1
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|
2
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Libonati JR. Cardiac remodeling and function following exercise and angiotensin II receptor antagonism. Eur J Appl Physiol 2011; 112:3149-54. [PMID: 22143841 DOI: 10.1007/s00421-011-2263-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/22/2011] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to test the impact of chronic exercise training combined with selective angiotensin II receptor (AT1) antagonism on systolic blood pressure (SBP) and the left-ventricular pressure-volume relationship in normotensive, non-infarcted rat hearts. Wistar rats (N = 19) were randomly assigned to either a sedentary control group (N = 8) or an exercise-trained group (N = 11). Losartan was administered to individually caged rats via the drinking water (10 mg/kg/d). Exercise training consisted of running on a motorized driven treadmill for 6 weeks at 30 m/min, 60 min/day, 5 days/week. Tail cuff SBP was measured weekly. Left ventricular performance was assessed in an ex vivo Langendorff isovolumic mode. One week of losartan treatment significantly reduced SBP in both groups by 13% relative to baseline (P < 0.05). SBP was lower in exercise-trained animals versus sedentary animals in the later weeks of the protocol (P < 0.05) Body weight was significantly lower in exercise-trained animals versus sedentary animals, but heart weight, heart to body weight ratio, atrial weight, and absolute left ventricular mass and length were similar between groups. The LV systolic pressure-volume relationship (PV) and systolic elastance were significantly greater in exercise-trained animals versus sedentary controls (P < 0.05). The left ventricular end-diastolic PV and diastolic stiffness were similar between exercise-trained and sedentary animals. These data suggest that chronic aerobic exercise training can improve the Starling response in the presence of AT1 receptor blockade without altering absolute cardiac size.
Collapse
Affiliation(s)
- Joseph R Libonati
- Biobehavioral and Health Sciences, School of Nursing, University of Pennsylvania, 135 Claire M. Fagin Hall, 418 Curie Boulevard, Philadelphia, PA 19104-4217, USA.
| |
Collapse
|
4
|
Abstract
Although pediatric heart failure is generally a chronic, progressive disorder, recovery of ventricular function may occur with some forms of cardiomyopathy. Guidelines for the management of chronic heart failure in adults and children have recently been published by the International Society for Heart and Lung Transplantation the American College of Cardiology, and the American Heart Association. The primary aim of heart failure therapy is to reduce symptoms, preserve long-term ventricular performance, and prolong survival primarily through antagonism of the neurohormonal compensatory mechanisms. Because some medications may be detrimental during an acute decompensation, physicians who manage these patients as inpatients must be knowledgeable about the medications and therapeutic goals of chronic heart failure treatment. Understanding the mechanisms of chronic heart failure may foster improved understanding of the treatment of decompensated heart failure.
Collapse
|
5
|
Blaauw E, van Nieuwenhoven FA, Willemsen P, Delhaas T, Prinzen FW, Snoeckx LH, van Bilsen M, van der Vusse GJ. Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 2010; 299:H780-7. [PMID: 20639217 DOI: 10.1152/ajpheart.00822.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both mechanical and humoral triggers have been put forward to explain the hypertrophic response of the challenged cardiomyocyte. The aim of the present study was to investigate whether cyclic equibiaxial stretch is a direct stimulus for isolated adult rabbit cardiomyocytes to develop hypertrophy and to explore the potential involvement of the autocrine/paracrine factors ANG II, transforming growth factor (TGF)-beta(1), and IGF-I in this process. Isolated cardiomyocytes were exposed to 10% cyclic equibiaxial stretch (1 Hz) for up to 48 h or treated with ANG II (100 nM), TGF-beta(1) (5 ng/ml), IGF-I (100 ng/ml), ANG II type 1 (AT(1)) receptor blockers, or conditioned medium of stretched fibroblasts. Cyclic stretch significantly increased cell surface area (+3.1%), protein synthesis (+21%), and brain natriuretic peptide (BNP) mRNA expression (6-fold) in cardiomyocytes. TGF-beta(1) expression increased (+42%) transiently at 4 h, whereas cardiomyocyte IGF-I expression was not detectable under all experimental conditions. The AT(1) receptor blockers candesartan and irbesartan (100 nM) did not prevent the stretch-induced hypertrophic response. Direct exposure to ANG II, TGF-beta(1), or IGF-I did not enhance cardiomyocyte BNP expression. In cardiac fibroblasts, stretch elicited a significant approximately twofold increase in TGF-beta(1) and IGF-I expression. Conditioned medium of stretched fibroblasts increased BNP expression in cardiomyocytes ( approximately 2-fold, P = 0.07). This study clearly indicates that cyclic stretch is a strong, direct trigger to induce hypertrophy in fully differentiated rabbit cardiomyocytes. The present findings do not support the notion that stretch-mediated hypertrophy of adult rabbit cardiomyocytes involves autocrine/paracrine actions of ANG II, TGF-beta(1), or IGF-I.
