1
|
Shulga UE, Kalachev AV. Hemal sinus basal laminae contact sites: a possible route between gonadal lumen and myoepithelial cells in the gonad of the sea star Patiria pectinifera. PROTOPLASMA 2025; 262:61-71. [PMID: 39141092 DOI: 10.1007/s00709-024-01979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Sea stars are a group of marine invertebrates suitable for studying the hormonal regulation of reproduction and spawning. In spite of substantial progress in understanding how various substances such as 1-methyladenine act in their gonads, there are still many gaps concerning the fine details of their action. One such gap is how the gonadal wall contraction is induced. Recent literature data suggest that, upon 1-methyladenine stimulation, some cells within the gonadal lumen produce non-neuronal acetylcholine that, upon contact with the gonadal wall, induces contraction of myoepithelial cells. Our ultrastructural study of the gonads in the sea star Patiria pectinifera has shown, for the first time, that there are sites where the basal laminae bordering the hemal sinus directly contact one another and appear at this contact site as a single entity. These contact sites are often associated with hemidesmosome-like junctions that anchor male accessory cells or female follicle cells on one side of the site and myoepithelial cells on the opposite. We suggest that contraction-inducing substance is secreted from an accessory or follicle cell, passes through a basal lamina contact site, and on the opposite side of the contact site acts on a myoepithelial cell to induce its contraction.
Collapse
Affiliation(s)
- Uliana E Shulga
- Far Eastern Federal University, P. Ajax, 10, Russky Island, Vladivostok, 690922, Russia
| | - Alexander V Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Ul. Palchevskogo, 17, Vladivostok, 690041, Russia.
| |
Collapse
|
2
|
Piñon Gonzalez VM, Feng Y, Egertová M, Elphick MR. Neuropeptide expression and action in the reproductive system of the starfish Asterias rubens. J Comp Neurol 2024; 532:e25585. [PMID: 38289190 DOI: 10.1002/cne.25585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish. To address this issue, here, we used histology and immunohistochemistry to analyze the reproductive system of the starfish Asterias rubens at four stages of the seasonal reproductive cycle in male and female animals, investigating the expression of eight neuropeptides: the corticotropin-releasing hormone-type neuropeptide ArCRH, the calcitonin-type neuropeptide ArCT, the pedal peptide-type neuropeptides ArPPLN1b and ArPPLN2h, the vasopressin/ocytocin-type neuropeptide asterotocin, the gonadotropin-releasing hormone-type neuropeptide ArGnRH, and the somatostatin/allatostatin-C-type neuropeptides ArSS1 and ArSS2. The expression of five neuropeptides, ArCRH, ArCT, ArPPLN1b, ArPPLN2h, and asterotocin, was detected in the gonoducts and/or gonads. For example, extensive ArPPLN2h expression was revealed in the coelomic epithelial layer of the gonads throughout the seasonal reproductive cycle in both males and females. However, seasonal and/or sexual differences in the patterns of neuropeptide expression were also observed. Informed by these findings, the in vitro pharmacological effects of neuropeptides on gonad preparations from male and female starfish were investigated. This revealed that ArSS1 causes gonadal contraction and that ArPPLN2h causes gonadal relaxation, with both neuropeptides being more effective on ovaries than testes. Collectively, these findings indicate that multiple neuropeptide signaling systems are involved in the regulation of reproductive function in starfish, with some neuropeptides exerting excitatory or inhibitory effects on gonad contractility that may be physiologically relevant when gametes are expelled during spawning.
Collapse
Affiliation(s)
| | - Yuling Feng
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Maurice R Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Feng Y, Piñon Gonzalez VM, Lin M, Egertová M, Mita M, Elphick MR. Localization of relaxin-like gonad-stimulating peptide expression in starfish reveals the gonoducts as a source for its role as a regulator of spawning. J Comp Neurol 2023; 531:1299-1316. [PMID: 37212624 PMCID: PMC10952978 DOI: 10.1002/cne.25496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.
