1
|
Anticonvulsant Effect of Antiaris toxicaria (Pers.) Lesch. (Moraceae) Aqueous Extract in Rodents. ISRN PHARMACOLOGY 2013; 2013:519208. [PMID: 24167736 PMCID: PMC3791639 DOI: 10.1155/2013/519208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/13/2013] [Indexed: 11/17/2022]
Abstract
Antiaris toxicaria (Moraceae) was evaluated for anticonvulsant activity in rodents. Animal models used include maximal electroshock test (MEST); pentylenetetrazole-induced (PTZ) convulsions; picrotoxin-induced (PCT) convulsions; strychnine- (STR-) and 4-aminopyridine-induced convulsions. Increase in latency to seizures as well as reduction in duration and frequency of seizures indicated anticonvulsant activity. The extract was more effective in all models used except the maximal electroshock test and strychnine-induced convulsions. Antiaris toxicaria aqueous extract (200, 400, and 800 mg kg(-1)) significantly (P < 0.05 - 0.01) shortened the duration of convulsions in PTZ- and PCT-induced seizures. Delay in the onset of convulsions in the two tests was significant (P < 0.001). Reduction in the frequency of seizures was also significant (P < 0.05 - 0.001) in both tests. Antiaris further delayed the onset of seizures in 4-aminopyridine model while producing 75% protection against death in mice. Diazepam (0.1, 0.3, and 1 mg kg(-1)), carbamazepine (3, 10, and 30 mg kg(-1)), and sodium valproate (100-400 mg kg(-1)) were used as reference anticonvulsant drugs for various models. Flumazenil blocked the effect of the extract in the PTZ test significantly suggesting that Antiaris toxicaria may be acting by enhancing the effects of the GABAergic system. Antiaris toxicaria aqueous extract therefore possesses anticonvulsant activity.
Collapse
|
2
|
Kim JE, Kwak SE, Kang TC. Upregulated TWIK-related acid-sensitive K+ channel-2 in neurons and perivascular astrocytes in the hippocampus of experimental temporal lobe epilepsy. Epilepsia 2009; 50:654-63. [PMID: 19220408 DOI: 10.1111/j.1528-1167.2008.01957.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To identify the modulation of Tandem of P-domains in a weak inwardly rectifying K(+) channel (TWIK)-related acid-sensitive K(+) (TASK)-2 channel expressions in epilepsy, we conducted a comparative analysis of TASK-2 channel immunoreactivity in the hippocampus of a pilocarpine-induced rat epilepsy model. METHODS We performed and immunohistochemical study for TASK-2 and double immunofluorescent staining for TASK-2 and glial fibrillary acidic protein (GFAP) in the rat hippocampus of pilocarpine-induced epilepsy models. RESULTS In control animals, TASK-2 immunoreactivity was strongly detected in CA1-3 pyramidal layers and dentate granule cell layer. After status epilepticus (SE), TASK-2 immunoreactivity was increased in dentate granule cell layer and CA3 pyramidal cell layer, whereas its immunoreactivity was reduced in CA1 pyramidal cell layer. In addition, TASK-2 immunoreactivity is gradually increased in perivascular regions following SE. Double immunofluorescent study revealed that the enhancement of TASK-2 immunoreactivity in perivascular regions is caused by increase in the number of TASK-2 immunoreactive endfeet of perivascular astrocytes. DISCUSSION Our findings suggest that elevated TASK-2 immunoreactivity in neurons may contribute to rapid adaptive responses (presumably for extracellular alkalinization), which result in hyperpolarization and regulate seizure activity. In contrast, upregulated TASK-2 immunoreactivity in perivascular regions may be involved in abnormalities of blood flow regulation or brain-blood barrier impairment. These changes may contribute to acquisition of the properties of the epileptic hippocampus.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, South Korea
| | | | | |
Collapse
|
3
|
Simultaneous glutamate and EEG activity measurements during seizures in rat hippocampal region with the use of an electrochemical biosensor. J Neurosci Methods 2008; 168:48-53. [DOI: 10.1016/j.jneumeth.2007.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 11/17/2022]
|
4
|
Up-regulated astroglial TWIK-related acid-sensitive K+ channel-1 (TASK-1) in the hippocampus of seizure-sensitive gerbils: a target of anti-epileptic drugs. Brain Res 2007; 1185:346-58. [PMID: 17959156 DOI: 10.1016/j.brainres.2007.09.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/13/2007] [Accepted: 09/15/2007] [Indexed: 01/27/2023]