Collapse
Affiliation(s)
- Erik Blaauw
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
6
|
High-glucose condition reduces cardioprotective effects of insulin against mechanical stress-induced cell injury. Life Sci 2010; 87:154-61. [DOI: 10.1016/j.lfs.2010.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/25/2010] [Accepted: 06/05/2010] [Indexed: 11/18/2022]
|
7
|
Kang BY, Khan JA, Ryu S, Shekhar R, Seung KB, Mehta JL. Curcumin Reduces Angiotensin II-mediated Cardiomyocyte Growth via LOX-1 Inhibition. J Cardiovasc Pharmacol 2010; 55:176-83. [DOI: 10.1097/fjc.0b013e3181ca4ba1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Kang BY, Mehta JL. Rosuvastatin attenuates Ang II--mediated cardiomyocyte hypertrophy via inhibition of LOX-1. J Cardiovasc Pharmacol Ther 2009; 14:283-91. [PMID: 19724024 DOI: 10.1177/1074248409344329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors, also known as statins, have been shown to reduce cardiac remodeling. Angiotensin II (Ang II) type 1 receptor (AT1R) and oxidized low-density lipoprotein (ox-LDL) via its lectin-like ox-LDL receptor (LOX-1) are major stimuli for cardiomyocyte growth. We postulated that rosuvastatin, a potent HMG-CoA reductase inhibitor, may reduce Ang II-mediated cardiomyocyte growth via AT1R and LOX-1 inhibition. HL-1 adult mouse cardiomyocytes were incubated overnight in serum-free medium, and then treated with rosuvastatin, the AT1R inhibitor losartan or anti-LOX-1 antibody for 3 hours. The cells were then stimulated with Ang II. We measured cardiomyocyte growth, and associated intracellular redox signals using reverse transcription- polymerase chain reaction (RT-PCR) and real-time quantitative PCR. Losartan and anti-LOX-1 antibody markedly attenuated Ang II-mediated oxidant stress, and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p40(phox) and gp91(phox) subunits) and nuclear factor-kappaB (NF-kappaB). Rosuvastatin attenuated the Ang II-mediated upregulation of both subunits of NAPDH oxidase as well as NF-kappaB. Rosuvastatin also reduced Ang II-mediated upregulation of AT1R and LOX-1. In other experiments, LOX-1 was upregulated in cardiomyocytes by transfection with pCI-neo/LOX-1, which also enhanced the expression AT1R messenger RNA (mRNA), and rosuvastatin pretreatment reduced the expression of both LOX-1 and AT1R in this system. Thus, rosuvastatin attenuates Ang II-mediated cardiomyocyte growth by inhibiting LOX-1 and AT1R expression and suppressing the heightened intracellular redox state.
Collapse
Affiliation(s)
- Bum-Yong Kang
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
9
|
Barac DY, Reisner Y, Silberman M, Zeevi-Levin N, Danon A, Salomon O, Shoham M, Shilkrut M, Kostin S, Schaper J, Binah O. Mechanical load induced by glass microspheres releases angiogenic factors from neonatal rat ventricular myocytes cultures and causes arrhythmias. J Cell Mol Med 2009; 12:2037-51. [PMID: 19012730 PMCID: PMC4506169 DOI: 10.1111/j.1582-4934.2008.00193.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the present study, we tested the hypothesis that similar to other mechanical loads, notably cyclic stretch (simulating pre-load), glass microspheres simulating afterload will stimulate the secretion of angiogenic factors. Hence, we employed glass microspheres (average diameter 15.7 μm, average mass 5.2 ng) as a new method for imposing mechanical load on neonatal rat ventricular myocytes (NRVM) in culture. The collagen-coated microspheres were spread over the cultures at an estimated density of 3000 microspheres/mm2, they adhered strongly to the myocytes, and acted as small weights carried by the cells during their contraction. NRVM were exposed to either glass microspheres or to cyclic stretch, and several key angiogenic factors were measured by RT-PCR. The major findings were: (1) In contrast to other mechanical loads, such as cyclic stretch, microspheres (at 24 hrs) did not cause hypertrophy. (2) Further, in contrast to cyclic stretch, glass microspheres did not affect Cx43 expression, or the conduction velocity measured by means of the Micro-Electrode-Array system. (3) At 24 hrs, glass microspheres caused arrhythmias, probably resulting from early afterdepolarizations. (4) Glass microspheres caused the release of angiogenic factors as indicated by an increase in mRNA levels of vascular endothelial growth factor (80%), angiopoietin-2 (60%), transforming growth factor-β (40%) and basic fibroblast growth factor (15%); these effects were comparable to those of cyclic stretch. (5) As compared with control cultures, conditioned media from cultures exposed to microspheres increased endothelial cell migration by 15% (P<0.05) and endothelial cell tube formation by 120% (P<0.05), both common assays for angiogenesis. In conclusion, based on these findings we propose that loading cardiomyocytes with glass microspheres may serve as a new in vitro model for investigating the role of mechanical forces in angiogenesis and arrhythmias.
