Holland PC, Herscovics A. Inhibition of myoblast fusion by the glucosidase inhibitor N-methyl-1-deoxynojirimycin, but not by the mannosidase inhibitor 1-deoxymannojirimycin.
Biochem J 1986;
238:335-40. [PMID:
2948497 PMCID:
PMC1147140 DOI:
10.1042/bj2380335]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of N-linked-oligosaccharide-processing inhibitors on the fusion of rat L6 myoblasts to form myotubes were examined. The glucosidase inhibitor N-methyl-1-deoxynojirimycin (MDJN) greatly inhibited fusion, whereas the mannosidase inhibitor 1-deoxymannojirimycin (ManDJN) had relatively little effect, although both compounds prevented the formation of N-linked complex oligosaccharides. These results indicate that complex oligosaccharides on glycoproteins do not play a role in myoblast fusion. With MDJN, high-mannose oligosaccharides containing three glucose residues and seven to eight mannose residues were found at the cell surface, whereas with ManDJN, non-glucosylated high-mannose oligosaccharides with seven to nine mannose residues were obtained. These results indicate that the persistence of glucose residues on high-mannose oligosaccharides may be responsible for the inhibition of fusion. It is suggested that glucose either masks the cell-surface recognition process leading to fusion or prevents the cell-surface expression of specific glycoprotein(s) essential to the fusion process.
Collapse