using the coefficients of variance of Tibialis anterior (TA) and Medial gastrocnemius (MG) lower limb muscles for 24 PD, 24 age matched controls (CO), and 24 young controls (YC), during different phases of the gait cycle. The gait intervals were measured using the inertial measurement unit (IMU). We observed a statistically significant difference between PD and control for the variability of lower limb muscle when comparing the sub-phases of the gait. It was also found that the difference was more pronounced for the TA muscle.
Collapse
|
11
|
Effect of Parkinson's disease and two therapeutic interventions on muscle activity during walking: a systematic review. NPJ PARKINSONS DISEASE 2020; 6:22. [PMID: 32964107 PMCID: PMC7481232 DOI: 10.1038/s41531-020-00119-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
Gait deficits are a common feature of Parkinson’s disease (PD) and predictors of future motor and cognitive impairment. Understanding how muscle activity contributes to gait impairment and effects of therapeutic interventions on motor behaviour is crucial for identifying potential biomarkers and developing rehabilitation strategies. This article reviews sixteen studies that investigate the electromyographic (EMG) activity of lower limb muscles in people with PD during walking and reports on their quality. The weight of evidence establishing differences in motor activity between people with PD and healthy older adults (HOAs) is considered. Additionally, the effect of dopaminergic medication and deep brain stimulation (DBS) on modifying motor activity is assessed. Results indicated greater proximal and decreased distal activity of lower limb muscles during walking in individuals with PD compared to HOA. Dopaminergic medication was associated with increased distal lower limb muscle activity whereas subthalamic nucleus DBS increased activity of both proximal and distal lower limb muscles. Tibialis anterior was impacted most by the interventions. Quality of the studies was not strong, with a median score of 61%. Most studies investigated only distal muscles, involved small sample sizes, extracted limited EMG features and lacked rigorous signal processing. Few studies related changes in motor activity with functional gait measures. Understanding mechanisms underpinning gait impairment in PD is essential for development of personalised rehabilitative interventions. Recommendations for future studies include greater participant numbers, recording more functionally diverse muscles, applying multi-muscle analyses, and relating EMG to functional gait measures.
Collapse
|
12
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
13
|
Symmetry Analysis of Amputee Gait Based on Body Center of Mass Trajectory and Discrete Fourier Transform. SENSORS 2020; 20:s20082392. [PMID: 32340117 PMCID: PMC7219319 DOI: 10.3390/s20082392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
The calculation of symmetry in amputee gait is a valuable tool to assess the functional aspects of lower limb prostheses and how it impacts the overall gait mechanics. This paper analyzes the vertical trajectory of the body center of mass (CoM) of a group formed by transfemoral amputees and non-amputees to quantitatively compare the symmetry level of this parameter for both cases. A decomposition of the vertical CoM into discrete Fourier series (DFS) components is performed for each subject’s CoM trajectory to identify the main components of each pattern. A DFS-based index is then calculated to quantify the CoM symmetry level. The obtained results show that the CoM displays different patterns along a gait cycle for each amputee, which differ from the sine-wave shape obtained in the non-amputee case. The CoM magnitude spectrum also reveals more coefficients for the amputee waveforms. The different CoM trajectories found in the studied subjects can be thought as the manifestation of developed compensatory mechanisms, which lead to gait asymmetries. The presence of odd components in the magnitude spectrum is related to the asymmetric behavior of the CoM trajectory, given the fact that this signal is an even function for a non-amputee gait. The DFS-based index reflects this fact due to the high value obtained for the non-amputee reference, in comparison to the low values for each amputee.
Collapse
|
14
|
Wittwer JE, Winbolt M, Morris ME. Home-Based Gait Training Using Rhythmic Auditory Cues in Alzheimer's Disease: Feasibility and Outcomes. Front Med (Lausanne) 2020; 6:335. [PMID: 32083083 PMCID: PMC7005067 DOI: 10.3389/fmed.2019.00335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Background/Purpose: Although gait disorders occur early in the course of Alzheimer's disease (AD) and increase the risk of falling, methods to improve walking in the home setting are poorly understood. This study aimed to determine the feasibility of a home-based gait training program using rhythmic auditory cues for individuals living with mild to moderately severe AD. Methods: Participants had probable AD with no other major conditions affecting locomotion. The intervention consisted of eight progressively modified 45-min gait training sessions delivered during home visits over 4 weeks. Experienced physiotherapists provided the therapy that incorporated rhythmic music cues for a range of locomotor tasks and ambulatory activities. On the days when the physiotherapist did not attend, participants independently performed a seated music listening activity. Walking speed, cadence, stride length, double limb support duration, and gait variability (coefficient of variation) were measured using an 8-m GAITRite® computerized walkway immediately before and after the physiotherapy intervention. Participant satisfaction was also assessed using a purpose-designed questionnaire. Results: Eleven (median age, 77.0 years; median ACE III score, 66/100; 3 females and 8 males) community-dwelling adults living with AD participated. Wilcoxon signed rank tests revealed statistically significant increases in gait speed following the home-based physiotherapy intervention (baseline = 117.5 cm/s, post-intervention = 129.9 cm/s, z = −2.40, p < 0.05). Stride length also improved (baseline = 121.8 cm, post-intervention = 135.6 cm, z = −2.67, p < 0.05). There was no significant change in gait variability. The program was found to be feasible and safe, with no attrition. Participant satisfaction with the home-based music-cued gait training was high, and there were no adverse events. Conclusion: A progressively modified gait training program using rhythmic auditory cues delivered at home was feasible, safe, and enjoyable. Music-cued gait training can help to reduce the rate of decline in gait stride length and speed in some individuals living with AD. Trial Registration:http://www.anzctr.org.au/Default.aspx, ACTRN12616000851460. Universal Trial Number: U1111-1184-5735.