Collapse
Affiliation(s)
- D Y Barac
- Rappaport Family Institute for Research in the Medical Sciences, Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R381-7. [DOI: 10.1152/ajpregu.00933.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control ( n = 6); trained ( n = 6); control + losartan (10 mg·kg−1·day−1, n = 6); trained + losartan ( n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT1 receptor. The exercise protocol consisted of: 4 × 12 bouts, 5×/wk during 8 wk, with 65–75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and αMHC (α-myosin heavy chain)-to-βMHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT2 receptor levels, whereas the AT1 receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 ± 2.4 vs. 22.01 ± 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT1 receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.
Collapse
|
11
|
Chang PCY, Mendoza J, Park J, Lam MM, Wu B, Atkinson JB, Dunn JCY. Sustainability of mechanically lengthened bowel in rats. J Pediatr Surg 2006; 41:2019-22. [PMID: 17161196 DOI: 10.1016/j.jpedsurg.2006.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION It has been shown that the length of an intestinal segment may be doubled by applying gradual mechanical stretching. This study evaluated whether the lengthened intestinal segment retained the structure and function after the stretching device was removed. METHODS A 1.5-cm jejunal segment was separated from intestinal continuity in 20 rats. After advancing a screw into the isolated jejunal segment by 5 mm 3 times a week until it was stretched by 3 cm, the screw was removed. Three weeks later, the jejunal segments were retrieved for analyses. Comparisons were made between the lengthened jejunal segments. RESULTS The jejunal segment doubled its length after gradual stretching and retained this length 3 weeks after the screw removal (3.1 +/- 0.8 vs 3.2 +/- 0.4 cm, P > .05). The villous height, the muscular thickness, and the total alkaline phosphatase and lactase activities of the stretched jejunal segments were also unchanged 3 weeks after the screw removal. CONCLUSIONS Mechanical force induced the sustained lengthening of isolated jejunal segments in rats. The histologic and enzymatic alterations also persisted 3 weeks after the mechanical force was removed. This phenomenon may provide a novel method for the treatment of short bowel syndrome.
Collapse
Affiliation(s)
- Paul C Y Chang
- Department of Pediatric Surgery, Shin Kong Memorial Hospital, Taipei 111, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
McBride TA. AT1receptors are necessary for eccentric training-induced hypertrophy and strength gains in rat skeletal muscle. Exp Physiol 2006; 91:413-21. [PMID: 16317083 DOI: 10.1113/expphysiol.2005.032490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was undertaken to measure the response of skeletal muscle to eccentric contractions (EC) in the presence of the angiotensin type 1 (AT1) receptor blocker, losartan. It was hypothesized that blocking AT1 receptors prior to an initial bout of EC would prevent the muscle from developing the normal adaptation to EC as demonstrated by the repeated bout effect. It was also hypothesized that continuous AT1 receptor blockade during EC training would significantly reduce muscle hypertrophy and strength gains that occur with repeated EC. Rats received losartan in their drinking water at either a low dose (20 mg (kg body weight)-1 day-1) or a high dose (40 mg (kg body weight)-1 day-1). Each bout of EC consisted of a total of 24 contractions. Rats were assigned to four groups: a single acute bout of EC (n=6); two bouts of EC separated by 14 days (n=8); and 4 weeks of training twice a week on the low dose (n=5) or the high dose (n=9). There was no effect of AT1 receptor blockade on the initial loss of function following a single acute bout of EC, or on the repeated bout effect following a second exposure to EC. AT1 receptor blockade did alter the results of EC training, in both the low and high dose groups. Losartan treatments prevented EC training-induced increases in muscle wet and dry weights compared to untreated rats. Finally, the low and high dose losartan treatments also prevented an increase in muscle contractile force following EC training compared to the untreated group. Functional AT1 receptors are therefore not necessary for an acute adaptation to EC as demonstrated by the repeated bout effect, but are necessary for muscle hypertrophy and increased contractile force associated with EC training.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Female
- Hypertrophy/etiology
- Losartan/pharmacology
- Muscle Contraction
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Physical Conditioning, Animal
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/metabolism
Collapse
Affiliation(s)
- Todd A McBride
- Department of Biology, California State University, Bakersfield, Bakersfield, CA 93311, USA.
