1
|
Swadźba E, Rupik W. Cross-immunoreactivity between the LH1 antibody and cytokeratin epitopes in the differentiating epidermis of embryos of the grass snake Natrix natrix L. during the end stages of embryogenesis. PROTOPLASMA 2012; 249:31-42. [PMID: 21222007 DOI: 10.1007/s00709-010-0259-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 12/22/2010] [Indexed: 05/09/2023]
Abstract
The monoclonal anti-cytokeratin 1/10 (LH1) antibody recognizing K1/K10 keratin epitopes that characterizes a keratinized epidermis of mammals cross-reacts with the beta and Oberhäutchen layers covering the scales and gastrosteges of grass snake embryos during the final period of epidermis differentiation. The immunolocalization of the anti-cytokeratin 1/10 (LH1) antibody appears in the beta layer of the epidermis, covering the outer surface of the gastrosteges at the beginning of developmental stage XI, and in the beta layer of the epidermis, covering the outer surface of the scales at the end of developmental stage XI. This antibody cross-reacts with the Oberhäutchen layers in the epidermis covering the outer surface of both scales and gastrosteges at developmental stages XI and XII just before its fusion with the beta layers. After fusion of the Oberhäutchen and beta layers, LH1 immunolabeling is weaker than before. This might suggest that alpha-keratins in these layers of the epidermis are masked by beta-keratins, modified, or degraded. The anti-cytokeratin 1/10 (LH1) antibody stains the Oberhäutchen layer in the epidermis covering the inner surface of the gastrosteges and the hinge regions between gastrosteges at the end of developmental stage XI. However, the Oberhäutchen of the epidermis covering the inner surfaces of the scales and the hinge regions between scales does not show cytokeratin 1/10 (LH1) immunolabeling until hatching. This cross-reactivity suggests that the beta and Oberhäutchen layers probably contain some alpha-keratins that react with the LH1 antibody. It is possible that these alpha-keratins create specific scaffolding for the latest beta-keratin deposition. It is also possible that the LH1 antibody cross-reacts with other epidermal proteins such as filament-associated proteins, i.e., filaggrin-like. The anti-cytokeratin 1/10 (LH1) antibody does not stain the alpha and mesos layers until hatching. We suppose that the differentiation of these layers will begin just after the first postnatal sloughing.
Collapse
Affiliation(s)
- Elwira Swadźba
- Department of Animal Histology and Embryology, Silesian University, Katowice, Poland
| | | |
Collapse
|
2
|
Abstract
One of the most important stages of pregnancy is the activation of uterine contractions that result in the expulsion of the fetus. The timely onset of labour is clearly important for a healthy start to life but incomplete understanding of the precise mechanisms regulating labour onset have prohibited the development of effective and safe treatments for preterm labour. This review explores the activation of the myometrium at labour onset, focussing on mechanisms of uterine contractility, including those proteins that play an important role in smooth muscle contractility. The review primarily focuses on human work but in the absence of human data describes animal studies. A broad overview of myometrial contraction mechanisms is provided before discussing more detailed aspects and identifying areas where uncertainty remains. Also discussed is the recent application of ‘omics’ based approaches to parturition research, which has facilitated an increase in the understanding of myometrial activation.
Collapse
|
3
|
Voronin AP, Lobov IB, Gilson E, Podgornaya OI. A telomere-binding protein (TRF2/MTBP) from mouse nuclear matrix with motives of an intermediate filament-type rod domain. ACTA ACUST UNITED AC 2004; 6:205-18. [PMID: 14987434 DOI: 10.1089/109454503322733054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In previous work, we identified a telomeric DNA-binding protein (termed telomere-membrane binding protein, MTBP) in the envelope of the frog oocyte nucleus and raised antibodies against it. Here we present immunological evidence which suggests strongly that MTBP is identical with the vertebrate telomeric DNA-binding protein TRF2 (telomere-repeat factor 2). MTBP/TRF2 possesses motif which resembles rod domain characteristic of intermediate filament (IF) proteins as shown by immunological cross-reactivity with characteristic antibodies, as well as amino acid sequence homology. Anti-MTBP antibodies recognised a protein of the same M, as TRF2 in extracts of mouse nuclei and nuclear matrix as shown by ion-exchange chromatography, gel shift assays, and Western blots. This mouse MTBP analogue forms more stable complexes with the vertebrate telomeric DNA fragment (T(2)AG(3))(135) than with the corresponding fragment from Tetrahymena (T(2)G(4))(130). Proteins in each of these complexes are recognised by anti-MTBP antibody. In situ hybridization with the vertebrate telomeric DNA sequence (T(2)AG(3))(135) and immunofluorescence with anti-MTBP antibody had shown earlier that these are co-localised in the nucleus of mouse cells, and here MTBP is shown to be associated with the residual membrane of hepatocyte nuclei using Western blotting and immunofluorescence. Some immunofluorescence signal from MTBP is localized at chromosome extremities on metaphase plates from mouse cell culture, but the main signal is seen in patches scattered around the chromosomes which were identified as remnants of the nuclear envelope by double labelling with antibodies against lamin B. These observations suggest that MTBP/TRF2 is a good candidate for the attachment of telomeres to the nuclear envelope in somatic cells.