Collapse
Affiliation(s)
- Joanne E Wittwer
- Physiotherapy Discipline, La Trobe Centre for Sport and Exercise Medicine Research, Faculty of Health Sciences, School of Allied Health, La Trobe University, Melbourne, VIC, Australia
| | - Margaret Winbolt
- Australian Institute for Primary Care & Ageing, La Trobe University, Melbourne, VIC, Australia
| | - Meg E Morris
- North Eastern Rehabilitation Centre, Melbourne, VIC, Australia.,Academic and Research Collaborative in Health (ARCH), SHE College, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Abstract
Individuals with Parkinson’s disease (PD) have gait asymmetries, and exercise therapy may reduce the differences between more and less affected limbs. The Nordic walking (NW) training may contribute to reducing the asymmetry in upper and lower limb movements in people with PD. We compared the effects of 11 weeks of NW aerobic training on asymmetrical variables of gait in subjects with mild PD. Fourteen subjects with idiopathic PD, age: 66.8 ± 9.6 years, and Hoehn and Yard stage of 1.5 points were enrolled. The kinematic analysis was performed pre and post-intervention. Data were collected at two randomized walking speeds (0.28 m·s−1 and 0.83 m·s−1) during five minutes on the treadmill without poles. The more affected and less affected body side symmetries (threshold at 5% between sides) of angular kinematics and spatiotemporal gait parameters were calculated. We used Generalized Estimating Equations with Bonferroni post hoc (α = 0.05). Maximal flexion of the knee (p = 0.007) and maximal abduction of the hip (p = 0.041) were asymmetrical pre and became symmetrical post NW intervention. The differences occurred in the knee was less affected and the hip was more affected. We concluded that 11 weeks of NW training promoted similarities in gait parameters and improved knee and hip angular parameters for PD subjects.
Collapse
|
16
|
Auditory entrainment of motor responses in older adults with and without Parkinson's disease: An MEG study. Neurosci Lett 2019; 708:134331. [PMID: 31226362 DOI: 10.1016/j.neulet.2019.134331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022]
Abstract
Medical therapies applied to Parkinson's disease (PD) have advanced tremendously since the 1960's based on advances in our understanding of the underlying neurophysiology. Behavioral therapies, such as rhythmic auditory stimulation (RAS), have been developed more recently and demonstrated efficacy. However, the neural mechanisms of RAS are only vaguely understood. In this study, we examined the neurophysiology of RAS using magnetoencephalography (MEG) in a sample of older adults with (21 people) and without PD (23 participants). All participants underwent high-density MEG during a beat-based cued tapping task with rhythmic and non-rhythmic patterns, and the resulting data were analyzed using a Bayesian image reconstruction method. Complex wavelet based time-frequency decomposition was used to compute inter-trial phase locking factor (PLF) to auditory stimuli for left and right signal space projection vectors. Tapping with a rhythm compared to a non-rhythmic sequence resulted in differential brain activity in each group: (i) a greater activation of temporal, motor and parietal areas was found in healthy adults; (ii) a greater reliance on parietal and frontal gyri was found in PD participants. During rhythmic tapping, older adults without PD had significantly stronger neural activity in bilateral frontal, supplementary and primary motor areas compared to those with PD. Conversely, older adults with PD exhibited significantly stronger activity in the bilateral parietal regions, as well as the rolandic operculum and bilateral supramarginal gyri, relative to their healthy peers. These data suggest that RAS mobilizes diverse oscillatory networks; Healthy controls may shift to frontal areas mobilization whereas PD patients rely on parietal areas to a greater extent, which may reflect frontal network dysfunction with compensation in PD, and could serve as specific regions of interest for further RAS studies.
Collapse
|
17
|
Gómez-González J, Martín-Casas P, Cano-de-la-Cuerda R. Effects of auditory cues on gait initiation and turning in patients with Parkinson's disease. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
18
|
Gómez-González J, Martín-Casas P, Cano-de-la-Cuerda R. Efectos de los estímulos auditivos en la fase de iniciación de la marcha y de giro en pacientes con enfermedad de Parkinson. Neurologia 2019; 34:396-407. [DOI: 10.1016/j.nrl.2016.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022] Open
|
19
|
Calabrò RS, Naro A, Filoni S, Pullia M, Billeri L, Tomasello P, Portaro S, Di Lorenzo G, Tomaino C, Bramanti P. Walking to your right music: a randomized controlled trial on the novel use of treadmill plus music in Parkinson's disease. J Neuroeng Rehabil 2019; 16:68. [PMID: 31174570 PMCID: PMC6555981 DOI: 10.1186/s12984-019-0533-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rhythmic Auditory Stimulation (RAS) can compensate for the loss of automatic and rhythmic movements in patients with idiopathic Parkinson's disease (PD). However, the neurophysiological mechanisms underlying the effects of RAS are still poorly understood. We aimed at identifying which mechanisms sustain gait improvement in a cohort of patients with PD who practiced RAS gait training. METHODS We enrolled 50 patients with PD who were randomly assigned to two different modalities of treadmill gait training using GaitTrainer3 with and without RAS (non_RAS) during an 8-week training program. We measured clinical, kinematic, and electrophysiological effects of both the gait trainings. RESULTS We found a greater improvement in Functional Gait Assessment (p < 0.001), Tinetti Falls Efficacy Scale (p < 0.001), Unified Parkinson Disease Rating Scale (p = 0.001), and overall gait quality index (p < 0.001) following RAS than non_RAS training. In addition, the RAS gait training induced a stronger EEG power increase within the sensorimotor rhythms related to specific periods of the gait cycle, and a greater improvement of fronto-centroparietal/temporal electrode connectivity than the non_RAS gait training. CONCLUSIONS The findings of our study suggest that the usefulness of cueing strategies during gait training consists of a reshape of sensorimotor rhythms and fronto-centroparietal/temporal connectivity. Restoring the internal timing mechanisms that generate and control motor rhythmicity, thus improving gait performance, likely depends on a contribution of the cerebellum. Finally, identifying these mechanisms is crucial to create patient-tailored, RAS-based rehabilitative approaches in PD. TRIAL REGISTRATION NCT03434496 . Registered 15 February 2018, retrospectively registered.
Collapse
Affiliation(s)
- Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy.