| |
Collapse
|
13
|
Abstract
Mechanotransduction refers to the cellular mechanisms by which load-bearing cells sense physical forces, transduce the forces into biochemical signals, and generate appropriate responses leading to alterations in cellular structure and function. This process affects the beat-to-beat regulation of cardiac performance but also affects the proliferation, differentiation, growth, and survival of the cellular components that comprise the human myocardium. This review focuses on the experimental evidence indicating that the costamere and its structurally related structure the focal adhesion complex are critical cytoskeletal elements involved in cardiomyocyte mechanotransduction. Biochemical signals originating from the extracellular matrix-integrin-costameric protein complex share many common features with those signals generated by growth factor receptors. The roles of key regulatory kinases and other muscle-specific proteins involved in mechanotransduction and growth factor signaling are discussed, and issues requiring further study in this field are outlined.
Collapse
Affiliation(s)
- Allen M Samarel
- Cardiovascular Institute, Loyola Univ. Medical Center, Bldg. 110, Rm. 5222, 2160 South First Ave., Maywood, IL 60153, USA.
| |
Collapse
|
14
|
Anderson HDI, Wang F, Gardner DG. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene. J Biol Chem 2003; 279:9287-97. [PMID: 14645255 DOI: 10.1074/jbc.m309227200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) and ectoshedding of heparin-binding epidermal growth factor (HBEGF), an EGFR ligand, have been linked to the development of cardiac myocyte hypertrophy. However, the precise role that the liganded EGFR plays in the transcriptional activation of the gene program that accompanies hypertrophy remains undefined. Utilizing the human (h) BNP gene as a model of hypertrophy-dependent gene activation, we show that activation of the EGFR plays an important role in mediating mechanical strain-dependent stimulation of the hBNP promoter. Strain promotes endothelin (ET) generation through NAD(P)H oxidase-dependent production of reactive oxygen species. ET in turn induces metalloproteinase-mediated cleavage of pro-HBEGF and ectoshedding of HBEGF, which activates the EGFR and stimulates hBNP promoter activity. HBEGF also stimulates other phenotypic markers of hypertrophy including protein synthesis and sarcomeric assembly. The antioxidant N-acetylcysteine or the NAD(P)H oxidase inhibitor, apocynin, inhibited strain-dependent activation of the ET-1 promoter, HBEGF shedding, and hBNP promoter activation. The metalloproteinase inhibitor, GM-6001, prevented the induction of HBEGF ectoshedding and the hBNP promoter response to strain, suggesting a critical role for the metalloproteinase-dependent cleavage event in signaling the strain response. These findings suggest that metalloproteinase activity as an essential step in this pathway may prove to be a relevant therapeutic target in the management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hope D I Anderson
- Diabetes Center and Department of Medicine, University of California, San Francisco, California 94143-0540, USA
| | | | | |
Collapse
|
15
|
Abstract
In addition to the effect on arterial pressure, angiotensin II, the effector peptide of the renin-angiotensin system (RAS), exerts mitogenic and growth promoting effects on cardiac myocytes and non-myocytic elements; and both of these effects significantly contribute to the development and progression of hypertensive heart disease (HHD). The traditional concept of the RAS as a systemic, endocrine system has been expanded and the identification of its components in many organs and tissue has been amassed. This paper reviews evidence that supports the concept that the cardiac RAS participate importantly in the development and risk of HHD.
Collapse
Affiliation(s)
- Jasmina Varagic
- Hypertension Research Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | | |
Collapse
|
16
|
Dostal DE. The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. REGULATORY PEPTIDES 2000; 91:1-11. [PMID: 10967197 DOI: 10.1016/s0167-0115(99)00123-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Angiotensin II, the effector peptide of the renin-angiotensin system, has been demonstrated to be involved in the regulation of cellular growth of several tissues in response to developmental, physiological, and pathological processes. The recent identification of renin-angiotensin system components and localization of angiotensin II receptors in cardiac tissue suggests that locally synthesized Ang II can modulate functional and growth responses in cardiac tissue. In this review, regulation of the cardiac RAS is discussed, with an emphasis on growth-related Ang II signal transduction systems.