Abstract
In order to identify the modulation of TASK (TWIK-related Acid-Sensitive K(+)) channel expressions in epilepsy, we conducted a comparative analysis of TASK channel immunoreactivities in the hippocampus of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference of the TASK-1 and TASK-2 channel expressions in the hippocampi of young SR and SS gerbils (1-2 months old). In adult SS gerbil hippocampus, TASK-1 immunoreactivity in astrocytes was higher than that in adult SR gerbil hippocampus. After seizures, TASK-1 immunoreactivity was significantly down-regulated in astrocytes of the SS gerbil hippocampus. In addition, various anti-epileptic drugs selectively affect TASK-1 immunoreactivity in astrocytes of the SS gerbil hippocampus. Gabapentin, lamotrigine, topiramate and valproic acid reduced the number of TASK-1(+) astrocytes in the hippocampus to 10-25% of that in saline-treated SS adult gerbils, whereas carbamazepine and vigabatrin decreased to approximately 50%. Therefore, the present study demonstrates that up-regulated TASK-1 immunoreactivity in astrocytes may be involved in the seizure activity of SS adult gerbils and suggests that the astroglial TASK-1 channel may be a target for epilepsy therapeutics.
Collapse
|
5
|
Kim DS, Kim JE, Kwak SE, Won MH, Kang TC. Seizure activity affects neuroglial Kv1 channel immunoreactivities in the gerbil hippocampus. Brain Res 2007; 1151:172-87. [PMID: 17397809 DOI: 10.1016/j.brainres.2007.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 11/20/2022]
Abstract
In order to confirm the species-specific distribution of voltage-gated K(+) (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv1 channel immunoreactivities in the hippocampus of seizure resistant (SR) and seizure sensitive (SS) gerbils. There was distinct difference of the Kv1 channel subtypes immunoreactivity in the hippocampi in both SR and SS gerbils. Kv1.1, Kv1.2, Kv1.3, Kv1.4, and Kv1.6 immunoreactivities in the SS gerbil hippocampus were lower than that in the SR gerbil hippocampus. However, Kv1 immunoreactivities were obviously presented in astrocyte within the stratum radiatum of the CA1 region of pre-seizure SS gerbil hippocampus. Following seizure-onset, Kv1 immunoreactivities (except Kv1.5) were markedly elevated, whereas their immunoreactivites in astrocytes were down-regulated. Therefore, the present study demonstrates that seizure activity may distinctly affect neuroglial Kv1 immunoreactivities in the gerbil hippocampus.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, Kangwon-Do, South Korea
| | | | | | | | | |
Collapse
|
6
|
Abraham H, Losonczy A, Czéh G, Lázár GY. Potassium channel blockers tetraethylammonium and 4-aminopyridine fail to prevent microglial activation induced by elevated potassium concentration. ACTA BIOLOGICA HUNGARICA 2003; 54:63-78. [PMID: 12712959 DOI: 10.1556/abiol.54.2003.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of potassium channel blocker tetraethylammonium and 4-aminopyridine was examined on the elevated K+ concentration-induced microglial activation on rat hippocampal slice preparations. Microglial cells were detected by immunohistochemisty with a monoclonal antibody (OX 42) raised against a type 3 complement receptor. During activation the morphology of the microglial cells changes and the staining intensity increases. The degree of microglial activation was determined by measuring the integrated optical density of the cells. Tetraethylammonium and 4-aminopyridine failed to reduce the elevated K+ concentration-induced microglial activation. Both potassium channel blockers, when applied on the hippocampal slices without K+, caused significantly increased microglial activation as compared to the control slices. In order to check whether the functional alteration of the neuronal population induced by 4-aminopyridine caused the activation of the microglial cells, Schaffer collaterals were cut to block spreading of epileptiform hyperactivity of the CA3 pyramidal cells to the CA1 region. No significant differences were found in microglial activation between the CA3 and CA1 regions, indicating that the effect of 4-aminopyridine on microglial cells is independent of the epileptiform activity caused by the drug.