Collapse
Affiliation(s)
- Yuling Feng
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Ming Lin
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Michaela Egertová
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Masatoshi Mita
- Department of BiochemistryShowa University School of MedicineTokyoJapan
| | - Maurice R. Elphick
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Mita M. Relaxin-like Gonad-Stimulating Peptides in Asteroidea. Biomolecules 2023; 13:781. [PMID: 37238650 PMCID: PMC10216564 DOI: 10.3390/biom13050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Starfish relaxin-like gonad-stimulating peptide (RGP) is the first identified peptide hormone with gonadotropin-like activity in invertebrates. RGP is a heterodimeric peptide, comprising A and B chains with disulfide cross-linkages. Although RGP had been named a gonad-stimulating substance (GSS), the purified peptide is a member of relaxin-type peptide family. Thus, GSS was renamed as RGP. The cDNA of RGP encodes not only the A and B chains, but also signal and C-peptides. After the rgp gene is translated as a precursor, mature RGP is produced by eliminating the signal and C-peptides. Hitherto, twenty-four RGP orthologs have been identified or predicted from starfish in the orders Valvatida, Forcipulatida, Paxillosida, Spinulosida, and Velatida. The molecular evolution of the RGP family is in good accordance with the phylogenetic taxonomy in Asteroidea. Recently, another relaxin-like peptide with gonadotropin-like activity, RLP2, was found in starfish. RGP is mainly present in the radial nerve cords and circumoral nerve rings, but also in the arm tips, the gonoducts, and the coelomocytes. RGP acts on ovarian follicle cells and testicular interstitial cells to induce the production of 1-methyladenine (1-MeAde), a starfish maturation-inducing hormone. RGP-induced 1-MeAde production is accompanied by an increase in intracellular cyclic AMP levels. This suggests that the receptor for RGP (RGPR) is a G protein-coupled receptor (GPCR). Two types of GPCRs, RGPR1 and RGPR2, have been postulated as candidates. Furthermore, 1-MeAde produced by RGP not only induces oocyte maturation, but also induces gamete shedding, possibly by stimulating the secretion of acetylcholine in the ovaries and testes. Thus, RGP plays an important role in starfish reproduction, but its secretion mechanism is still unknown. It has also been revealed that RGP is found in the peripheral adhesive papillae of the brachiolaria arms. However, gonads are not developed in the larvae before metamorphosis. It may be possible to discover new physiological functions of RGP other than gonadotropin-like activity.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 8-5-1, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
5
|
Katayama H, Mita M. The C-terminally amidated relaxin-like gonad-stimulating peptide in the starfish Astropecten scoparius. Gen Comp Endocrinol 2023; 334:114226. [PMID: 36731602 DOI: 10.1016/j.ygcen.2023.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin, consisting of A- and B-chain. Recently, an RGP ortholog (Asc-RGP) from Astropecten scoparius in the order Paxillosida was found to harbor an amidation signal (Gly-Arg) at the C-terminus of the B-chain (Mita et al., 2020a). Two cleavage sites were also predicted within the signal peptide of the Asc-RGP precursor. Thus, four kinds of analogs (Asc-RGP-NH2(S), Asc-RGP-GR(S), Asc-RGP- NH2(L), Asc-RGP-GR(L) were hypothesized as natural Asc-RGPs. To identify the natural Asc-RGP, an extract of radial nerve cords from A. scoparius was analyzed using reverse-phase high-performance liquid chromatography and MALDI-TOF-mass spectrometry. The molecular weight of Asc-RGP was 4585.3, and those of A- and B-chains were 2511.8 and 2079.8, respectively. This strongly suggests that natural RGP in A. scoparius is Asc-RGP-NH2(S). Asc-RGP-NH2(S) stimulated 1-methyladenine and cyclic AMP production in isolated ovarian follicle cells of A. scoparius. On the other hand, the concentrations of four synthetic Asc-RGP analogs required for the induction of spawning in 50% of ovarian fragments were almost the same. The size and C-terminal amidation of the B-chain might not be important for spawning-inducing activity. C-terminally amidated RGPs in the B-chain were also observed in other species of starfish belonging to the order Paxillosida, particularly the family Astropectinidae, but not the family Luidiidae.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