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Serena Filoni
- Fondazione Centri di Riabilitazione Padre Pio Onlus, San Giovanni Rotondo, FG, Italy
| | - Massimo Pullia
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Provvidenza Tomasello
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Giuseppe Di Lorenzo
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| | - Concetta Tomaino
- Institute for Music and Neurologic Function, Mount Vernon, NY, USA
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, Contrada Casazza, S.S. 113, 98124, Messina, Italy
| |
Collapse
|
20
|
Koshimori Y, Strafella AP, Valli M, Sharma V, Cho SS, Houle S, Thaut MH. Motor Synchronization to Rhythmic Auditory Stimulation (RAS) Attenuates Dopaminergic Responses in Ventral Striatum in Young Healthy Adults: [ 11C]-(+)-PHNO PET Study. Front Neurosci 2019; 13:106. [PMID: 30837831 PMCID: PMC6382688 DOI: 10.3389/fnins.2019.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 01/04/2023] Open
Abstract
Auditory-motor entrainment using rhythmic auditory stimulation (RAS) has been shown to improve motor control in healthy persons and persons with neurologic motor disorders such as Parkinson's disease and stroke. Neuroimaging studies have shown the modulation of corticostriatal activity in response to RAS. However, the underlying neurochemical mechanisms for auditory-motor entrainment are unknown. The current study aimed to investigate RAS-induced dopamine (DA) responses in basal ganglia (BG) during finger tapping tasks combined with [11C]-(+)-PHNO-PET in eight right-handed young healthy participants. Each participant underwent two PET scans with and without RAS. Binding potential relative to the non-displaceable compartment (BPND) values were derived using the simplified reference tissue method. The task performance was measured using absolute tapping period error and its standard deviation. We found that the presence of RAS significantly improved the task performance compared to the absence of RAS, demonstrated by reductions in the absolute tapping period error (p = 0.007) and its variability (p = 0.006). We also found that (1) the presence of RAS reduced the BG BPND variability (p = 0.013) and (2) the absence of RAS resulted in a greater DA response in the left ventral striatum (VS) compared to the presence of RAS (p = 0.003), These suggest that the absence of external cueing may require more DA response in the left VS associated with more motivational and sustained attentional efforts to perform the task. Additionally, we demonstrated significant age effects on D2/3 R availability in BG: increasing age was associated with reduced D2/3 R availability in the left putamen without RAS (p = 0.026) as well as in the right VS with RAS (p = 0.02). This is the first study to demonstrate the relationships among RAS, DA response/D2/3 R availability, motor responses and age, providing the groundwork for future studies to explore mechanisms for auditory-motor entrainment in healthy elderly and patients with dopamine-based movement disorders.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Antonio P. Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Morton and Gloria Shulman Movement Disorders Clinic and The Edmond J. Safra Program in Parkinson’s Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Mikaeel Valli
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Vivek Sharma
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Baycrest Health Sciences, Rotman Research Institute, Toronto, ON, Canada
| | - Sang-soo Cho
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Michael H. Thaut
- Music and Health Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Schaffert N, Janzen TB, Mattes K, Thaut MH. A Review on the Relationship Between Sound and Movement in Sports and Rehabilitation. Front Psychol 2019; 10:244. [PMID: 30809175 PMCID: PMC6379478 DOI: 10.3389/fpsyg.2019.00244] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
The role of auditory information on perceptual-motor processes has gained increased interest in sports and psychology research in recent years. Numerous neurobiological and behavioral studies have demonstrated the close interaction between auditory and motor areas of the brain, and the importance of auditory information for movement execution, control, and learning. In applied research, artificially produced acoustic information and real-time auditory information have been implemented in sports and rehabilitation to improve motor performance in athletes, healthy individuals, and patients affected by neurological or movement disorders. However, this research is scattered both across time and scientific disciplines. The aim of this paper is to provide an overview about the interaction between movement and sound and review the current literature regarding the effect of natural movement sounds, movement sonification, and rhythmic auditory information in sports and motor rehabilitation. The focus here is threefold: firstly, we provide an overview of empirical studies using natural movement sounds and movement sonification in sports. Secondly, we review recent clinical and applied studies using rhythmic auditory information and sonification in rehabilitation, addressing in particular studies on Parkinson's disease and stroke. Thirdly, we summarize current evidence regarding the cognitive mechanisms and neural correlates underlying the processing of auditory information during movement execution and its mental representation. The current state of knowledge here reviewed provides evidence of the feasibility and effectiveness of the application of auditory information to improve movement execution, control, and (re)learning in sports and motor rehabilitation. Findings also corroborate the critical role of auditory information in auditory-motor coupling during motor (re)learning and performance, suggesting that this area of clinical and applied research has a large potential that is yet to be fully explored.
Collapse
Affiliation(s)
- Nina Schaffert
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Thenille Braun Janzen
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| | - Klaus Mattes
- Department of Movement and Training Science, Institute for Human Movement Science, University of Hamburg, Hamburg, Germany
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Shafizadeh M, Crowther R, Wheat J, Davids K. Effects of personal and task constraints on limb coordination during walking: A systematic review and meta-analysis. Clin Biomech (Bristol, Avon) 2019; 61:1-10. [PMID: 30415107 DOI: 10.1016/j.clinbiomech.2018.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 07/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND In human behaviour, emergence of movement patterns is shaped by different, interacting constraints and consequently, individuals with motor disorders usually display distinctive lower limb coordination modes. OBJECTIVES To review existing evidence on the effects of motor disorders and different task constraints on emergent coordination patterns during walking, and to examine the clinical significance of task constraints on gait coordination in people with motor disorders. METHODS The search included CINHAL Plus, MEDLINE, HSNAE, SPORTDiscus, Scopus, Pubmed and AMED. We included studies that compared intra-limb and inter-limb coordination during gait between individuals with a motor disorder and able-bodied individuals, and under different task constraints. Two reviewers independently examined the quality of studies by using the Newcastle Ottawa Scale-cohort study. FINDINGS From the search results, we identified 1416 articles that studied gait patterns and further analysis resulted in 33 articles for systematic review and 18 articles for meta-analysis-1, and 10 articles for meta-analysis-2. In total, the gait patterns of 539 patients and 358 able-bodied participants were analysed in the sampled studies. Results of the meta-analysis for group comparisons revealed a low effect size for group differences (ES = -0.24), and a moderate effect size for task interventions (ES = -0.53), on limb coordination during gait. INTERPRETATION Findings demonstrated that motor disorders can be considered as an individual constraint, significantly altering gait patterns. These findings suggest that gait should be interpreted as functional adaptation to changing personal constraints, rather than as an abnormality. Results imply that designing gait interventions, through modifying locomotion tasks, can facilitate the emergent re-organisation of inter-limb coordination patterns during rehabilitation.
Collapse
Affiliation(s)
| | - Robert Crowther
- School of Health Sciences, University of South Australia, Australia
| | - Jonathan Wheat
- Faculty of Health and Wellbeing, Sheffield Hallam University, UK
| | - Keith Davids
- Centre for Sport Engineering Research, Sheffield Hallam University, UK
| |
Collapse
|
23
|
Braunlich K, Seger CA, Jentink KG, Buard I, Kluger BM, Thaut MH. Rhythmic auditory cues shape neural network recruitment in Parkinson's disease during repetitive motor behavior. Eur J Neurosci 2018; 49:849-858. [PMID: 30375083 DOI: 10.1111/ejn.14227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/01/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022]
Abstract
It is well established clinically that rhythmic auditory cues can improve gait and other motor behaviors in Parkinson's disease (PD) and other disorders. However, the neural systems underlying this therapeutic effect are largely unknown. To investigate this question we scanned people with PD and age-matched healthy controls using functional magnetic resonance imaging (fMRI). All subjects performed a rhythmic motor behavior (right hand finger tapping) with and without simultaneous auditory rhythmic cues at two different speeds (1 and 4 Hz). We used spatial independent component analysis (ICA) and regression to identify task-related functional connectivity networks and assessed differences between groups in intra- and inter-network connectivity. Overall, the control group showed greater intra-network connectivity in perceptual and motor related networks during motor tapping both with and without rhythmic cues. The PD group showed greater inter-network connectivity between the auditory network and the executive control network, and between the executive control network and the motor/cerebellar network associated with the motor task performance. We interpret our results as indicating that the temporal rhythmic auditory information may assist compensatory mechanisms through network-level effects, reflected in increased interaction between auditory and executive networks that in turn modulate activity in cortico-cerebellar networks.