Collapse
Affiliation(s)
- Hajnalka Abraham
- Central Electron Microscopic Laboratory, Pécs University, Medical Faculty, Szigeti út 12, H-7643 Pécs, Hungary
| | | | | | | |
Collapse
|
7
|
Kun A, Martinez AC, Tankó LB, Pataricza J, Papp JG, Simonsen U. Ca2+-activated K+ channels in the endothelial cell layer involved in modulation of neurogenic contractions in rat penile arteries. Eur J Pharmacol 2003; 474:103-15. [PMID: 12909201 DOI: 10.1016/s0014-2999(03)02004-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The present study was designed to investigate the functional K+ channels involved in contractions induced by electrical field stimulation in isolated rat penile arteries. Blockers of Ca2+-activated K+ channels (KCa), tetraethylammonium, and of large-conductance KCa channels, charybdotoxin and iberiotoxin, as well as a blocker of voltage-dependent K+ channels (KV), 4-aminopyridine, increased resting tension in penile small arteries. In the presence of propranolol and NG-nitro-L-arginine (L-NOARG), electrical field stimulation evoked prazosin-sensitive contractions. In endothelium-intact preparations, these latter contractions were enhanced in the presence of tetraethylammonium and charybdotoxin. However, these blockers did not enhance contractions evoked by exogenously added noradrenaline. Endothelial cell removal increased the neurogenic contractions but tetraethylammonium had no further potentiating effect in these preparations. In the presence of an inhibitor of cyclooxygenase, indomethacin, and inhibitor of nitric oxide (NO) synthase, L-NOARG, acetylcholine evoked relaxations, which were abolished in the presence of either tetraethylammonium or charybdotoxin. In phenylephrine-contracted arteries treated with guanethidine and atropine, electrical field stimulation evoked relaxations, which were partially inhibited by L-NOARG and tetraethylammonium, without any additive effect of these drugs. These observations suggest that both large-conductance KCa channels and KV channels sensitive to iberiotoxin/tetraethylammonium and 4-aminopyridine, respectively, are directly involved in the modulation of myogenic tone of rat penile arteries. Furthermore, activation of endothelial intermediate-conductance KCa channels sensitive to tetraethylammonium and charybdotoxin leads to release of a non-NO nonprostanoid factor, which inhibits release of the neurotransmitter, noradrenaline, but these channels do not appear to be involved in inhibition of contraction evoked by exogenously applied noradrenaline in rat penile arteries.
Collapse
Affiliation(s)
- Attila Kun
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Tutka P, Młynarczyk M, Zółkowska D, Kleinrok Z, Wielosz M, Czuczwar SJ. Nitric oxide and convulsions in 4-aminopyridine-treated mice. Eur J Pharmacol 2002; 437:47-53. [PMID: 11864638 DOI: 10.1016/s0014-2999(01)01600-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We studied whether N(G)-nitro-L-arginine (NNA), an inhibitor of nitric oxide (NO) synthase as well as L-arginine and molsidomine, two agents elevating NO, influenced convulsions caused by 4-aminopyridine, a K+ channel blocker in mice. NNA, in a dose known to decrease level of NO (40 mg x kg(-1)), enhanced the seizure susceptibility to intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) 4-aminopyridine. L-arginine (500 mg x kg(-1)) and molsidomine (20 mg x kg(-1)) alone did not influence 4-aminopyridine-induced seizure activity. Surprisingly, the proconvulsant effect of NNA upon clonic and tonic seizures was potentiated by molsidomine (20 mg x kg(-1)). No influence of L-arginine on the proconvulsant effect of NNA was found. Taking into account the proconvulsant effect of NNA, an involvement of NO-mediated events in the mechanism of convulsive activity of 4-aminopyridine might be postulated. However, the ineffectiveness of L-arginine and molsidomine to suppress the convulsive activity of 4-aminopyridine as well as a paradoxical potentiation of the proconvulsant effect of NNA by molsidomine seem to exclude the impact of NO pathway on 4-aminopyridine-induced convulsions in mice. Our data suggest that the proconvulsant effect of NNA in this seizure model is caused by other, not related to NO, mechanisms.