6
|
Mita M, Katayama H, Yamamoto K, Shibata Y, Kiyomoto M. A Relaxin-Like Gonad-Stimulating Peptide Appears in the Early Development of the Starfish Patiria pectinifera. Zoolog Sci 2023; 40:7-12. [PMID: 36744704 DOI: 10.2108/zs220058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/13/2022] [Indexed: 01/18/2023]
Abstract
Relaxin-like gonad-stimulating peptide (RGP) is a hormone with gonadotropin-like activity in starfish. This study revealed that spawning inducing activity was detected in an extract of brachiolaria larvae of Patiria pectinifera. Spawning inducing activity in the extract was due to P. pectinifera RGP (PpeRGP), not 1-methyladenine. The expression of PpeRGP mRNA was also found in brachiolaria. Immunohistochemical observation with specific antibodies for PpeRGP showed that PpeRGP was distributed in the peripheral adhesive papilla of the brachiolaria arms. In contrast, PpeRGP was not detected in the adult rudiment or ciliary band regions, which are present in the neural system. These findings strongly suggest that RGP exists in the larvae before metamorphosis. Because gonads are not developed in starfish larvae, it seems likely that RGP plays another role other than gonadotropic action in the early development of starfish.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan,
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Kazutoshi Yamamoto
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasushi Shibata
- Department of Life and Health Science, Faculty of Life & Environmental Sciences, Teikyo University of Science, Uenohara, Yamanashi 409-0193, Japan
| | - Masato Kiyomoto
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301, Japan
| |
Collapse
|
7
|
Jönsson M, Morin M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Sex-specific expression of pheromones and other signals in gravid starfish. BMC Biol 2022; 20:288. [PMID: 36528687 PMCID: PMC9759900 DOI: 10.1186/s12915-022-01491-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef. RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.
Collapse
Affiliation(s)
- Mathias Jönsson
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marie Morin
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Mita M, Osugi T, Matsubara S, Kawada T, Satake H, Katayama H. A relaxin-like gonad-stimulating peptide identified from the starfish Astropecten scoparius. Mol Reprod Dev 2020; 88:34-42. [PMID: 33244845 DOI: 10.1002/mrd.23444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/12/2022]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B-chain (21 aa), C-peptide (47 aa), and A-chain (24 aa). There are three putative processing sites (Lys-Arg) between the B-chain and C-peptide, between the C-peptide and A-chain, and within the C-peptide. This structural organization revealed that the mature AscRGP is composed of A- and B-chains with two interchain disulfide bonds and one intrachain disulfide bond. The C-terminal residues of the B-chain are Gln-Gly-Arg, which is a potential substrate for formation of an amidated C-terminal Gln residue. Non-amidated (AscRGP-GR) and amidated (AscRGP-NH2 ) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP-GR and AscRGP-NH2 induced oocyte maturation and ovulation in similar dose-dependent manners. This is the first report on a C-terminally amidated functional RGP. Collectively, these results suggest that AscRGP-GR and AscRGP-NH2 act as a natural gonadotropic hormone in A. scoparius.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Hidekazu Katayama
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
9
|
Mita M, Osugi T, Takahashi T, Watanabe T, Satake H. Mechanism of gamete shedding in starfish: Involvement of acetylcholine in extracellular Ca 2+-dependent contraction of gonadal walls. Gen Comp Endocrinol 2020; 290:113401. [PMID: 31981689 DOI: 10.1016/j.ygcen.2020.113401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 01/22/2023]
