1
|
Caroleo MC, Brizzi A, De Rosa M, Pandey A, Gallelli L, Badolato M, Carullo G, Cione E. Targeting Neuropathic Pain: Pathobiology, Current Treatment and Peptidomimetics as a New Therapeutic Opportunity. Curr Med Chem 2019; 27:1469-1500. [PMID: 31142248 DOI: 10.2174/0929867326666190530121133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a huge need for pharmaceutical agents for the treatment of chronic Neuropathic Pain (NP), a complex condition where patients can suffer from either hyperalgesia or allodynia originating from central or peripheral nerve injuries. To date, the therapeutic guidelines include the use of tricyclic antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants, beside the use of natural compounds and non-pharmacological options. Unfortunately, these drugs suffer from limited efficacy and serious dose-dependent adverse effects. In the last decades, the heptapeptide SP1-7, the major bioactive metabolite produced by Substance P (SP) cleavage, has been extensively investigated as a potential target for the development of novel peptidomimetic molecules to treat NP. Although the physiological effects of this SP fragment have been studied in detail, the mechanism behind its action is not fully clarified and the target for SP1-7 has not been identified yet. Nevertheless, specific binding sites for the heptapeptide have been found in brain and spinal cord of both mouse and rats. Several Structure-Affinity Relationship (SAR) studies on SP1-7 and some of its synthetic analogues have been carried out aiming to developing more metabolically stable and effective small molecule SP1-7-related amides that could be used as research tools for a better understanding of the SP1-7 system and, in a longer perspective, as potential therapeutic agents for future treatment of NP.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Polo Scientifico San Miniato, Via A. Moro 2, 53100 Siena, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Ankur Pandey
- Department of Chemistry and Center of Advanced Studies in Chemistry, Punjab University, Chandigarh, India
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Mariateresa Badolato
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Gabriele Carullo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| |
Collapse
|
2
|
Jonsson A, Fransson R, Haramaki Y, Skogh A, Brolin E, Watanabe H, Nordvall G, Hallberg M, Sandström A, Nyberg F. Small constrained SP1-7 analogs bind to a unique site and promote anti-allodynic effects following systemic injection in mice. Neuroscience 2015; 298:112-9. [PMID: 25862586 DOI: 10.1016/j.neuroscience.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
Previous results have shown that the substance P (SP) N-terminal fragment SP1-7 may attenuate hyperalgesia and produce anti-allodynia in animals using various experimental models for neuropathic pain. The heptapeptide was found to induce its effects through binding to and activating specific sites apart from any known neurokinin or opioid receptor. Furthermore, we have applied a medicinal chemistry program to develop lead compounds mimicking the effect of SP1-7. The present study was designed to evaluate the pharmacological effect of these compounds using the mouse spared nerve injury (SNI) model of chronic neuropathic pain. Also, as no comprehensive screen with the aim to identify the SP1-7 target has yet been performed we screened our lead compound H-Phe-Phe-NH2 toward a panel of drug targets. The extensive target screen, including 111 targets, did not reveal any hit for the binding site among a number of known receptors or enzymes involved in pain modulation. Our animal studies confirmed that SP1-7, but also synthetic analogs thereof, possesses anti-allodynic effects in the mouse SNI model of neuropathic pain. One of the lead compounds, a constrained H-Phe-Phe-NH2 analog, was shown to exhibit a significant anti-allodynic effect.
Collapse
Affiliation(s)
- A Jonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - R Fransson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| | - Y Haramaki
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - A Skogh
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| | - E Brolin
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - H Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - G Nordvall
- AstraZeneca, CNSP iMed Södertälje, Research & Development Innovative Medicines, SE-151 85 Södertälje, Sweden.