Collapse
Affiliation(s)
- Piotr Tutka
- Department of Pharmacology and Toxicology, Medical University of Lublin, Jaczewskiego 8, PL-20-090, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
9
|
Experimental localization of Kv1 family voltage-gated K+ channel alpha and beta subunits in rat hippocampal formation. J Neurosci 2001. [PMID: 11487620 DOI: 10.1523/jneurosci.21-16-05973.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mammalian hippocampal formation, dendrotoxin-sensitive voltage-gated K(+) (Kv) channels modulate action potential propagation and neurotransmitter release. To explore the neuroanatomical basis for this modulation, we used in situ hybridization, coimmunoprecipitation, and immunohistochemistry to determine the subcellular localization of the Kv channel subunits Kv1.1, Kv1.2, Kv1.4, and Kvbeta2 within the adult rat hippocampus. Although mRNAs encoding all four of these Kv channel subunits are expressed in the cells of origin of each major hippocampal afferent and intrinsic pathway, immunohistochemical staining suggests that the encoded subunits are associated with the axons and terminal fields of these cells. Using an excitotoxin lesion strategy, we explored the subcellular localization of these subunits in detail. We found that ibotenic acid lesions of the entorhinal cortex eliminated Kv1.1 and Kv1.4 immunoreactivity and dramatically reduced Kv1.2 and Kvbeta2 immunoreactivity in the middle third of the dentate molecular layer, indicating that these subunits are located on axons and terminals of entorhinal afferents. Similarly, ibotenic acid lesions of the dentate gyrus eliminated Kv1.1 and Kv1.4 immunoreactivity in the stratum lucidum of CA3, indicating that these subunits are located on mossy fiber axons. Kainic acid lesions of CA3 dramatically reduced Kv1.1 immunoreactivity in the stratum radiatum of CA1-CA3, indicating that Kv1.1 immunoreactivity in these subfields is associated with the axons and terminals of the Schaffer collaterals. Together with the results of coimmunoprecipitation analyses, these data suggest that action potential propagation and glutamate release at excitatory hippocampal synapses are directly modulated by Kv1 channel complexes predominantly localized on axons and nerve terminals.
Collapse
|
10
|
Medina-Ceja L, Morales-Villagrán A, Tapia R. Action of 4-aminopyridine on extracellular amino acids in hippocampus and entorhinal cortex: a dual microdialysis and electroencehalographic study in awake rats. Brain Res Bull 2000; 53:255-62. [PMID: 11113578 DOI: 10.1016/s0361-9230(00)00336-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to study the role of amino acids in the hippocampus and the entorhinal cortex during the convulsive process induced by 4-aminopyridine (4-AP), we have used a device allowing the simultaneous microdialysis and the recording of their electrical activity of both regions in freely moving rats. We found that infusion of 4-AP into the entorhinal cortex resulted in a large increase in extracellular glutamate and glutamine and small increases in glycine and taurine levels. Likewise, infusion of 4-AP into the hippocampus resulted in a major increase in glutamate, as well as slight increases in taurine and glycine. In both infused regions the peak concentration of extracellular glutamate was observed 15 min after 4-AP administration. No significant changes were found in the non-infused hippocampus or entorhinal cortex of the same rats. Simultaneous electroencephalographic recordings showed intense epileptiform activity starting during 4-AP infusion and lasting for the rest of the experiment (1 h) in both the entorhinal cortex and the hippocampus. The discharges were characterized by poly-spikes and spike-wave complexes that propagated almost immediately to the other region studied. These findings suggest that increased glutamatergic synaptic function in the circuit that connects both regions is involved in the epileptic seizures induced by 4-AP.