Collapse
Affiliation(s)
- Kurt Braunlich
- Department of Psychology and Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Experimental Psychology, University College London, London, UK
| | - Carol A Seger
- Department of Psychology and Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, USA.,Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Kade G Jentink
- Department of Psychology and Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Isabelle Buard
- Department of Neurology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Benzi M Kluger
- Department of Neurology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Michael H Thaut
- Faculty of Music, Collaborative Programs in Neuroscience, Rehabilitation Science Institute, and Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON, M5S2C5, Canada
| |
Collapse
|
24
|
Kinematic and Kinetic Patterns Related to Free-Walking in Parkinson's Disease. SENSORS 2018; 18:s18124224. [PMID: 30513798 PMCID: PMC6308417 DOI: 10.3390/s18124224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022]
Abstract
The aim of this study is to compare the properties of free-walking at a natural pace between mild Parkinson’s disease (PD) patients during the ON-clinical status and two control groups. In-shoe pressure-sensitive insoles were used to quantify the temporal and force characteristics of a 5-min free-walking in 11 PD patients, in 16 young healthy controls, and in 12 age-matched healthy controls. Inferential statistics analyses were performed on the kinematic and kinetic parameters to compare groups’ performances, whereas feature selection analyses and automatic classification were used to identify the signature of parkinsonian gait and to assess the performance of group classification, respectively. Compared to healthy subjects, the PD patients’ gait pattern presented significant differences in kinematic parameters associated with bilateral coordination but not in kinetics. Specifically, patients showed an increased variability in double support time, greater gait asymmetry and phase deviation, and also poorer phase coordination. Feature selection analyses based on the ReliefF algorithm on the differential parameters in PD patients revealed an effect of the clinical status, especially true in double support time variability and gait asymmetry. Automatic classification of PD patients, young and senior subjects confirmed that kinematic predictors produced a slightly better classification performance than kinetic predictors. Overall, classification accuracy of groups with a linear discriminant model which included the whole set of features (i.e., demographics and parameters extracted from the sensors) was 64.1%.
Collapse
|
25
|
Koshimori Y, Thaut MH. Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson's disease. Ageing Res Rev 2018; 47:133-139. [PMID: 30005957 DOI: 10.1016/j.arr.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is characterized primarily by a dysfunctional basal ganglia (BG) system, producing motor and non-motor symptoms. A significant number of studies have demonstrated that rhythmic auditory stimulation can improve gait and other motor behaviors in PD that are not well managed by the conventional therapy. As music, being highly complex stimulus, can modulate brain activity/function in distributed areas of brain, the therapeutic properties of music potentially extend to alleviate non-motor symptoms of PD. Despite the clinical, behavioral evidence and promises of rhythm and music based interventions, the neural substrates underlying the effectiveness are poorly understood. The goal of this review is to appraise the current state of knowledge in order to direct further neuroimaging studies that help to determine the therapeutic effects of rhythm and music based interventions for motor and non-motor symptoms of PD.
Collapse
Affiliation(s)
- Yuko Koshimori
- Music and Health Science Research Center, Faculty of Music and Collaborative Programs in Neuroscience, University of Toronto, 90 Wellesley Street West, Toronto, Ontario M5S 1C5, Canada.
| | - Michael H Thaut
- Music and Health Science Research Center, Faculty of Music and Collaborative Programs in Neuroscience, University of Toronto, 90 Wellesley Street West, Toronto, Ontario M5S 1C5, Canada
| |
Collapse
|
26
|
Ghai S, Ghai I, Effenberg AO. Effect of Rhythmic Auditory Cueing on Aging Gait: A Systematic Review and Meta-Analysis. Aging Dis 2018; 9:901-923. [PMID: 30271666 PMCID: PMC6147584 DOI: 10.14336/ad.2017.1031] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023] Open
Abstract
Rhythmic auditory cueing has been widely used in gait rehabilitation over the past decade. The entrainment effect has been suggested to introduce neurophysiological changes, alleviate auditory-motor coupling and reduce cognitive-motor interferences. However, a consensus as to its influence over aging gait is still warranted. A systematic review and meta-analysis was carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal gait parameters among healthy young and elderly participants. This systematic identification of published literature was performed according to PRISMA guidelines, from inception until May 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Of 2789 records, 34 studies, involving 854 (499 young/355 elderly) participants met our inclusion criteria. The meta-analysis revealed enhancements in spatiotemporal parameters of gait i.e. gait velocity (Hedge's g: 0.85), stride length (0.61), and cadence (1.1), amongst both age groups. This review, for the first time, evaluates the effects of auditory entrainment on aging gait and discusses its implications under higher and lower information processing constraints. Clinical implications are discussed with respect to applications of auditory entrainment in rehabilitation settings.
Collapse
Affiliation(s)
- Shashank Ghai
- 1Institute for Sports Science, Leibniz University Hannover, Germany
| | - Ishan Ghai
- 2School of Life Sciences, Jacobs University Bremen, Germany
| | | |
Collapse
|
27
|
Fattorini L, Rodio A. Acoustic and visual pacesetter influence on the energy expenditure in a cycling exercise. J Sports Med Phys Fitness 2018; 59:1126-1132. [PMID: 30024130 DOI: 10.23736/s0022-4707.18.08795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the effects of acoustic and visual pacesetters on the energy expenditure in a steady state 30-minute long cycling. METHODS Eighteen healthy male subjects (age 27.6±4.59 years; height 1.78±0.07 m; body mass 80.1±7.85 kg) performed a 30-minute submaximal exercise at a constant workload on a cycle ergometer. The imposed workload required a metabolic expenditure corresponding to 70% of ventilatory threshold for each subject. Energy expenditure - expressed as a caloric equivalent relative to the total net oxygen consumption during exercise - was evaluated using three conditions: control (CT), no external pacesetter; acoustic (AT), listening to rhythmic acoustic stimuli at 120 beat per minute; and visual (VT), seeing footage consisting of eight different images in a looped sequence at 120 frames per minute. RESULTS All measured parameters qualified the exercise as requiring mainly an aerobic metabolism, showing no pain and no fatigue. AT and VT energy expenditure (5.0±0.44 and 4.9±0.39 MET respectively) were significantly lower compared to CT (5.5±0.49 MET), while no difference between AT and VT were recognized. CONCLUSIONS This study confirmed the ergogenic effect of the acoustic pacesetter on a 30-minute steady state rhythmic exercise. Novelty is that the visual pacesetter too was able to increase the mechanical efficiency as the same manner than the acoustic one. The present setting adopting visual pacesetter could be used in special categories, such as the deaf or in innovative technological tools as head-mounted display devices.