| | - M Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - A Sandström
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| | - F Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
3
|
Fransson R, Nordvall G, Bylund J, Carlsson-Jonsson A, Kratz JM, Svensson R, Artursson P, Hallberg M, Sandström A. Exploration and pharmacokinetic profiling of phenylalanine based carbamates as novel substance p 1-7 analogues. ACS Med Chem Lett 2014; 5:1272-7. [PMID: 25516784 DOI: 10.1021/ml5002954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
The bioactive metabolite of Substance P, the heptapeptide SP1-7 (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), has been shown to attenuate signs of hyperalgesia in diabetic mice, which indicate a possible use of compounds targeting the SP1-7 binding site as analgesics for neuropathic pain. Aiming at the development of drug-like SP1-7 peptidomimetics we have previously reported on the discovery of H-Phe-Phe-NH2 as a high affinity lead compound. Unfortunately, the pharmacophore of this compound was accompanied by a poor pharmacokinetic (PK) profile. Herein, further lead optimization of H-Phe-Phe-NH2 by substituting the N-terminal phenylalanine for a benzylcarbamate group giving a new type of SP1-7 analogues with good binding affinities is reported. Extensive in vitro as well as in vivo PK characterization is presented for this compound. Evaluation of different C-terminal functional groups, i.e., hydroxamic acid, acyl sulfonamide, acyl cyanamide, acyl hydrazine, and oxadiazole, suggested hydroxamic acid as a bioisosteric replacement for the original primary amide.
Collapse
Affiliation(s)
- Rebecca Fransson
- Department
of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Gunnar Nordvall
- CNSP iMed Södertälje, AstraZeneca Research & Development, Innovative Medicines, SE-151 85 Södertälje, Sweden
| | - Johan Bylund
- CNSP iMed Södertälje, AstraZeneca Research & Development, Innovative Medicines, SE-151 85 Södertälje, Sweden
- Department
of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Anna Carlsson-Jonsson
- Department
of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Jadel M. Kratz
- Department
of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Richard Svensson
- Department
of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
- The
Uppsala University Drug Optimization and Pharmaceutical Profiling
Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751
23 Uppsala, Sweden
| | - Per Artursson
- Department
of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
- The
Uppsala University Drug Optimization and Pharmaceutical Profiling
Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751
23 Uppsala, Sweden
| | - Mathias Hallberg
- Department
of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Anja Sandström
- Department
of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Mitchell AJ, Lone AM, Tinoco AD, Saghatelian A. Proteolysis controls endogenous substance P levels. PLoS One 2013; 8:e68638. [PMID: 23894327 PMCID: PMC3716696 DOI: 10.1371/journal.pone.0068638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/05/2013] [Indexed: 01/28/2023] Open
Abstract
Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP 1–9-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels.
Collapse
Affiliation(s)
- Andrew J. Mitchell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Anna Mari Lone
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
- * E-mail: (ADT); (AS)
| | - Alan Saghatelian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (ADT); (AS)
| |
Collapse
|
5
|
Fransson R, Sköld C, Kratz JM, Svensson R, Artursson P, Nyberg F, Hallberg M, Sandström A. Constrained H-Phe-Phe-NH2 Analogues with High Affinity to the Substance P 1–7 Binding Site and with Improved Metabolic Stability and Cell Permeability. J Med Chem 2013; 56:4953-65. [DOI: 10.1021/jm400209h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Christian Sköld
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Jadel M. Kratz
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Programa de Pós-Graduação
em Farmácia, Centro de Ciências da Saúde, Departamento
de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, 88.040-900, Florianópolis,
SC, Brazil
| | - Richard Svensson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala
University Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical
Biology Consortium Sweden (CBCS), Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala
University Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical
Biology Consortium Sweden (CBCS), Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
6
|
Fransson R, Botros M, Sköld C, Nyberg F, Lindeberg G, Hallberg M, Sandström A. Discovery of dipeptides with high affinity to the specific binding site for substance P1-7. J Med Chem 2010; 53:2383-9. [PMID: 20178322 DOI: 10.1021/jm901352b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substance P 1-7 (SP(1-7), H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) is the major bioactive metabolite of substance P. The interest in this heptapeptide originates from the observation that it modulates, and in certain cases opposes the effects of the parent peptide, e.g., the nociceptive effect. The mu-opioid receptor agonist endomorphin-2 (EM-2, H-Tyr-Pro-Phe-Phe-NH(2)) has been found to also interact with the specific binding site of SP(1-7) with only a 10-fold lower affinity compared to the native peptide. Considering the smaller size of EM-2 compared to the target heptapeptide, it was selected as a lead compound in the development of low-molecular-weight ligands to the SP(1-7) binding site. An alanine scan and truncation study led to the unexpected discovery of the dipeptide H-Phe-Phe-NH(2) (K(i) = 1.5 nM), having equal affinity as the endogenous heptapeptide SP(1-7.) Moreover, the studies show that the C-terminal phenylalanine amide is crucial for the affinity of the dipeptide.