Collapse
Affiliation(s)
- L Medina-Ceja
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jal, Mexico
| | | | | |
Collapse
|
11
|
Peña F, Tapia R. Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampus: a microdialysis and electroencephalographic study. J Neurochem 1999; 72:2006-14. [PMID: 10217278 DOI: 10.1046/j.1471-4159.1999.0722006.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
4-Aminopyridine is a powerful convulsant that induces the release of neurotransmitters, including glutamate. We report the effect of intrahippocampal administration of 4-aminopyridine at six different concentrations through microdialysis probes on EEG activity and on concentrations of extracellular amino acids and correlate this effect with histological changes in the hippocampus. 4-Aminopyridine induced in a concentration-dependent manner intense and frequent epileptic discharges in both the hippocampus and the cerebral cortex. The three highest concentrations used induced also a dose-dependent enhancement of extracellular glutamate, aspartate, and GABA levels and profound hippocampal damage. Neurodegenerative changes occurred in CA1, CA3, and CA4 subfields, whereas CA2 was spared. In contrast, microdialysis administration of a depolarizing K+ concentration and of tetraethylammonium resulted in increased amino acid levels but no epileptic activity and no or moderate neuronal damage. These results suggest that seizure activity induced by 4-aminopyridine is due to a combined action of excitatory amino acid release and direct stimulation of neuronal firing, whereas neuronal death is related to the increased glutamate release but is independent of seizure activity. In addition, it is concluded that the glutamate release-inducing effect of 4-aminopyridine results in excitotoxicity because it occurs at the level of nerve endings, thus permitting the interaction of glutamate with its postsynaptic receptors, which is probably not the case after K+ depolarization.
Collapse
Affiliation(s)
- F Peña
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF
| | | |
Collapse
|
12
|
Dorandeu F, Wetherell J, Pernot-Marino I, Tattersall JE, Fosbraey P, Lallement G. Effects of excitatory amino acid antagonists on dendrotoxin-induced increases in neurotransmitter release and epileptiform bursting in rat hippocampus in vitro. J Neurosci Res 1997; 48:499-506. [PMID: 9210519 DOI: 10.1002/(sici)1097-4547(19970615)48:6<499::aid-jnr2>3.0.co;2-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alpha-dendrotoxin (alpha-DTx), a snake venom toxin which blocks several types of fast-activating voltage-dependent potassium channels, induces limbic seizures and neuronal damage when injected into the brain. The mechanisms underlying these convulsant and neuropathological actions are not fully understood. We have studied the effects of alpha-DTx on neurotransmitter release and electrical activity in rat hippocampal brain slices and the role of excitatory amino acid receptors in mediating these actions of the toxin. alpha-DTx increased the basal release of acetylcholine, glutamate, aspartate, and GABA in a concentration-dependent manner and induced epileptiform bursting in the CA1 and CA3 regions of the slice. The increase in neurotransmitter release was evident during the first 4 min after toxin addition, whereas the bursting appeared after a concentration-dependent delay (20-40 min with 250 nM toxin). The N-methyl-D-aspartate (NMDA) receptor antagonists AP5 and MK-801 had no effect on the frequency or amplitude of dendrotoxin-induced epileptiform bursts, but the non-NMDA antagonists CNQX and DNQX abolished bursting in both CA1 and CA3 within 4-6 min. In contrast, the toxin-induced increases in neurotransmitter release were not blocked by DNQX. This study has demonstrated that, following exposure to alpha-DTx, there is a rapid increase in the release of neurotransmitters which precedes the onset of epileptiform bursting in the hippocampus. Since DNQX abolished the bursting but had no effect on the increase in neurotransmitter release, these results suggest that DNQX blocks alpha-DTx-induced epileptiform activity by antagonism of postsynaptic non-NMDA receptors.