Abstract
Starfish are suitable animals for the study of hormonal regulatory mechanism of oocyte maturation and ovulation. Although contraction of the gonadal walls is essential for the shedding gametes, little was known about the mechanism. When ovaries of starfish Patiria pectinifera were incubated in Ca2+-free seawater in the presence of 1-methyladenine (1-MeAde), the germinal vesicles in oocytes broke down, but no ovulation occurred. Verapamil, a potent inhibitor of voltage-dependent Ca2+ channels, inhibited 1-MeAde-induced ovulation. These results suggest that extracellular Ca2+ and its influx are indispensable for gamete shedding. Furthermore, acetylcholine (ACh) was involved in extracellular Ca2+-dependent contractions of gonadal walls. Although 1-MeAde failed to induce contraction of the gonadal walls in normal seawater containing L-glutamic acid, application of ACh or carbachol, an agonist for ACh receptor, could bring about shedding of mature oocytes. Atropine, a competitive antagonist of the muscarinic ACh receptor, inhibited 1-MeAde-induced ovulation, but a nicotinic ACh receptor antagonist mecamylamine had no effect. Furthermore, ACh was detected in the ovaries and testes in P. pectinifera. These findings suggest that ACh acts on muscarinic ACh receptors in gonadal walls to induce peristaltic contractions caused by Ca2+ influx via Ca2+ channels in the gonadal wall muscle for gamete shedding. The present study also provides new insight into the regulatory mechanism that 1-MeAde acts on secretion of ACh in ovaries and testes.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Center for Advanced Biomedical Sciences, Research Institute for Science and Engineering, Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Toshio Takahashi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
10
|
Environmental and biological cues for spawning in the crown-of-thorns starfish. PLoS One 2017; 12:e0173964. [PMID: 28355236 PMCID: PMC5371309 DOI: 10.1371/journal.pone.0173964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/01/2017] [Indexed: 11/22/2022] Open
Abstract
Sporadic outbreaks of the coral-eating crown-of-thorns starfish are likely to be due, at least in part, to spatial and temporal variation in reproductive and settlement success. For gonochoric and broadcast spawning species such as crown-of-thorns starfish, spawning synchrony is fundamental for achieving high rates of fertilization. Highly synchronized gamete release within and among distinct populations is typically the result of the entrainment of neurohormonal endogenous rhythms by cues from the environment. In this study, we conducted multiple spawning assays to test the effects of temperature change, reduced salinity and nutrient enrichment of seawater, phytoplankton, gametes (sperm and eggs), and the combined effect of sperm and phytoplankton on the likelihood of spawning in male and female crown-of-thorns starfish. We also investigated sex-specific responses to each of these potential spawning cues. We found that (1) abrupt temperature change (an increase of 4°C) induced spawning in males, but less so in females; (2) males often spawned in response to the presence of phytoplankton, but none of the females spawned in response to these cues; (3) the presence of sperm in the water column induced males and females to spawn, although additive and synergistic effects of sperm and phytoplankton were not significant; and (4) males are more sensitive to the spawning cues tested and most likely spawn prior to females. We propose that environmental cues act as spawning ‘inducers’ by causing the release of hormones (gonad stimulating substance) in sensitive males, while biological cues (pheromones) from released sperm, in turn, act as spawning ‘synchronizers’ by triggering a hormonal cascade resulting in gamete shedding by conspecifics. Given the immediate temporal linkage between the timing of spawning and fertilization events, variability in the extent and synchronicity of gamete release will significantly influence reproductive success and may account for fluctuations in the abundance of crown-of-thorns starfish.