Collapse
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
7
|
Fransson R, Botros M, Nyberg F, Lindeberg G, Sandström A, Hallberg M. Small peptides mimicking substance P (1-7) and encompassing a C-terminal amide functionality. Neuropeptides 2008; 42:31-7. [PMID: 18093649 DOI: 10.1016/j.npep.2007.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 10/22/2007] [Accepted: 11/09/2007] [Indexed: 11/28/2022]
Abstract
Some of the biological effects demonstrated after administration of substance P (SP) in vivo can indirectly be attributed to the fragmentation of the undecapeptide to its N-terminal bioactive fragment SP(1-7). This heptapeptide (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) is a major bioactive metabolite from SP that frequently exerts similar biological effects as the parent peptide but also, in several cases, completely opposite actions. Specific binding sites for the heptapeptide SP(1-7) that are separate from the SP preferred NK receptors have been identified. In this study we demonstrate that (a) the C-terminal part of the SP metabolite SP(1-7) is most important for binding as deduced from an Ala scan and that a replacement of Phe(7) for Ala is deleterious, (b) truncation of the N-terminal amino acid residues of SP(1-7) delivers peptides with retained binding activity, although with somewhat lower binding affinities than SP(1-7) and (c) a C-terminal amide group as a replacement for the terminal carboxy group of SP(1-7) and for all of the truncated ligands synthesized affords approximately 5-10-fold improvements of the binding affinities.
Collapse
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Karlsson K, Sharma H, Nyberg F. Chromatographic characterization of substance P endopeptidase in the rat brain reveals affected enzyme activity following heat stress. Biomed Chromatogr 2006; 20:77-82. [PMID: 15954166 DOI: 10.1002/bmc.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper describes a study of substance P endopeptidase (SPE)-like activity in various regions of the brain from male rats subjected to heat stress (HS). The enzyme activity was found to be affected in several brain areas including cerebellum, cerebral cortex, hippocampus, hypothalamus[sol ]thalamus and the spinal cord following HS. Significant increases in SPE activity were observed in, for example, hippocampus and the spinal cord. SPE-containing extracts from hippocampus were pooled and subsequently purified by size exclusion chromatography (using a Superdex 75 HR column) and by anion-exchange chromatography (using Resource Q column). The gel permeation chromatography separated the SPE-like activity into two fractions, one of which was suggested to be identical to neutral endopeptidase owing to its molecular size and inhibitory profile. The other active enzyme fraction behaved in conformity with SPE, previously identified in human cerebrospinal fluid. The activity of the purified fraction of these two enzymes was found to be increased (27%) in HS-treated animals.
Collapse
Affiliation(s)
- Krister Karlsson
- Uppsala University, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Bioscience, Faculty of Pharmacy, Uppsala University, PO Box 591, S-751 24, Uppsala, Sweden.
| | | | | |
Collapse
|
9
|
Magnusson K, Hallberg M, Högberg AMSK, Nyberg F. Administration of the anabolic androgenic steroid nandrolone decanoate affects substance P endopeptidase-like activity in the rat brain. Peptides 2006; 27:114-21. [PMID: 16099548 DOI: 10.1016/j.peptides.2005.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/17/2005] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
The effect of the anabolic androgenic steroid, nandrolone decanoate, on substance P endopeptidase-like activity was examined in adult male Sprague-Dawley rats. Nandrolone decanoate (15 mg/kg day) or oil vehicle (sterile arachidis oleum) were administered by intramuscular injections during 14 days. Substance P endopeptidase, a predominantly cytosolic enzyme, generates the bioactive N-terminal fragment substance P(1-7) from the enzyme substrate substance P. Nandrolone decanoate significantly reduced the substance P endopeptidase-like activity compared to control animals in hypothalamus (43% reduction), caudate putamen (44%), substantia nigra (32%) and the ventral tegmental area (27%). It was previously reported that both hypothalamus and caudate putamen contained significantly higher levels of substance P after nandrolone administration. The higher concentration of substance P in these regions could to an extent be attributed to the reduction in substance P endopeptidase-like activity. This result elucidates the important role of peptidase activity in the regulation of the substance P transmitter system. The present study provides additional support for the hypothesis that alterations in the substance P system in certain brain areas may contribute to some of the personality changes reported in connection with AAS abuse.