Collapse
Affiliation(s)
- Luigi Fattorini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, Rome, Italy -
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino e Southern Lazio, Cassino, Frosinone, Italy
| |
Collapse
|
28
|
Ghai S. Effects of Real-Time (Sonification) and Rhythmic Auditory Stimuli on Recovering Arm Function Post Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2018; 9:488. [PMID: 30057563 PMCID: PMC6053522 DOI: 10.3389/fneur.2018.00488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Background: External auditory stimuli have been widely used for recovering arm function post-stroke. Rhythmic and real-time auditory stimuli have been reported to enhance motor recovery by facilitating perceptuomotor representation, cross-modal processing, and neural plasticity. However, a consensus as to their influence for recovering arm function post-stroke is still warranted because of high variability noted in research methods. Objective: A systematic review and meta-analysis was carried out to analyze the effects of rhythmic and real-time auditory stimuli on arm recovery post stroke. Method: Systematic identification of published literature was performed according to PRISMA guidelines, from inception until December 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Results: Of 1,889 records, 23 studies which involved 585 (226 females/359 males) patients met our inclusion criteria. The meta-analysis revealed beneficial effects of training with both types of auditory inputs for Fugl-Meyer assessment (Hedge's g: 0.79), Stroke impact scale (0.95), elbow range of motion (0.37), and reduction in wolf motor function time test (-0.55). Upon further comparison, a beneficial effect of real-time auditory feedback was found over rhythmic auditory cueing for Fugl-meyer assessment (1.3 as compared to 0.6). Moreover, the findings suggest a training dosage of 30 min to 1 h for at least 3-5 sessions per week with either of the auditory stimuli. Conclusion: This review suggests the application of external auditory stimuli for recovering arm functioning post-stroke.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute for Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
29
|
Ghai S, Ghai I. Effects of Rhythmic Auditory Cueing in Gait Rehabilitation for Multiple Sclerosis: A Mini Systematic Review and Meta-Analysis. Front Neurol 2018; 9:386. [PMID: 29942278 PMCID: PMC6004404 DOI: 10.3389/fneur.2018.00386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Rhythmic auditory cueing has been shown to enhance gait performance in several movement disorders. The "entrainment effect" generated by the stimulations can enhance auditory motor coupling and instigate plasticity. However, a consensus as to its influence over gait training among patients with multiple sclerosis is still warranted. A systematic review and meta-analysis was carried out to analyze the effects of rhythmic auditory cueing in studies gait performance in patients with multiple sclerosis. This systematic identification of published literature was performed according to PRISMA guidelines, from inception until Dec 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Of 602 records, five studies (PEDro score: 5.7 ± 1.3) involving 188 participants (144 females/40 males) met our inclusion criteria. The meta-analysis revealed enhancements in spatiotemporal parameters of gait i.e., velocity (Hedge's g: 0.67), stride length (0.70), and cadence (1.0), and reduction in timed 25 feet walking test (-0.17). Underlying neurophysiological mechanisms, and clinical implications are discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance gait performance in the multiple sclerosis community.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hanover, Hanover, Germany
| | - Ishan Ghai
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
30
|
Murgia M, Pili R, Corona F, Sors F, Agostini TA, Bernardis P, Casula C, Cossu G, Guicciardi M, Pau M. The Use of Footstep Sounds as Rhythmic Auditory Stimulation for Gait Rehabilitation in Parkinson's Disease: A Randomized Controlled Trial. Front Neurol 2018; 9:348. [PMID: 29910764 PMCID: PMC5992388 DOI: 10.3389/fneur.2018.00348] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 04/30/2018] [Indexed: 01/24/2023] Open
Abstract
Background The use of rhythmic auditory stimulation (RAS) has been proven useful in the management of gait disturbances associated with Parkinson’s disease (PD). Typically, the RAS consists of metronome or music-based sounds (artificial RAS), while ecological footstep sounds (ecological RAS) have never been used for rehabilitation programs. Objective The aim of this study was to compare the effects of a rehabilitation program integrated either with ecological or with artificial RAS. Methods An observer-blind, randomized controlled trial was conducted to investigate the effects of 5 weeks of supervised rehabilitation integrated with RAS. Thirty-eight individuals affected by PD were randomly assigned to one of the two conditions (ecological vs. artificial RAS); thirty-two of them (age 68.2 ± 10.5, Hoehn and Yahr 1.5–3) concluded all phases of the study. Spatio-temporal parameters of gait and clinical variables were assessed before the rehabilitation period, at its end, and after a 3-month follow-up. Results Thirty-two participants were analyzed. The results revealed that both groups improved in the majority of biomechanical and clinical measures, independently of the type of sound. Moreover, exploratory analyses for separate groups were conducted, revealing improvements on spatio-temporal parameters only in the ecological RAS group. Conclusion Overall, our results suggest that ecological RAS is equally effective compared to artificial RAS. Future studies should further investigate the role of ecological RAS, on the basis of information revealed by our exploratory analyses. Theoretical, methodological, and practical issues concerning the implementation of ecological sounds in the rehabilitation of PD patients are discussed. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT03228888.
Collapse
Affiliation(s)
- Mauro Murgia
- Department of Life Sciences, University of Trieste, Trieste, Italy.,Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | - Roberta Pili
- AOB "G. Brotzu" General Hospital, Cagliari, Italy
| | - Federica Corona
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Fabrizio Sors
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Paolo Bernardis
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Carlo Casula
- AOB "G. Brotzu" General Hospital, Cagliari, Italy
| | | | - Marco Guicciardi
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| |
Collapse
|
31
|
Dafkin C, Green A, Olivier B, McKinon W, Kerr S. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients. Sleep Med 2018; 45:89-93. [PMID: 29680436 DOI: 10.1016/j.sleep.2018.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. METHODS Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. RESULTS A circadian variation during the stance phase in only TA (PM > AM, p < 0.005) and BF (PM < AM, p = 0.008) activity was observed in control participants. Conversely no circadian variation was seen in any muscles in the RLS patients. RLS patients had an increased TA and GL activity (RLS > Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. CONCLUSION EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients.