Collapse
Affiliation(s)
- D E Dostal
- Cardiovascular Research Institute, Division of Molecular Cardiology, Texas A&M University System Health Science Center, 1901 South 1st Street, Temple, TX 76504, USA.
| |
Collapse
|
17
|
Abstract
-The active end product of the renin-angiotensin system, angiotensin II (Ang II), through the activation of specific Ang II receptors, regulates cardiac contractility, cell coupling, and impulse propagation and is involved in cardiac remodeling, growth, and apoptosis. We review these subjects, as well as the second messengers that are involved, and the synthesis of Ang II in the heart under normal and pathological conditions. Finally, we discuss the possibility that there is an intracrine renin-angiotensin system in the heart that plays a role in the control of cell communication and inward Ca(2+) current.
Collapse
Affiliation(s)
- W C De Mello
- Department of Pharmacology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936-5067
| | | |
Collapse
|
18
|
Ruwhof C, van Wamel AE, Egas JM, van der Laarse A. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem 2000; 208:89-98. [PMID: 10939632 DOI: 10.1023/a:1007046105745] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growth factors and hormones may play an autocrine/paracrine role in mechanical stress-induced cardiac hypertrophy. Using an in vitro model of mechanical stress, i.e. stretch of cardiomyocytes and cardiac fibroblasts, we tested the involvement of growth factors and hormones in this process. We found that conditioned medium (CM) derived from 4 h cyclicly (1 Hz) stretched cardiomyocytes increased the rate of protein synthesis in static cardiomyocytes by 8 +/- 3%. Moreover, CM derived from 2 h stretched fibroblasts increased the rate of protein synthesis in static fibroblasts as well as in static cardiomyocytes by 8 +/- 2 and 6 +/- 2%, respectively. Analysis of CM using size-exclusion HPLC showed that cardiomyocytes and fibroblasts released at least three factors with MW < or = 10 kD, their quantities being time-dependently increased by stretch. Subsequent analyses using immunoassays revealed that cardiomyocytes released atrial natriuretic peptide (ANP) and transforming growth factor-beta1 (TGFbeta1) being increased by 45 +/- 17 and 21 +/- 4% upon 4 h of stretch, respectively. Fibroblasts released TGFbeta1 and very low quantity of endothelin-1 (ET-1). The release of TGFbeta1 was significantly increased by 18 +/- 4% after 24 h of stretch in fibroblasts. Both cell types released no detectable amount of angiotensin II (Ang II). In conclusion, upon cyclic stretch cardiomyocytes and fibroblasts secrete growth factors and hormones which induce growth responses in cardiomyocytes and fibroblasts in an autocrine/paracrine way. TGFbeta secreted by cardiomyocytes and fibroblasts, and ANP secreted by cardiomyocytes are likely candidates. We found no evidence for the involvement of Ang II and ET-1 in autocrine/paracrine mechanisms between cardiac cell types.
Collapse
Affiliation(s)
- C Ruwhof
- Department of Cardiology, Leiden University Medical Center, The Netherlands
| | | | | | | |
Collapse
|
19
|
Fink C, Ergün S, Kralisch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 2000; 14:669-79. [PMID: 10744624 DOI: 10.1096/fasebj.14.5.669] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To examine the influence of chronic mechanical stretch on functional behavior of cardiac myocytes, we reconstituted embryonic chick or neonatal rat cardiac myocytes to a 3-dimensional engineered heart tissue (EHT) by mixing freshly isolated cells with neutralized collagen I and culturing them between two Velcro-coated silicone tubes, held at a fixed distance with a metal spacer. After 4 days, EHTs were subjected to a phasic unidirectional stretch for 6 days in serum-containing medium. Compared to unstretched controls, RNA/DNA and protein/cell ratios increased by 100% and 50%, respectively. ANF mRNA and alpha-sarcomeric actin increased by 98% and 40%, respectively. Morphologically, stretched EHTs exhibited improved organization of cardiac myocytes into parallel arrays of rod-shaped cells, increased cell length and width, longer myofilaments, and increased mitochondrial density. Thus, stretch induced phenotypic changes, generally referred to as hypertrophy. Concomitantly, force of contraction was two- to fourfold higher both under basal conditions and after stimulation with calcium or the beta-adrenergic agonist isoprenaline. Contraction kinetics were accelerated with a 14-44% decrease in twitch duration under all those conditions. In summary, we have developed a new in vitro model that allows morphological, molecular, and functional consequences of stretch to be studied under defined conditions. The main finding was that stretch of EHTs induced cardiac myocyte hypertrophy, which was accompanied by marked improvement of contractile function.