Collapse
Affiliation(s)
- Kristina Magnusson
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Box 591, 751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
10
|
|
11
|
Zhou Q, Kindlundh AMS, Hallberg M, Nyberg F. The substance P (SP) heptapeptide fragment SP1-7 alters the density of dopamine receptors in rat brain mesocorticolimbic structures during morphine withdrawal. Peptides 2004; 25:1951-7. [PMID: 15501527 DOI: 10.1016/j.peptides.2004.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The aminoterminal fragment of substance P (SP), SP(1-7), has been suggested to modulate the expression of opiate tolerance and withdrawal behaviors in rodents. However, the mechanism of this effect is not yet clarified. Using a rat model we have previously demonstrated that SP(1-7) affects dopamine transmission and the expression of the dopamine D2-receptor gene transcript in the nucleus accumbens during naloxone precipitated morphine withdrawal. In the present study, we have applied autoradiography to investigate the effect of the heptapeptide on the binding of dopamine D1- and D2-receptors in mesocorticolimbic brain areas of male rats during morphine withdrawal. Morphine dependent animals were treated with an injection of SP(1-7) into the ventral tegmental area prior to naloxone challenge. The result indicated that the SP fragment elicited a significant decrease in specific binding to D1-like receptors in the caudate putamen, nucleus accumbens shell, nucleus accumbens core, substantia nigra and medial globus pallidus. Radioligand binding to dopamine D2-like receptors was also altered by SP(1-7). The heptapeptide induced a decreased density of these sites in the ventral tegmental area but an increased binding in the substantia nigra and the frontal cortex. The observed alterations in the D1- and D2-like receptor density could reflect activations in dopamine pathways associated with the above-mentioned brain regions. The result provides further evidence for the modulatory effect of SP(1-7) on dopamine systems during opioid withdrawal, suggesting the possible role for the heptapeptide to regulate morphine withdrawal reactions.
Collapse
Affiliation(s)
- Qin Zhou
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, S-75124 Uppsala, Sweden
| | | | | | | |
Collapse
|
12
|
Zhou Q, Frändberg PA, Kindlundh AMS, Le Grevès P, Nyberg F. Substance P(1-7) affects the expression of dopamine D2 receptor mRNA in male rat brain during morphine withdrawal. Peptides 2003; 24:147-53. [PMID: 12576096 DOI: 10.1016/s0196-9781(02)00287-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have confirmed an important role of the undecapeptide substance P (SP) in opioid reward and dependence. It is further shown that the SP N-terminal metabolite SP(1-7) may attenuate the intensity of opioid withdrawal in mice. In this study we have investigated the effect of the heptapeptide fragment on the expression of the brain dopamine D2 receptor mRNA and on the withdrawal reaction, as well, in morphine-dependent rats. Male Sprague-Dawley rats were randomly distributed into two groups. Guide cannula was implanted and aimed at the lateral ventricle and animals were subsequently made opioid dependent by two daily injections of morphine (10 mg/kg) for 7 days. Half an hour before naloxone challenge (2 mg/kg) one group of rats received an injection of SP(1-7) (28 nmol per rat) and the other, serving as control, was injected with saline through the cannula. Animals were decapitated 4 h following SP(1-7) or saline injections. The results indicated that the level of the dopamine D2 receptor transcript was significantly reduced by SP(1-7) in nucleus accumbens and frontal cortex but not altered in the striatum. In behavioral tests it was found that the heptapeptide attenuated several somatic withdrawal symptoms. The observed reduction in the receptor transcript in nucleus accumbens and frontal cortex is suggested to reflect an increased dopamine activity in these areas, which in turn may counteract the withdrawal reaction.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, PO Box 591, S-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
13
|