Collapse
Affiliation(s)
- Chloe Dafkin
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa.
| | - Andrew Green
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa
| | - Benita Olivier
- Physiotherapy Department, Faculty of Health Sciences, University of the Witwatersrand Medical School Faculty of Health Sciences, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | - Warrick McKinon
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa
| | - Samantha Kerr
- Biomechanics Laboratory, School of Physiology, University of the Witwatersrand, Faculty of Health Sciences, Medical School, Johannesburg, South Africa
| |
Collapse
|
32
|
Bailey CA, Corona F, Murgia M, Pili R, Pau M, Côté JN. Electromyographical Gait Characteristics in Parkinson's Disease: Effects of Combined Physical Therapy and Rhythmic Auditory Stimulation. Front Neurol 2018; 9:211. [PMID: 29670571 PMCID: PMC5893942 DOI: 10.3389/fneur.2018.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022] Open
Abstract
Background In persons with Parkinson’s disease (PD), gait dysfunctions are often associated with abnormal neuromuscular function. Physical therapy combined with auditory stimulation has been recently shown to improve motor function and gait kinematic patterns; however, the underlying neuromuscular control patterns leading to this improvement have never been identified. Objectives (1) Assess the relationships between motor dysfunction and lower limb muscle activity during gait in persons with PD; (2) Quantify the effects of physical therapy with rhythmic auditory stimulation (PT-RAS) on lower limb muscle activity during gait in persons with PD. Methods Participants (15 with PD) completed a 17-week intervention of PT-RAS. Gait was analyzed at baseline, after 5 weeks of supervised treatment (T5), and at a 12-week follow-up (T17). For each session, motor dysfunction was scored using the United Parkinson Disease Rating Scale, and muscle activation amplitude, modulation, variability, and asymmetry were measured for the rectus femoris, tibialis anterior, and gastrocnemius lateralis (GL). Spearman correlation analyses assessed the relationships between dysfunction and muscle activity, and mixed effect models (session × muscle) tested for intervention effects. Results PT-RAS was effective in decreasing motor dysfunction by an average of 23 (T5) to 36% (T17). Higher GL activity variability and bilateral asymmetry were correlated to higher dysfunction (ρ = 0.301 −0.610, p’s < 0.05) and asymmetry significantly decreased during the intervention (p < 0.05). Conclusion Results suggest that gait motor dysfunction in PD may be explained by neuromuscular control impairments of GL that go beyond simple muscle amplitude change. Physical therapy with RAS improves bilateral symmetry, but its effect on muscle variability requires future investigation.
Collapse
Affiliation(s)
- Christopher A Bailey
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Federica Corona
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Mauro Murgia
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberta Pili
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci Rep 2018; 8:506. [PMID: 29323122 PMCID: PMC5764963 DOI: 10.1038/s41598-017-16232-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023] Open
Abstract
The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany.
| | - Ishan Ghai
- School of Life Sciences, Jacobs University Bremen, Bremen, Germany
| | - Gerd Schmitz
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Alfred O Effenberg
- Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
34
|
Ghai S, Ghai I, Effenberg AO. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis. Neuropsychiatr Dis Treat 2018; 14:43-59. [PMID: 29339922 PMCID: PMC5746070 DOI: 10.2147/ndt.s148053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g=0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute for Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Ishan Ghai
- School of Life Sciences, Jacobs University, Bremen, Germany
| | - Alfred O Effenberg
- Institute for Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
35
|
Caetano MJD, Lord SR, Allen NE, Brodie MA, Song J, Paul SS, Canning CG, Menant JC. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson's disease: Implications for fall risk. Parkinsonism Relat Disord 2017; 47:32-38. [PMID: 29239746 DOI: 10.1016/j.parkreldis.2017.11.340] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Decline in the ability to take effective steps and to adapt gait, particularly under challenging conditions, may be important reasons why people with Parkinson's disease (PD) have an increased risk of falling. This study aimed to determine the extent of stepping and gait adaptability impairments in PD individuals as well as their associations with PD symptoms, cognitive function and previous falls. METHODS Thirty-three older people with PD and 33 controls were assessed in choice stepping reaction time, Stroop stepping and gait adaptability tests; measurements identified as fall risk factors in older adults. RESULTS People with PD had similar mean choice stepping reaction times to healthy controls, but had significantly greater intra-individual variability. In the Stroop stepping test, the PD participants were more likely to make an error (48 vs 18%), took 715 ms longer to react (2312 vs 1517 ms) and had significantly greater response variability (536 vs 329 ms) than the healthy controls. People with PD also had more difficulties adapting their gait in response to targets (poorer stepping accuracy) and obstacles (increased number of steps) appearing at short notice on a walkway. Within the PD group, higher disease severity, reduced cognition and previous falls were associated with poorer stepping and gait adaptability performances. CONCLUSIONS People with PD have reduced ability to adapt gait to unexpected targets and obstacles and exhibit poorer stepping responses, particularly in a test condition involving conflict resolution. Such impaired stepping responses in Parkinson's disease are associated with disease severity, cognitive impairment and falls.
Collapse
Affiliation(s)
- Maria Joana D Caetano
- Neuroscience Research Australia, Sydney, Australia; School of Public Health & Community Medicine, University of New South Wales, Sydney, Australia.
| | - Stephen R Lord
- Neuroscience Research Australia, Sydney, Australia; School of Public Health & Community Medicine, University of New South Wales, Sydney, Australia
| | - Natalie E Allen
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | | | - Jooeun Song
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Serene S Paul
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia; Musculoskeletal Health Sydney, School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Colleen G Canning
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Jasmine C Menant
- Neuroscience Research Australia, Sydney, Australia; School of Public Health & Community Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
36
|
Aspectos biomecânicos da locomoção de pessoas com doença de Parkinson: revisão narrativa. REVISTA BRASILEIRA DE CIÊNCIAS DO ESPORTE 2017. [DOI: 10.1016/j.rbce.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Joshi D, Khajuria A, Joshi P. An automatic non-invasive method for Parkinson's disease classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 145:135-145. [PMID: 28552119 DOI: 10.1016/j.cmpb.2017.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND OBJECTIVE The automatic noninvasive identification of Parkinson's disease (PD) is attractive to clinicians and neuroscientist. Various analysis and classification approaches using spatiotemporal gait variables have been presented earlier in classifying Parkinson's gait. In this paper, we present a wavelet transform based representation of spatiotemporal gait variables to explore the potential of such representation in the identification of Parkinson's gait. METHODS Here, we present wavelet analysis as an alternate method and show that wavelet analysis combined with support vector machine (SVM) can produce efficient classification accuracy. Computationally simplified features are extracted from the wavelet transformation and are fed to support vector machine for Parkinson's gait identification. We have assessed various gait parameters namely stride interval, swing interval, and stance interval (from both legs) to observe the best single parameter for such classification. RESULTS By employing wavelet decomposition of the gait variables as an alternate method for the identification of Parkinson's subjects, the classification accuracy of 90.32% (Confidence Interval; 74.2%-97.9%) has been achieved, at par to recently reported accuracy, using only one gait parameter. Left stance interval performed equally good to Right swing interval showing classification accuracy of 90.32%. The classification accuracy improved to 100% when all the gait parameters from left leg were put together to form a larger feature vector. We have shown that Haar wavelet performed significantly better than db2 wavelet (p = 0.05) for certain gait variables e.g., right stride time series. The results show that wavelet analysis is a promising approach in reducing down the required number of gait variables, however at the cost of increased computations in wavelet analysis. CONCLUSIONS In this work a wavelet transform approach is explored to classify Parkinson's subjects and healthy subjects using their gait cycle variables. The results show that the proposed method can efficiently extract relevant features from the different levels of the wavelet towards the classification of Parkinson's and healthy subjects and thus, the present work is a potential candidate for the automatic noninvasive neurodegenerative disease classification.