Collapse
Affiliation(s)
- C Fink
- Institute of Experimental and Clinical Pharmacology and Toxicology, University-Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Ueyama T, Yoshida K, Senba E. Emotional stress induces immediate-early gene expression in rat heart via activation of alpha- and beta-adrenoceptors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1553-61. [PMID: 10516195 DOI: 10.1152/ajpheart.1999.277.4.h1553] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the adrenergic mechanisms of immediate-early gene (IEG) induction in the discrete types of cardiac cells with the use of in situ hybridization histochemistry in an immobilization-stress model in conscious rats. Expression of c-fos, fos B, c-jun, jun B, NGFI-A, and NGFI-B mRNA was rapidly upregulated in the endothelial, myocardial, and smooth muscle cells of coronary vessels by 15-45 min after the onset of immobilization. Simultaneous blockade of both alpha- and beta-adrenoceptors completely abolished expression of IEGs in these cardiac cells. Application of an alpha-agonist or beta-agonist alone to the perfused rat heart under constant pressure elicited the upregulation of IEGs in a fashion similar to that of emotional stress. These data suggest that activation of either alpha- or beta-adrenoceptor is sufficient to evoke expression of these genes and that there may be cross talk in signal transduction downstream from alpha- and beta-adrenoceptors in cardiac cells.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Coronary Vessels/cytology
- Coronary Vessels/physiology
- Endothelium, Vascular/physiology
- Gene Expression
- Genes, Immediate-Early/genetics
- Heart/drug effects
- Heart/physiology
- In Vitro Techniques
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Myocardium/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/physiology
- Stress, Psychological/genetics
- Up-Regulation
Collapse
Affiliation(s)
- T Ueyama
- Department of Anatomy, Wakayama Medical College, Wakayama 641-8509, Japan.
| | | | | |
Collapse
|
21
|
Abstract
Angiotensin II, the effector peptide of the renin-angiotensin system, regulates cellular growth in response to developmental, physiological, and pathological processes. The identification of renin-angiotensin system components and angiotensin II receptors in cardiac tissue suggests the existence of an autocrine/paracrine system that has effects independent of angiotensin II derived from the circulatory system. To be functional, a local renin-angiotensin system should produce sufficient amounts of the autocrine and/or paracrine factor to elicit biological responses, contain the final effector (angiotensin II receptor), and respond to humoral, neural, and/or mechanical stimuli. In this review, we discuss evidence for a functional cardiac renin-angiotensin system.
Collapse
Affiliation(s)
- D E Dostal
- Cardiovascular Research Institute, Division of Molecular Cardiology, The Texas A&M University System Health Science Center, Temple, TX 76504, USA.
| | | |
Collapse
|
22
|
Fukuzawa J, Haneda T, Kikuchi K. Arginine vasopressin increases the rate of protein synthesis in isolated perfused adult rat heart via the V1 receptor. Mol Cell Biochem 1999; 195:93-8. [PMID: 10395073 DOI: 10.1023/a:1006980517557] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arginine vasopressin (AVP) is known to contribute significantly to the pathogenesis of congestive heart failure and hypertension. However, little is known about its effect on the myocardium. The present study was conducted to determine whether AVP directly increases the rate of protein synthesis in isolated, perfused rat heart, and, if so, the mechanism involved. Elevation of the aortic pressure from 60 to 120 mmHg in perfused rat heart accelerated the rate of protein synthesis which was associated with increases in cAMP levels and Ca2+ uptake. AVP (100 microM) increased Ca2+ uptake and accelerated the rate of protein synthesis without a change in cAMP concentration. The latter events were inhibited by OPC-21268 (100 microM), a selective V1 receptor antagonist, or amiloride (100 microM), an inhibitor of the Na+/H+ exchange system. However, increases in cAMP concentrations, Ca2+ uptake, and rates of protein synthesis associated with the elevated aortic pressure were not inhibited by amiloride. Thus, AVP directly increased the rate of protein synthesis via the V1 receptor that is sensitive to amiloride, a mechanism that differs from the cAMP-dependent mechanism that is responsible for the cardiac hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- J Fukuzawa
- First Department of Internal Medicine, Asahikawa Medical College, Japan
| | | | | |
Collapse
|
23
|