Trang T, Sutak M, Quirion R, Jhamandas K. The role of spinal neuropeptides and prostaglandins in opioid physical dependence. Br J Pharmacol 2002; 136:37-48. [PMID: 11976266 PMCID: PMC1762111 DOI: 10.1038/sj.bjp.0704681] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study examined the role of spinal calcitonin gene-related peptide (CGRP), substance P, and prostaglandins in the development and expression of opioid physical dependence. Administration of escalating doses (5 - 100 mg kg-1, i.p.) of morphine for 7 days markedly elevated CGRP and substance P- immunoreactivity in the dorsal horn of the rat spinal cord. Naloxone (2 mg kg-1, i.p.) challenge decreased both CGRP and substance P immunoreactivity and precipitated a robust withdrawal syndrome. Acute intrathecal pre-treatment with a CGRP receptor antagonist, CGRP(8 - 37) (4, 8 microg), a substance P receptor antagonist, SR 140333 (1.4, 2.8 microg), a cyclo-oxygenase (COX) inhibitor, ketorolac (30, 45 microg), and COX-2 selective inhibitors, DuP 697 (10, 30 microg) and nimesulide (30 microg), 30 min before naloxone challenge, partially attenuated the symptoms of morphine withdrawal. CGRP(8 - 37) (8 microg), but no other agents, inhibited the decrease in CGRP immunoreactivity. Chronic intrathecal treatment with CGRP(8 - 37) (4, 8 microg), SR 140333 (1.4 microg), ketorolac (15, 30 microg), DuP 697 (10, 30micro g), and nimesulide (30 microg), delivered with daily morphine injection significantly attenuated both the symptoms of withdrawal and the decrease in CGRP but not substance P immunoreactivity. The results of this study suggest that activation of CGRP and substance P receptors, at the spinal level, contributes to the induction and expression of opioid physical dependence and that this activity may be partially expressed through the intermediary actions of prostaglandins.
Collapse
Affiliation(s)
- Tuan Trang
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Maaja Sutak
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Remi Quirion
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montreal, Quebec, Canada, H9H 1R3
| | - Khem Jhamandas
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
- Author for correspondence:
| |
Collapse
|
14
|
Zhou Q, Karlsson K, Liu Z, Johansson P, Le Grevés M, Kiuru A, Nyberg F. Substance P endopeptidase-like activity is altered in various regions of the rat central nervous system during morphine tolerance and withdrawal. Neuropharmacology 2001; 41:246-53. [PMID: 11489461 DOI: 10.1016/s0028-3908(01)00055-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study the level of a substance P endopeptidase (SPE)-like activity was measured in different regions of the rat central nervous system (CNS) after chronic administration of morphine. Male rats (200-220 g) were randomly divided into four groups. Two groups were injected (s.c.) with morphine (10 mg/kg) twice daily, whereas the other two received saline under identical conditions. After 8 days, when animals were completely tolerant to morphine, one of the morphine-treated groups and one group of saline-injected rats were given naloxone (s.c. 2 mg/kg). Withdrawal signs were observed and recorded. The enzyme activity was measured in extracts of the various CNS tissues by following the conversion of synthetic substance P (SP) to its N-terminal fragment SP(1-7) using a radioimmunoassay detecting this product. In discrete CNS areas including periaqueductal grey, spinal cord, substantia nigra and ventral tegmental area (VTA) a significant increase in enzyme activity was observed in the withdrawal group, while tolerant rats exhibited decreased SPE-like activity in the striatum (see Table 1). The enhanced enzyme activity during withdrawal is in agreement with our previous observation that the levels of SP(1-7) in rat brain are affected following naloxone precipitated withdrawal. In some tissues, including VTA, a correlation between the SPE-like activity and the intensity of the opioid abstinence was observed. Our result suggests that the elevated SPE-like activity is responsible for enhanced release of SP(1-7) in rats during morphine withdrawal, affirming a modulatory or regulative role of this enzyme in this state of opioid dependence.