Collapse
Affiliation(s)
- F Dorandeu
- Department of Pharmacology, Centre de Recherches du Service de Sante des Armees, La Tronche, France
| | | | | | | | | | | |
Collapse
|
13
|
Morales-Villagrán A, Ureña-Guerrero ME, Tapia R. Protection by NMDA receptor antagonists against seizures induced by intracerebral administration of 4-aminopyridine. Eur J Pharmacol 1996; 305:87-93. [PMID: 8813536 DOI: 10.1016/0014-2999(96)00157-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of NMDA receptor antagonists on the convulsant action of the administration of 4-aminopyridine in the rat lateral cerebral ventricle (i.c.v. injection) and motor cerebral cortex (i.cx. injection) were studied. 4-Aminopyridine administration in both regions induced various preconvulsive symptoms, such as salivation, tremors, chewing and rearing, followed by continuous clonic convulsions and, only after i.c.v. injection, running fits and generalized tonic convulsions. This behavioral pattern appeared 5-9 min after administration of 4-aminopyridine and persisted for 100-150 min. 4-Aminopyridine also generated epileptiform electroencephalographic (EEG) discharges characterized by isolated spikes, poly-spikes and spike-wave complexes, which began some seconds after administration of the drug and were present for more than 2 h. The NMDA receptor antagonists (+/-)-3-(2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP), (+/-)-2-amino-7-phosphono-heptanoic acid (AP7) and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) clearly protected against some of the behavioral alterations induced by i.c.v. 4-aminopyridine, particularly the tonic convulsions, but were less effective against those produced by i.cx. 4-aminopyridine. These antagonists also delayed the appearance of EEG epileptiform discharges, reduced its amplitude, frequency and duration, and blocked their propagation to other cortical regions after i.cx. 4-aminopyridine. These results, together with previous data showing that 4-aminopyridine stimulates the release of glutamate in vivo, suggest that an excessive glutamatergic neurotransmission involving NMDA receptors is implicated in 4-amino-pyridine-induced seizures.
Collapse
Affiliation(s)
- A Morales-Villagrán
- División de Ciencias Biológicas, C.U.C.B.A., Universidad de Guadalajara, Jal., Mexico
| | | | | |
Collapse
|
14
|
Abstract
Subfamilies of voltage-activated K+ channels (Kv1-4) contribute to controlling neuron excitability and the underlying functional parameters. Genes encoding the multiple alpha subunits from each of these protein groups have been cloned, expressed and the resultant distinct K+ currents characterized. The predicted amino acid sequences showed that each alpha subunit contains six putative membrane-spanning alpha-helical segments (S1-6), with one (S4) being deemed responsible for the channels' voltage sensing. Additionally, there is an H5 region, of incompletely defined structure, that traverses the membrane and forms the ion pore; residues therein responsible for K+ selectively have been identified. Susceptibility of certain K+ currents produced by the Shaker-related subfamily (Kv1) to inhibition by alpha-dendrotoxin has allowed purification of authentic K+ channels from mammalian brain. These are large (M(r) approximately 400 kD), octomeric sialoglycoproteins composed of alpha and beta subunits in a stoichiometry of (alpha)4(beta)4, with subtypes being created by combinations of subunit isoforms. Subsequent cloning of the genes for beta 1, beta 2 and beta 3 subunits revealed novel sequences for these hydrophilic proteins that are postulated to be associated with the alpha subunits on the inner side of the membrane. Coexpression of beta 1 and Kv1.4 subunits demonstrated that this auxiliary beta protein accelerates the inactivation of the K+ current, a striking effect mediate by an N-terminal moiety. Models are presented that indicate the functional domains pinpointed in the channel proteins.
Collapse
Affiliation(s)
- J O Dolly
- Department of Biochemistry, Imperial College, London, United Kingdom
| | | |
Collapse
|
15
|
Morales-Villagrán A, Tapia R. Preferential stimulation of glutamate release by 4-aminopyridine in rat striatum in vivo. Neurochem Int 1996; 28:35-40. [PMID: 8746762 DOI: 10.1016/0197-0186(95)00064-f] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The potassium channel blocker 4-aminopyridine (4-AP) is a potent convulsant drug which, in vitro, stimulates the release of neurotransmitter amino acids. We have studied the effect of 4-AP in vivo on the extracellular concentration of amino acids in rat striatum, by means of microdialysis and HPLC. Perfusion with 4-AP in the awake animal produced intense motor alterations, including barrel turning and running fits. Therefore, most microdialysis experiments were carried out in anesthetized rats. Perfusion with 20-75 mM 4-AP for 12.5 min resulted in a massive increase in extracellular glutamate (up to 20-fold), smaller increases in aspartate and taurine (up to 10-fold) and slight increments in glutamine, alanine, glycine and GABA. In contrast, perfusion with 100 mM K+ produced, mainly, an increment in taurine (7-fold) and modest increases in glutamate and aspartate (100-300%), as well as a notable decrease in glutamine. Tetraethylammonium (TEA, 120 mM) perfusion induced taurine and glutamate elevations similar to those after high K+, but glutamine was not affected. In unanesthetized rats, perfusion with 40 mM 4-AP induced changes in extracellular amino acids similar to those observed under anesthesia. In these animals neither high K+ nor TEA affected significantly the motor behavior. The results suggest that an enhancement of glutamatergic synaptic transmission, rather than a general depolarizing action, is an important factor in the neuronal hyperexcitability induced by 4-AP, which is consistent with the previously demonstrated inhibition of its convulsant effect by glutamate receptor antagonists.