Barrett JD, Zhang Z, Zhu JH, Lee DB, Ward HJ, Jamgotchian N, Hu MS, Fredal A, Giordani M, Eggena P. Erythropoietin upregulates angiotensin receptors in cultured rat vascular smooth muscle cells. J Hypertens 1998; 16:1749-57. [PMID: 9869008 DOI: 10.1097/00004872-199816120-00007] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Plasma renin is not elevated in recombinant human erythropoietin (rhEPO)-induced hypertension but angiotensin converting enzyme inhibitors reduce blood pressure in both human and animal studies. Since rhEPO elevates renin and angiotensinogen messenger RNAs in angiotensin II target tissues such as the aorta, we explored the actions of rhEPO on renin-angiotensin system-related gene transcription of cultured rat vascular smooth muscle cells. DESIGN AND METHODS To separate direct actions of rhEPO from those mediated secondarily by potential activation of the renin-angiotensin system, vascular smooth muscle cells were cultured with rhEPO and enalapril to inhibit the angiotensin converting enzyme and losartan to inhibit angiotensin II type 1 receptors. RESULTS Vascular smooth muscle cells cultured with rhEPO (6-8 units/ml) demonstrated elevations (40-120%) in messenger RNAs of the renin-angiotensin system (renin, angiotensinogen, angiotensin receptor types 1 and 2) and increased levels of several messenger RNAs known to respond to angiotensin II (transforming growth factor-beta, insulin-like growth factor-II, epidermal growth factor, c-fos and platelet-derived growth factor). In contrast, cells cultured in the presence of rhEPO and enalapril or losartan showed elevations of messenger RNA for only the two types of angiotensin II receptor. This increase was higher than that obtained when cells were cultured with rhEPO or either antagonist alone. The increase in specific binding of angiotensin II to cells cultured in the presence of rhEPO and enalapril or rhEPO and losartan paralleled the changes in receptor messenger RNA. CONCLUSIONS rhEPO exerts its primary action on vascular smooth muscle cells via an increase in angiotensin receptor messenger RNA, resulting in a parallel increase in angiotensin II receptor expression. We suggest that increased receptor expression secondarily mediates the expression of other renin-angiotensin system messenger RNAs, which leads to angiotensin II-responsive gene transcription. The elevation in angiotensin II receptors, as observed in response to rhEPO, may provide a mechanism by which other forms of renin-dependent hypertension are initiated.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic
- Cells, Cultured
- Erythropoietin/pharmacology
- Humans
- Muscle Development
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/growth & development
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Receptors, Angiotensin/agonists
- Receptors, Angiotensin/genetics
- Recombinant Proteins
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- J D Barrett
- Veterans Administration Greater Los Angeles Health Care System, Sepulveda, California 91343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Magga J, Vuolteenaho O, Marttila M, Ruskoaho H. Endothelin-1 is involved in stretch-induced early activation of B-type natriuretic peptide gene expression in atrial but not in ventricular myocytes: acute effects of mixed ET(A)/ET(B) and AT1 receptor antagonists in vivo and in vitro. Circulation 1997; 96:3053-62. [PMID: 9386175 DOI: 10.1161/01.cir.96.9.3053] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The precise role of paracrine and autocrine factors in mechanical load-induced activation of cardiac gene expression is unknown. Here we report the effects of endothelin-1 (ET-1) and angiotensin II (Ang II) receptor antagonism on acute pressure overload-induced activation of cardiac B-type natriuretic peptide (BNP) gene expression in spontaneously hypertensive rats (SHRs) in vivo and on mechanical stretch-induced increase in atrial BNP gene expression in vitro. METHODS AND RESULTS Acute pressure overload produced in conscious SHRs by infusion of arginine8-vasopressin (0.05 microg x kg(-1) x min(-1)) for 2 hours resulted in an increase in BNP mRNA levels in the left ventricle as well as in the atrium. Bolus injections of bosentan (mixed ET(A)/ET(B) receptor antagonist, 10 mg/kg I.V.) but not losartan (AT1 receptor antagonist, 10 mg/kg I.V.) blocked the increase of the BNP mRNA levels produced by pressure overload in the left atria, whereas the elevation of BNP mRNA levels was similar (a 1.9-fold increase) in the left ventricles of vehicle-, losartan-, and bosentan-infused SHRs. In an isolated perfused rat heart preparation, infusion of bosentan (1 micromol/L) for 2 hours inhibited the mechanical stretch-induced increase in BNP mRNA levels in the right atria, whereas an AT1 receptor antagonist, CV-11974 (10 nmol/L), had no effect. CONCLUSIONS The findings of the present study demonstrate that Ang II and ET-1 are not obligatorily required for stretch to trigger the increased BNP gene expression in ventricular myocytes in vivo. In contrast, mechanical load on the atrial myocytes did initiate an ET-1-dependent expression of BNP gene showing that endogenous ET-1 production differentially regulates BNP gene expression in atrial and ventricular myocytes.