Collapse
|
11
|
Toraya T, Kida T, Kuyama A, Matsuda S, Tanaka S, Komatsu Y, Tsurukai T. Immunophotoaffinity labeling of binders of 1-methyladenine, the oocyte maturation-inducing hormone of starfish. Biochem Biophys Res Commun 2017; 485:41-46. [PMID: 28174006 DOI: 10.1016/j.bbrc.2017.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary and resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the oocyte maturation-inducing hormone of starfish. Putative 1-MeAde receptors on the oocyte surface have been suggested, but not yet been biochemically characterized. Immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection, was attempted to detect unknown 1-MeAde binders including putative maturation-inducing hormone receptors in starfish oocytes. When the oocyte crude membrane fraction or its Triton X-100/EDTA extract was incubated with N6-[6-(5-azido-2-nitrobenzoyl)aminohexyl]carboxamidomethyl-1-methyladenine and then photo-irradiated, followed by western blotting with antibody that was raised against a 1-MeAde hapten, a single band with Mr of 47.5 K was detected. The band was lost when extract was heated at 100 °C. A similar 47.5 K band was detected in the crude membrane fraction of testis as well. Upon labeling with whole cells, this band was detected in immature and maturing oocytes, but only faintly in mature oocytes. As judged from these results, this 1-MeAde binder might be a possible candidate of the starfish maturation-inducing hormone receptors.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Tetsuo Kida
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Kuyama
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shinjiro Matsuda
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiichi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yo Komatsu
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Taro Tsurukai
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
12
|
Kalachev AV. A brief summary of neuroendocrine regulation of reproduction in sea stars. Gen Comp Endocrinol 2013; 183:79-82. [PMID: 23313074 DOI: 10.1016/j.ygcen.2012.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Over than fifty years starfishes have been widely used as model for studying the mechanisms of cell cycle regulation, oocyte maturation and fertilization. Besides, significant work has been done to investigate the role of nervous system in the control of reproduction and spawning in these animals. Nowadays, sea stars represent one of the most thoroughly studied model for hormonal regulation of reproduction among invertebrates. However, while the general picture of neuroendocrine control of asteroid reproduction can be drawn easily, our knowledge concerning the details of this process still has some gaps. Filling these gaps is essential for studying the diversity of hormonal mechanisms involved in regulation of animal reproduction. The present paper aims to briefly summarize current data on hormonal regulation of reproduction in sea stars and to highlight existing gaps in our knowledge on the details of this process.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo str., Vladivostok, Russia.
| |
Collapse
|
13
|
Walker CW, Lesser M, Unuma T. Sea Urchin Gametogenesis – Structural, Functional and Molecular/Genomic Biology. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2013. [DOI: 10.1016/b978-0-12-396491-5.00003-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Mita M, Yamamoto K, Nagahama Y. Interaction of Relaxin-Like Gonad-Stimulating Substance with Ovarian Follicle Cells of the StarfishAsterina pectinifera. Zoolog Sci 2011; 28:764-9. [DOI: 10.2108/zsj.28.764] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Ahmed HO, Katow T, Katow H. Spatiotemporal expression pattern of gonad-stimulating substance-like peptide of the sea cucumber, Apostichopus japonicus. Dev Growth Differ 2011; 53:639-52. [DOI: 10.1111/j.1440-169x.2011.01277.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Mita M, Yamamoto K, Yoshikuni M, Ohno K, Nagahama Y. Preliminary study on the receptor of gonad-stimulating substance (GSS) as a gonadotropin of starfish. Gen Comp Endocrinol 2007; 153:299-301. [PMID: 17368456 DOI: 10.1016/j.ygcen.2007.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 01/29/2007] [Indexed: 11/17/2022]
Abstract