Collapse
Affiliation(s)
- A Morales-Villagrán
- División de Ciencias Biológicas, C.U.C.B.A., Universidad de Guadalajara, México
| | | |
Collapse
|
16
|
Dawson LA, Routledge C. Differential effects of potassium channel blockers on extracellular concentrations of dopamine and 5-HT in the striatum of conscious rats. Br J Pharmacol 1995; 116:3260-4. [PMID: 8719805 PMCID: PMC1909189 DOI: 10.1111/j.1476-5381.1995.tb15133.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. The selective Ca(2+)-activated K+ channel blocker apamin increased extracellular 5-hydroxytryptamine (5-HT) concentrations in the striatum when administered through the microdialysis probe at doses of 0.1 mM and 1 mM. Extracellular dopamine concentrations increased only at the highest dose administered (1 mM). 2. Mast cell degranulating peptide (MCDP), which blocks the dendrotoxin sensitive delayed rectifier (DR) current, increased extracellular concentrations of dopamine at dose of 10 microM-100 microM but had no effect on 5-HT. 3. The non selective K+ channel blocker tetraethylammonium (TEA) induced a dose-dependent (1 mM-10 mM) increase in extracellular dopamine concentrations and an increase in 5-HT which showed little or no dose-dependency. 4. 4-Aminopyridine (4-AP), a blocker with some similar characteristics to MCDP, increased extracellular dopamine concentrations at doses of 10 microM-1 mM, but had no effect on 5-HT. 5. These findings suggest that dopamine release may be modulated by DR-like current and/or A-current K+ channels. However, in view of the similar effects of MCDP and 4-AP at the concentrations used it is more likely that the dendrotoxin-sensitive DR-like current is involved. In contrast, 5-HT release appears to be modulated by Ca(2+)-activated K+ channels.
Collapse
Affiliation(s)
- L A Dawson
- Department of Neurophamacology, Wyeth Research (UK), Taplow, Maidenhead, Berkshire
| | | |
Collapse
|
17
|
Hall A, Stow J, Sorensen R, Dolly JO, Owen D. Blockade by dendrotoxin homologues of voltage-dependent K+ currents in cultured sensory neurones from neonatal rats. Br J Pharmacol 1994; 113:959-67. [PMID: 7858892 PMCID: PMC1510426 DOI: 10.1111/j.1476-5381.1994.tb17086.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Homologues of dendrotoxin (Dtx) were isolated from the crude venom of Green and Black Mamba snakes and examined for K+ channel blocking activity in neonatal rat dorsal root ganglion cells (DRGs) by whole-cell patch clamp recording. 2. Outward potassium current activated by depolarization was composed of two major components: a slowly inactivating current (SIC, tau decay approximately 50 ms, 200 ms and 2s), and a non-inactivating current (NIC, tau decay > 2 min). Tail current analysis revealed two time constants of deactivation of total outward current, 3-12 ms and 50-150 ms (at -80 mV) which corresponded to SIC and NIC, respectively. 3. All the homologues (alpha-, beta-, gamma- and delta-Dtx and toxins I and K) blocked outward current activated by depolarization in a dose-dependent manner. The most potent in blocking total outward current was delta-Dtx (EC50 of 0.5 +/- 0.2 nM), although there were no statistically significant differences in potency between any of the homologues. 4. Qualitative differences in the nature of the block were noted between homologues. In particular, the block by delta-Dtx was time-dependent, whereas that by alpha-Dtx was not. 5. alpha-Dtx was a much better blocker of SIC (EC50 = 1.0 +/- 0.4 nM) than was delta-Dtx (EC50 = 17.6 +/- 5.8 nM). Furthermore, delta-Dtx was selective for NIC (EC50 +/- 0.24 +/- 0.03 nM) over SIC and reduced the slow component of tail currents (NIC), preferentially. On the other hand, a-Dtx did not significantly distinguish between SIC and NIC although tail current analysis showed that a-Dtxpreferentially reduced the fast component of tail currents (SIC).6. The results confirm, using direct electrophysiological methods, that homologues of dendrotoxins from Mamba snake venom block K+ channels in rat sensory neurones. Furthermore, a-Dtx and 6-Dtx distinguish between sub-types of K+ channels in these cells and may thus be useful pharmacological tools in other neuronal K+ channel studies.