Collapse
Affiliation(s)
- J Magga
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | |
Collapse
|
25
|
Senba E, Ueyama T. Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat. Neurosci Res 1997; 29:183-207. [PMID: 9436645 DOI: 10.1016/s0168-0102(97)00095-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress causes rapid and transient expression of immediate early genes (IEGs) in the brain, and the monitoring of IEGs has enabled the visualization of the neurocircuitry of stress. Previous studies have postulated that stressors can be divided into two categories; processive and systemic. The neural circuits of brain activation differ between the two kinds of stressors. For example, processive stressors, such as immobilization (IMO), induce c-fos mRNA first in the cortical and limbic areas and then in the paraventricular hypothalamic nucleus (PVH), while c-fos expression in the PVH precedes that in other areas in animals subjected to systemic stressors. We further show that prior exposure to IMO stress for 6 days, or implantation of corticosterone pellets suppresses the induction of c-fos, fos B, jun B and NGFI-B, but not that of NGFI-A in the rat PVH. Plasma glucocorticoid may be an important factor regulating stress-induced IEG expression. It is well known that AP-1 and glucocorticoid receptors (GR) interact and suppress each other. Thus, decreased AP-1 levels in chronically stressed animals may help enhance the negative feedback effects of GR and prevent hypersecretion of glucocorticoid, which is implicated in the pathogenesis of stress-related diseases. IMO stress induces rapid expression of c-fos, c-jun and NGFI-A mRNAs in the heart and stomach. These were observed in the ventricular myocardium and coronary arteries, and in the epithelium, smooth muscles and arteries of the stomach after 30 min of IMO. IEG expression in the peripheral organs may provide a molecular basis for stress-induced psychosomatic disorders.
Collapse
Affiliation(s)
- E Senba
- Department of Anatomy and Neurobiology, Wakayama Medical College, Japan.
| | | |
Collapse
|
26
|
Pan J, Fukuda K, Kodama H, Makino S, Takahashi T, Sano M, Hori S, Ogawa S. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 1997; 81:611-7. [PMID: 9314843 DOI: 10.1161/01.res.81.4.611] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was designed to determine whether the JAK/STAT (indicating just another kinase/signal transducer and activator of transcription) pathway is activated in cardiac hypertrophy induced in vivo by pressure overload in rats and to demonstrate whether angiotensin II is involved in the activation of the JAK/STAT pathway. Acute pressure overload was produced by constricting the abdominal aorta of Wistar rats. Immunoprecipitation-Western blot analysis revealed that pressure overload activated JAK1, JAK2, and Tyk2 as early as 5 minutes and that STAT1, STAT2, and STAT3 were tyrosine-phosphorylated rapidly after exposure to the pressure overload. Phosphorylation of STAT1 and STAT2 peaked in the early stage at 5 to 15 minutes, whereas that of STAT3 peaked in the late stage at 60 minutes. Gel mobility shift of the interferon gamma activation site/interferon alpha-stimulating response element was observed immediately after the aortic banding, whereas the band of sis-inducing element was shifted in the late stage at 60 minutes. Both cilazapril (angiotensin II-converting enzyme inhibitor) and E4177 (angiotensin II type 1 [AT1] receptor antagonist) significantly suppressed the phosphorylation of Tyk2 and partially inhibited the phosphorylation of JAK2, but neither affected JAK1. Coimmunoprecipitation of the AT1 receptor with JAK2 or Tyk2 was clearly observed at 5 minutes and peaked at 15 minutes (20-fold the control value). These results indicate that the JAK/STAT pathway is activated by acute pressure overload in rats and that angiotensin II is involved in activating Tyk2, and partially activating JAK2, via the AT1 receptor. Both angiotensin II-dependent and -independent pathways take part in activating the JAK/STAT pathway in the pressure-overloaded rat heart.
Collapse
Affiliation(s)
- J Pan
- Cardiopulmonary Division, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|