Previously, the gonad-stimulating substance (GSS) which acts as the gonadotropin was purified from the starfish (Asterina pectinifera) and subsequently, its structure was deciphered. In this study, artificial GSS was synthesized and its interaction with the receptors was examined further. According to competitive experiments using radioiodinated and radioinert GSS in various tissues of A. pectinifera, high specific bindings were observed in the ovarian follicle cells and testicular interstitial cells. Scatchard plot analysis also showed that K(d) values were about 4nM in follicle cells and about 7nM in interstitial cells. The numbers of binding sites in follicle cells were estimated to be about 3pmoles/mg protein and in interstitial cells to be about 1pmoles/mg protein. These strongly suggest that GSS receptors are distributed to follicle cells in female and interstitial cells in male, respectively.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, National University Corporation, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | | | | | | | | |
Collapse
|
17
|
W Walker C, Unuma T, P Lesser M. Chapter 2 Gametogenesis and reproduction of sea urchins. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2007. [DOI: 10.1016/s0167-9309(07)80066-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Chia FS, Buckland-Nicks J. Sertoli-like Interstitial Cells in the Echino derm Testis: a Test of a Permeability Barrier. ACTA ACUST UNITED AC 1987. [DOI: 10.1080/01688170.1987.10510315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
|
20
|
H. Kanatani. 1930-1984. Dev Growth Differ 1985. [DOI: 10.1111/j.1440-169x.1985.000ii.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Buckland-Nicks J, Walker CW, Chia FS. Ultrastructure of the male reproductive system and of spermatogenesis in the viviparous brittle-star,Amphipholis squamata. J Morphol 1984; 179:243-262. [DOI: 10.1002/jmor.1051790304] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Meijer L, Guerrier P. Maturation and fertilization in starfish oocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1984; 86:129-96. [PMID: 6423562 DOI: 10.1016/s0074-7696(08)60179-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
SHIRAI HIROKO, IKEGAMI SUSUMU, KANATANI HARUO, MOHRI HIDEO. Regulation of Sperm Motility in Starfish. I. Initiation of Movement. (starfish sperm/seminal plasma/sperm propulsion/sperm best frequency). Dev Growth Differ 1982. [DOI: 10.1111/j.1440-169x.1982.00419.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Walker CW. Spermatogenic columns, somatic cells, and the microenvironment of germinal cells in the testes of asteroids. J Morphol 1980; 166:81-107. [DOI: 10.1002/jmor.1051660107] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Bickell LR, Chia FS, Crawford BJ. A fine structural study of the testicular wall and spermatogenesis in the crinoid,Florometra serratissima (Echinodermata). J Morphol 1980; 166:109-126. [DOI: 10.1002/jmor.1051660108] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
KISHIMOTO TAKEO, KANATANI HARUO. INDUCTION OF OOCYTE MATURATION BY DISULFIDE-REDUCING AGENT IN THE SEA CUCUMBER, STICHOPUS JAPONICUS. Dev Growth Differ 1980. [DOI: 10.1111/j.1440-169x.1980.00163.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Abstract
The follicle cells which surround the oocytes of starfish are known to both release the hormone 1-methyladenine and to respond to it by an active movement which forms a component of the spawning response to the hormone. In Patiria miniata these flagellated cells are located peripheral to the oocyte and have long cytoplasmic processes which penetrate the vitelline layer to the egg surface to form an adhering zonule-like junction. Within the follicle cell cytoplasm are located elongate filamentous bands which appear to represent a component of the contractile mechanism that mediates follicle cell response to 1-methyladenine. These bands do not resemble the filaments of vertebrate smooth muscle cells (quantity, distribution and size of filaments; lack of dense bodies in the filament mass), nor the contractile units of the superficial epithelium of lower vertebrate follicles.
Collapse
|
28
|
Walker CW. Ultrastructure of the somatic portion of the gonads in asteroids, with emphasis on flagellated-collar cells and nutrient transport. J Morphol 1979; 162:127-161. [DOI: 10.1002/jmor.1051620108] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
HINSCH GERTRUDEW, DEHN PAULAF. Ultrastructural evidence for Sertoli-like cells in the testis of the asteroid,Luidia clathrata(Say) (Echinodermata: Platyasterida). ACTA ACUST UNITED AC 1979. [DOI: 10.1080/01651269.1979.10553312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
KUBOTA JUNKO, KANATANI HARUO. BINDING OF CONCANAVALIN A TO THE SURFACE OF STARFISH FOLLICLE CELLS AND PRODUCTION OF 1-METHYLADENINE. Dev Growth Differ 1978. [DOI: 10.1111/j.1440-169x.1978.00349.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
|