Collapse
Affiliation(s)
- Q Zhou
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. Box 591, S-751 24, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Powell KJ, Ma W, Sutak M, Doods H, Quirion R, Jhamandas K. Blockade and reversal of spinal morphine tolerance by peptide and non-peptide calcitonin gene-related peptide receptor antagonists. Br J Pharmacol 2000; 131:875-84. [PMID: 11053206 PMCID: PMC1572412 DOI: 10.1038/sj.bjp.0703655] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2000] [Revised: 08/09/2000] [Accepted: 08/10/2000] [Indexed: 11/09/2022] Open
Abstract
This study examined the effects of the peptide CGRP receptor antagonist CGRP(8-37) and the newly-developed non-peptide CGRP receptor antagonist BIBN4096BS for their potential to both inhibit the development and reverse tolerance to the antinociceptive action of morphine. Repeated administration of intrathecal morphine (15 microg), once daily, produced a progressive decline of antinociceptive effect and an increase in the ED(50) value in the tailflick and paw pressure tests. Co-administration of CGRP(8-37) (4 microg) or BIBN4096BS (0.05, 0.1 microg) with morphine (15 microg) prevented the decline of antinociceptive effect and increase in ED(50) value in the tailflick test. Intrathecal administration of the CGRP receptor antagonists did not alter the baseline responses in either tests. Acute CGRP(8-37) also did not potentiate the acute actions of spinal morphine. In animals rendered tolerant to intrathecal morphine, subsequent administration of CGRP(8-37) (4 microg) with morphine (15 microg) partially restored the antinociceptive effect and ED(50) value of acute morphine, reflecting the reversal of tolerance. Animals tolerant to intrathecal morphine expressed increased CGRP and substance P-like immunostaining in the dorsal horn of the spinal cord. The increase in CGRP, but not substance P-like immunostaining, was blocked by a co-treatment with CGRP(8-37) (4 microg). In animals already tolerant to morphine, the increase in CGRP but not substance P-like immunostaining was partially reversed by CGRP(8-37) (4 microg). These data suggest that activation of spinal CGRP receptors contributes to both the development and expression of spinal opioid tolerance. CGRP receptor antagonists may represent a useful therapeutic approach for preventing as well as reversing opioid tolerance.
Collapse
Affiliation(s)
- Kelly J Powell
- Department of Pharmacology and Toxicology, Faculty of Health Sciences Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Weiya Ma
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada, H9H 1R3
| | - Maaja Sutak
- Department of Pharmacology and Toxicology, Faculty of Health Sciences Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Henri Doods
- Biological Research, Boehringer Ingelheim Pharma KG, D-88397 Biberach, Germany
| | - Remi Quirion
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada, H9H 1R3
| | - Khem Jhamandas
- Department of Pharmacology and Toxicology, Faculty of Health Sciences Queen's University, Kingston, Ontario, Canada, K7L 3N6
| |
Collapse
|
16
|
Karlsson K, Nyberg F. Purification of substance P endopeptidase activity in the rat ventral tegemental area with the Akta-Purifier chromatographic system. J Chromatogr A 2000; 893:107-13. [PMID: 11043591 DOI: 10.1016/s0021-9673(00)00758-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The new chromatographic system Akta-Purifier 10 (Amersham-Pharmacia Biotech), scaled for preparative HPLC, was used for the purification of Substance P (SP) endopeptidase activity in the ventral tegemental area (VTA) of the rat brain. SP endopeptidase previously identified and purified from human cerebrospinal fluid has been found to degrade the neuroactive peptide SP in a specific pattern. In this study we have recovered SP endopeptidase from the rat VTA following a purification scheme involving homogenization (ultrasonication) and extraction of the excised tissue, size-exclusion chromatography (Superdex 75 HR), and ion-exchange chromatography (Resource Q). In this way we were able to achieve a purification factor of almost 7,500, based on specific activity. The obtained SP endopeptidase activity, was then subjected to characterization with regard to inhibition profile. The enzyme activity was monitored by following the conversion of SP to its N-terminal fragment SP(1-7) using a radioimmunoassay, specific for the heptapeptide product. On basis of inhibition profile it was possible to discern two different SP endopeptidase-like activities, one sensitive toward the protease inhibitor phosphoramidon (preparation A), and another non-sensitive to phosphoramidon or captopril (preparation B). The molecular masses of preparations A and B, as derived from sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were found to be 90,000 and 76,000, respectively. Our data suggest that the purified phosphoramidon sensitive endopeptidase activity may be an enzyme that plays a major role in the conversion of SP to its bioactive fragment SP(1-7) in the rat VTA. This is likely to be identical to the previously known neutral endopeptidase (EC 3.4.24.11). However, this study also demonstrates the existence of a distinct endopeptidase activity with properties in agreement with rat spinal cord SP endopeptidase. In the context of previously shown altered levels of SP(1-7) in the VTA during morphine withdrawal both purified enzyme activities may turn out to be responsible.