Collapse
Affiliation(s)
- Deepak Joshi
- Center for Biomedical Engineering, Indian Institute of Technology, Delhi, India
| | - Aayushi Khajuria
- Department of Electrical Engineering, Graphic Era University, Dehradun, India.
| | | |
Collapse
|
38
|
Allen JL, McKay JL, Sawers A, Hackney ME, Ting LH. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in Parkinson's disease. J Neurophysiol 2017; 118:363-373. [PMID: 28381488 DOI: 10.1152/jn.00813.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/07/2017] [Accepted: 04/05/2017] [Indexed: 11/22/2022] Open
Abstract
Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise.NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals.
Collapse
Affiliation(s)
- Jessica L Allen
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - J Lucas McKay
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Andrew Sawers
- Department of Kinesiology, University of Illinois at Chicago, Chicago, Illinois
| | - Madeleine E Hackney
- Atlanta Department of Veterans Affairs Center of Excellence for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia.,Division of General Medicine and Geriatrics, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia; .,Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
39
|
Magee WL, Davidson JW. Singing in Therapy: Monitoring Disease Process in Chronic Degenerative Illness. BRITISH JOURNAL OF MUSIC THERAPY 2016. [DOI: 10.1177/135945750401800205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Music therapy in the treatment of chronic neurological illness typically focuses on the use of music to address the emotional and psychosocial impact of loss and change stemming from pathology. A range of clinical techniques is described in anecdotal accounts spanning instrumental improvisation, song composition and singing. However, there is scant reference to the musical and emotional experience of singing as a clinical technique with individuals living with chronic degenerative illness. Drawing on the results of an empirical investigation into the effects of music therapy with clients with chronic neurological illness, this paper reveals how singing may be used by clients to monitor their physical disease process. Grounded theory research with this population has revealed that music therapy elicits processes in which individuals monitor the physical changes caused by their disease process (Magee and Davidson 2004). Based upon these research findings, this paper illustrates that individuals living with illnesses which cause loss of voice function may find the act of singing a highly physical experience. As such, singing may be used to monitor subtle changes which have occurred due to the disease process. Individuals living with degenerative illness may use singing within therapy as a way to defy their illness process and as an expression of life's breath running through the body. Singing and voice work within clinical music therapy is therefore not only a vehicle for emotional expression, but also an invaluable tool in gaining an understanding of the client's experience, offering a boundaried environment for exploration of loss and degeneration. Finally, the paper provides a theoretical framework for the emotional experience of singing songs of personal meaning in therapy.
Collapse
|
40
|
Raglio A. Music Therapy Interventions in Parkinson's Disease: The State-of-the-Art. Front Neurol 2015; 6:185. [PMID: 26379619 PMCID: PMC4553388 DOI: 10.3389/fneur.2015.00185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/10/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Alfredo Raglio
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia , Pavia , Italy
| |
Collapse
|
41
|
Wu T, Hallett M, Chan P. Motor automaticity in Parkinson's disease. Neurobiol Dis 2015; 82:226-234. [PMID: 26102020 DOI: 10.1016/j.nbd.2015.06.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
Abstract
Bradykinesia is the most important feature contributing to motor difficulties in Parkinson's disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Piu Chan
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
42
|
Characterizing gait asymmetry via frequency sub-band components of the ground reaction force. Biomed Signal Process Control 2015. [DOI: 10.1016/j.bspc.2014.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Thaut MH. The discovery of human auditory–motor entrainment and its role in the development of neurologic music therapy. PROGRESS IN BRAIN RESEARCH 2015; 217:253-66. [DOI: 10.1016/bs.pbr.2014.11.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
44
|
Wright RL, Elliott MT. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction. Front Hum Neurosci 2014; 8:724. [PMID: 25309397 PMCID: PMC4161059 DOI: 10.3389/fnhum.2014.00724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 11/13/2022] Open
Abstract
Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task—correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.
Collapse
Affiliation(s)
- Rachel L Wright
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, UK
| | - Mark T Elliott
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, UK
| |
Collapse
|
45
|
Lim HBT, Karageorghis CI, Romer LM, Bishop DT. Psychophysiological effects of synchronous versus asynchronous music during cycling. Med Sci Sports Exerc 2014; 46:407-13. [PMID: 24441216 DOI: 10.1249/mss.0b013e3182a6378c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Synchronizing movement to a musical beat may reduce the metabolic cost of exercise, but findings to date have been equivocal. Our aim was to examine the degree to which the synchronous application of music moderates the metabolic demands of a cycle ergometer task. METHODS Twenty-three recreationally active men made two laboratory visits. During the first visit, participants completed a maximal incremental ramp test on a cycle ergometer. At the second visit, they completed four randomized 6-min cycling bouts at 90% of ventilatory threshold (control, metronome, synchronous music, and asynchronous music). Main outcome variables were oxygen uptake, HR, ratings of dyspnea and limb discomfort, affective valence, and arousal. RESULTS No significant differences were evident for oxygen uptake. HR was lower under the metronome condition (122 ± 15 bpm) compared to asynchronous music (124 ± 17 bpm) and control (125 ± 16 bpm). Limb discomfort was lower while listening to the metronome (2.5 ± 1.2) and synchronous music (2.3 ± 1.1) compared to control (3.0 ± 1.5). Both music conditions, synchronous (1.9 ± 1.2) and asynchronous (2.1 ± 1.3), elicited more positive affective valence compared to metronome (1.2 ± 1.4) and control (1.2 ± 1.2), while arousal was higher with synchronous music (3.4 ± 0.9) compared to metronome (2.8 ± 1.0) and control (2.8 ± 0.9). CONCLUSIONS Synchronizing movement to a rhythmic stimulus does not reduce metabolic cost but may lower limb discomfort. Moreover, synchronous music has a stronger effect on limb discomfort and arousal when compared to asynchronous music.