Collapse
Affiliation(s)
- A Hall
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London
| | | | | | | | | |
Collapse
|
18
|
Hu PS. On the usefulness of Fura-2 measurements of intrasynaptosomal calcium levels in rat cortical synaptosomes to study mechanisms of presynaptic function. ACTA PHYSIOLOGICA SCANDINAVICA 1993; 148:115-23. [PMID: 7688928 DOI: 10.1111/j.1748-1716.1993.tb09540.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Levels of [Ca2+]i in rat cortex synaptosomes were measured using the Ca2+ indicator Fura-2. Ca2+ influx was induced by veratridine in a concentration-dependent manner (1-10 microM). The resulting increase in [Ca2+]i was inhibited by tetrodotoxin (TTX). K+ (18 mM) increased the [Ca2+]i which was not influenced by TTX. K(+)-channel blockers such as 4-aminopyridine, alpha- and delta-dendrotoxin pre se were ineffective. The veratridine-induced Ca2+ influx in synaptosomes was reduced by L-type Ca(2+)-channel blockers, such as felodipine, nifedipine and PN-200-110, verapamil and diltiazem. omega-Conotoxin, and N-type Ca(2+)-channel blocker, did not inhibit the veratridine-stimulated [Ca2+]i increase. Bay K 8644, and L-channel agonist, stimulated an increase of [Ca2+]i in synaptosomes which was not sensitive to TTX. R-N6-Phenyl-isopropyl-adenosine (R-PIA) and clonidine, agonists at adenosine A1-receptors and alpha 2-adrenoceptors, respectively, did not influence the veratridine-stimulated [Ca2+]i increase. R-PIA did not interact with Bay K 8644-stimulated [Ca2+]i increase in synaptosomes. The results for all the substances used show major differences between the effects on Ca2+ influx in synaptosomes and on the electrically evoked neurotransmitter release in slice preparations. Thus, the synaptosome preparation is not a generally applicable experimental model for the study of Ca2+ mechanisms of presynaptic neuromodulation.
Collapse
Affiliation(s)
- P S Hu
- Department of Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
Zoltay G, Cooper JR. Dendrotoxin blocks a class of potassium channels that are opened by inhibitory presynaptic modulators in rat cortical synaptosomes and slices. Cell Mol Neurobiol 1993; 13:59-68. [PMID: 8458063 DOI: 10.1007/bf00712989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Rat cortical synaptosomes were prelabeled with radioactive acetylcholine and the release induced by veratridine was determined in the absence and presence of the inhibitory presynaptic modulators, 2-chloroadenosine, carbamylcholine, clonidine, and morphine. All four agents inhibited the evoked release of acetylcholine and this inhibition was reversed by dendrotoxin. 2. Using perfused cortical slices and an extracellular K-sensitive electrode, all modulators again increased K efflux that was blocked by dendrotoxin. In contrast, glybenclamide and tetraethylammonium did not block the modulator-induced efflux.
Collapse
Affiliation(s)
- G Zoltay
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|