Collapse
Affiliation(s)
- K Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden.
| | | |
Collapse
|
17
|
Hallberg M, Johansson P, Kindlundh AM, Nyberg F. Anabolic-androgenic steroids affect the content of substance P and substance P(1-7) in the rat brain. Peptides 2000; 21:845-52. [PMID: 10959007 DOI: 10.1016/s0196-9781(00)00218-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of intramuscular (i.m.) injections of nandrolone decanoate (15 mg/kg/day), an anabolic-androgenic steroid, on the levels of substance P (SP) and on its N-terminal fragment SP(1-7) were examined in the male rat brain by radioimmunoassay. The results demonstrated that the SP immunoreactivity in amygdala, hypothalamus, striatum, and periaqueductal gray was significantly enhanced, whereas the concentration of the N-terminal fragment SP(1-7) was enhanced in the nucleus accumbens and in periaqueductal gray. In the striatum the steroid induced a decrease in the content of SP(1-7). The relevance of these peptides in connection with anabolic-androgenic steroid-induced aggression is discussed.
Collapse
Affiliation(s)
- M Hallberg
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
18
|
Nakagawa T, Masuda T, Watanabe T, Minami M, Satoh M. Possible involvement of the locus coeruleus in inhibition by prostanoid EP(3) receptor-selective agonists of morphine withdrawal syndrome in rats. Eur J Pharmacol 2000; 390:257-66. [PMID: 10708732 DOI: 10.1016/s0014-2999(99)00901-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined the mechanism of the inhibitory effect of prostanoid EP(3) receptor agonists on naloxone-precipitated withdrawal syndrome in morphine-dependent rats. Rats were rendered morphine dependent by subcutaneous (s.c.) implantation of two pellets containing 75 mg morphine for 5 days. Morphine withdrawal syndrome was precipitated by i.p. injection of naloxone (3 mg/kg). Intracerebroventricular (i.c.v.) administration of (+/-)-15alpha-hydroxy-9-oxo-16-phenoxy-17,18, 19,20-tetranorprost-13-trans-enoic acid (M&B28,767: prostanoid EP(3) receptor agonist) or sulprostone (prostanoid EP(1)/EP(3) receptor agonist) significantly suppressed many withdrawal signs. Northern blotting and in situ hybridization studies revealed that i.c.v. administration of M&B28,767 (1 pg/rat) attenuated the elevation of c-fos mRNA during naloxone-precipitated withdrawal in many brain regions, including the cerebral cortex, thalamus, hypothalamus and locus coeruleus. Double in situ hybridization analysis revealed that in the locus coeruleus most of the tyrosine hydroxylase mRNA-positive neurons expressed mu-opioid receptor mRNA and more than half of these neurons were positive for prostanoid EP(3) receptor mRNA. These results indicate that the suppression by prostanoid EP(3) receptor agonists of naloxone-precipitated morphine withdrawal syndrome can be attributed to the inhibition of neuronal activity in several brain regions, including the locus coeruleus, the largest source of central noradrenergic neurons.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Brain/drug effects
- Brain/metabolism
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- In Situ Hybridization
- Injections, Intraventricular
- Locus Coeruleus/drug effects
- Locus Coeruleus/metabolism
- Male
- Morphine/adverse effects
- Morphine Dependence/prevention & control
- Naloxone/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/genetics
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E, EP3 Subtype
- Substance Withdrawal Syndrome/etiology
- Substance Withdrawal Syndrome/physiopathology
- Substance Withdrawal Syndrome/prevention & control
- Tyrosine 3-Monooxygenase/genetics
Collapse
Affiliation(s)
- T Nakagawa
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
19
|