Collapse
Affiliation(s)
- Harry B T Lim
- 1School of Sport and Education, Brunel University, Uxbridge, Middlesex, UNITED KINGDOM; and 2Performance Enhancement Institute, Singapore Sports School, SINGAPORE
| | | | | | | |
Collapse
|
46
|
Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson's disease? Neurosci Biobehav Rev 2013; 37:2564-70. [PMID: 24012774 DOI: 10.1016/j.neubiorev.2013.08.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/17/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Previous research has noted that music can improve gait in several pathological conditions, including Parkinson's disease, Huntington's disease and stroke. Current research into auditory-motor interactions and the neural bases of musical rhythm perception has provided important insights for developing potential movement therapies. Specifically, neuroimaging studies show that rhythm perception activates structures within key motor networks, such as premotor and supplementary motor areas, basal ganglia and the cerebellum - many of which are compromised to varying degrees in Parkinson's disease. It thus seems likely that automatic engagement of motor areas during rhythm perception may be the connecting link between music and motor improvements in Parkinson's disease. This review seeks to describe the link, address core questions about its underlying mechanisms, and examine whether it can be utilized as a compensatory mechanism.
Collapse
Affiliation(s)
- Cristina Nombela
- Clinical Neuroscience Department, Cambridge Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Wang TH, Peng YC, Chen YL, Lu TW, Liao HF, Tang PF, Shieh JY. A Home-Based Program Using Patterned Sensory Enhancement Improves Resistance Exercise Effects for Children With Cerebral Palsy. Neurorehabil Neural Repair 2013; 27:684-94. [DOI: 10.1177/1545968313491001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Neurologic music therapy has demonstrated improved walking performance in persons with neurologic disease; however, little evidence supports the use of music with functional resistance exercise to improve motor capacity and daily functions for children with cerebral palsy. Objective. To investigate the effect of additional patterned sensory enhancement (PSE) music combined with exercise for children with spastic diplegia. Methods. An assessor-blind, randomized controlled trial with 6- and 12-week follow-ups was carried out. Thirty-six children with spastic diplegia, aged 5 to 13 years, were assigned to a PSE group (n = 18) or a no-music group (n = 18). Both groups received 6-week, home-based, loaded sit-to-stand exercise, but only the PSE group exercised with prerecorded PSE music. The primary outcome was Gross Motor Function Measure (GMFM). Secondary outcomes included Pediatric Evaluation of Disability Inventory (PEDI) mobility and self-care domains, 1-repetition maximum of sit-to-stand, and walking speeds. Results. Three children did not complete the program. Intention-to-treat analysis showed both groups improved in GMFM D, E, and Goal dimensions; Functional Skills Scales of PEDI mobility domain; and 1-repetition maximum of sit-to-stand at posttest and follow-ups ( P ≤ .005). The PSE group improved significantly greater than the no-music group in the GMFM D and Goal dimensions ( P < .005) after training, and the improvement persisted for at least 6 or 12 weeks ( P ≤ .013). No significant improvements in the rest PEDI scales and walking speeds were found. Conclusions. Adding neurologic music therapy to functional resistance exercise could induce greater improvements in gross motor capacity for children with cerebral palsy.
Collapse
Affiliation(s)
| | | | | | - Tung-Wu Lu
- National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
48
|
Amano S, Roemmich RT, Skinner JW, Hass CJ. Ambulation and Parkinson Disease. Phys Med Rehabil Clin N Am 2013; 24:371-92. [DOI: 10.1016/j.pmr.2012.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Hardy MW, LaGasse AB. Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism. Front Integr Neurosci 2013; 7:19. [PMID: 23543915 PMCID: PMC3610079 DOI: 10.3389/fnint.2013.00019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/10/2013] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been increased focus on movement and sensory abnormalities in autism spectrum disorders (ASD). This has come from research demonstrating cortical and cerebellar differences in autism, with suggestion of early cerebellar dysfunction. As evidence for an extended profile of ASD grows, there are vast implications for treatment and therapy for individuals with autism. Persons with autism are often provided behavioral or cognitive strategies for navigating their environment; however, these strategies do not consider differences in motor functioning. One accommodation that has not yet been explored in the literature is the use of auditory rhythmic cueing to improve motor functioning in ASD. The purpose of this paper is to illustrate the potential impact of auditory rhythmic cueing for motor functioning in persons with ASD. To this effect, we review research on rhythm in motor rehabilitation, draw parallels to motor dysfunction in ASD, and propose a rationale for how rhythmic input can improve sensorimotor functioning, thereby allowing individuals with autism to demonstrate their full cognitive, behavioral, social, and communicative potential.
Collapse
Affiliation(s)
| | - A. Blythe LaGasse
- Center for Biomedical Research in Music, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
50
|
Sejdić E, Fu Y, Pak A, Fairley JA, Chau T. The effects of rhythmic sensory cues on the temporal dynamics of human gait. PLoS One 2012; 7:e43104. [PMID: 22927946 PMCID: PMC3424126 DOI: 10.1371/journal.pone.0043104] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 07/18/2012] [Indexed: 11/25/2022] Open
Abstract
Walking is a complex, rhythmic task performed by the locomotor system. However, natural gait rhythms can be influenced by metronomic auditory stimuli, a phenomenon of particular interest in neurological rehabilitation. In this paper, we examined the effects of aural, visual and tactile rhythmic cues on the temporal dynamics associated with human gait. Data were collected from fifteen healthy adults in two sessions. Each session consisted of five 15-minute trials. In the first trial of each session, participants walked at their preferred walking speed. In subsequent trials, participants were asked to walk to a metronomic beat, provided through visually, aurally, tactile or all three cues (simultaneously and in sync), the pace of which was set to the preferred walking speed of the first trial. Using the collected data, we extracted several parameters including: gait speed, mean stride interval, stride interval variability, scaling exponent and maximum Lyapunov exponent. The extracted parameters showed that rhythmic sensory cues affect the temporal dynamics of human gait. The auditory rhythmic cue had the greatest influence on the gait parameters, while the visual cue had no statistically significant effect on the scaling exponent. These results demonstrate that visual rhythmic cues could be considered as an alternative cueing modality in rehabilitation without concern of adversely altering the statistical persistence of walking.
Collapse
Affiliation(s)
- Ervin Sejdić
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|