Zhou Q, Liu Z, Ray A, Huang W, Karlsson K, Nyberg F. Alteration in the brain content of substance P (1-7) during withdrawal in morphine-dependent rats. Neuropharmacology 1998; 37:1545-52. [PMID: 9886677 DOI: 10.1016/s0028-3908(98)00128-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that substance P (SP) may modulate the abstinence reaction to opioid withdrawal. Its N-terminal fragment SP1-7 may inhibit the intensity of the withdrawal reactions in morphine dependent mice. This study was designed to determine whether the endogenous concentrations of the SP1-7 fragment in the brain are affected during naloxone-precipitated withdrawal in the male rat. The amounts of the peptide was assessed by a specific radioimmunoassay in extracts of discrete brain regions (including the cerebral cortex, hippocampus, hypothalamus, nucleus accumbens, striatum, substantia nigra, ventral tegmental area and the spinal cord) during morphine tolerance and withdrawal. The results indicated that the concentrations of SP1-7 were significantly elevated in the ventral tegmental area both in morphine tolerant rats and during naloxone-precipitated withdrawal. During morphine withdrawal significant increases in the peptide concentration were also observed in the hypothalamus and the spinal cord. It was concluded that the enhanced content of SP1-7 may also indicate the involvement of the SP system during opioid withdrawal in the rat. The enhanced production of SP1-7 may reflect an increased release and/or metabolism of SP, which, in turn, counteracts the withdrawal.
Collapse
Affiliation(s)
- Q Zhou
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Karlsson K, Eriksson U, Andrén P, Nyberg F. Purification and characterization of substance P endopeptidase activities in the rat spinal cord. Prep Biochem Biotechnol 1997; 27:59-78. [PMID: 9090724 DOI: 10.1080/10826069708001278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two enzymes with substance P degrading activity were purified from the membrane bound fraction of the rat spinal cord. The purified enzymes were characterized with regard to biochemical and kinetic properties. One of the enzymes exhibited close similarity to neutral endopeptidase 24.11 (NEP, EC 3.4.24.11), while the other resembled a substance P converting endopeptidase (SPE), which has previously been identified and purified from human cerebrospinal fluid (CSF). Detergent treated spinal cord homogenates from male Sprague Dawley rats were purified by anion-exchange chromatography (DEAE-sepharose CL-6B), hydrophobic-interaction chromatography (phenyl-sepharose CL-4B) and molecular sieving (Sephadex G-50). Two fractions with enzymes differing in size were recovered and allowed for further purification to apparent homogeneity by ion-exchange chromatography and molecular sieving on a micro-purification system (SMART). The enzyme activities were monitored by following the conversion of synthetic substance P using a radioimmunoassay specific for the heptapeptide product, substance P (1-7). By SDS-polyacrylamide gel electrophoresis of the purified enzymes molecular weights of 43 and 70 kDa were estimated for the SPE-like and NEP-like activity, respectively. A K(m) of 5 microM was determined for the conversion of substance P to its (1-7) fragment by the SPE-like activity. Reversed-phase HPLC together with mass spectrometry permitted identification of all fragments released from substance P by the peptidases. The released fragments were for both enzymes identified as substance P (1-7), substance P (8-11), substance P (1-8), substance P (9-11). The NEP-like enzyme preparation also gave substance P (1-6) as a major product.
Collapse
Affiliation(s)
- K Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | | |
Collapse
|
21
|
Persson S, Le Grevés P, Thörnwall M, Eriksson U, Silberring J, Nyberg F. Neuropeptide converting and processing enzymes in the spinal cord and cerebrospinal fluid. PROGRESS IN BRAIN RESEARCH 1995; 104:111-30. [PMID: 8552764 DOI: 10.1016/s0079-6123(08)61787-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Persson
- Department of Pharmaceutical Biosciences, University of Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|