Collapse
Affiliation(s)
- Alexey P Voronin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|
4
|
Podgornaya OI, Voronin AP, Enukashvily NI, Matveev IV, Lobov IB. Structure-specific DNA-binding proteins as the foundation for three-dimensional chromatin organization. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:227-96. [PMID: 12722952 DOI: 10.1016/s0074-7696(05)24006-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Any functions of tandem repetitive sequences need proteins that specifically bind to them. Telomere-binding TRF2/MTBP attaches telomeres to the nuclear envelope in interphase due to its rod-domain-like motif. Interphase nuclei organized as a number of sponge-like ruffly round chromosome territories that could be rotated from outside. SAF-A/hnRNP-U and p68-helicase are proteins suitable to do that. Their location in the interchromosome territory space, ATPase domains, and the ability to be bound by satellite DNAs (satDNA) make them part of the wires used to help chromosome territory rotates. In case of active transcription p68-helicase can be involved in the formation of local "gene expression matrices" and due to its satDNA-binding specificity cause the rearrangement of the local chromosome territory. The marks of chromatin rearrangement, which have to be heritable, could be provided by SAF-A/hnRNP-U. During telophase unfolding the proper chromatin arrangement is restored according to these marks. The structural specificity of both proteins to the satDNAs provides a regulative but relatively stable mode of binding. The structural specificity of protein binding could help to find the "magic" centromeric sequence. With future investigations of proteins with the structural specificity of binding during early embryogenesis, when heterochromatin formation goes on, the molecular mechanisms of the "gene gating" hypothesis (Blobel, 1985) will be confirmed.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Nakagawa T, Chen J, Zhang Z, Kanai Y, Hirokawa N. Two distinct functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments. J Cell Biol 1995; 129:411-29. [PMID: 7721944 PMCID: PMC2199923 DOI: 10.1083/jcb.129.2.411] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurofilaments are the major cytoskeletal elements in the axon that take highly ordered structures composed of parallel arrays of 10-nm filaments linked to each other with frequent cross-bridges, and they are believed to maintain a highly polarized neuronal cell shape. Here we report the function of rat NF-M in this characteristic neurofilament assembly. Transfection experiments were done in an insect Sf9 cell line lacking endogenous intermediate filaments. NF-L and NF-M coassemble to form bundles of 10-nm filaments packed in a parallel manner with frequent cross-bridges resembling the neurofilament domains in the axon when expressed together in Sf9 cells. Considering the fact that the expression of either NF-L or NF-M alone in these cells results in neither formation of any ordered network of 10-nm filaments nor cross-bridge structures, NF-M plays a crucial role in this parallel filament assembly. In the case of NF-H the carboxyl-tail domain has been shown to constitute the cross-bridge structures. The similarity in molecular architecture between NF-M and NF-H suggests that the carboxyl-terminal tail domain of NF-M also constitutes cross-bridges. To examine this and to further investigate the function of the carboxyl-terminal tail domain of NF-M, we made various deletion mutants that lacked part of their tail domains, and we expressed these with NF-L. From this deletion mutant analysis, we conclude that the carboxyl-terminal tail domain of NF-M has two distinct functions. First, it is the structural component of cross-bridges, and these cross-bridges serve to control the spacing between core filaments. Second, the portion of the carboxyl-terminal tail domain of NF-M that is directly involved in cross-bridge formation affects the core filament assembly by helping them to elongate longitudinally so that they become straight.
Collapse
Affiliation(s)
- T Nakagawa
- Department of Anatomy and Cell Biology, University of Tokyo, Faculty of Medicine, Japan
| | | | | | | | | |
Collapse
|
7
|
Sarria AJ, Lieber JG, Nordeen SK, Evans RM. The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW-13 cells. J Cell Sci 1994; 107 ( Pt 6):1593-607. [PMID: 7962200 DOI: 10.1242/jcs.107.6.1593] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human SW-13 cells express the intermediate filament protein vimentin in a mosaic pattern (Hedberg, K. K. and Chen, L. B. (1986). Exp. Cell Res. 163, 509–517). We have isolated SW-13 clones that do (vim+) or do not (vim-) synthesize vimentin as analyzed using anti-intermediate filament immunofluorescence, electron microscopy and two-dimensional gel analysis of detergent-extracted preparations. Vimentin is the only cytoplasmic intermediate filament protein present in the vim+ cells, and the vim- cells do not contain any detectable cytoplasmic intermediate filament system. The presence or absence of intermediate filaments did not observably affect the distribution of mitochondria, endoplasmic reticulum, microtubules or actin stress fibers when these structures were visualized by fluorescence microscopy. However, electron microscopy and anti-lamin A/C immunofluorescence studies showed that nuclear morphology in vim- cells was frequently characterized by large folds or invaginations, while vim+ cells had a more regular or smooth nuclear shape. When vim- cells were transfected with a mouse vimentin expression plasmid, the synthesis of a mouse vimentin filament network restored the smooth nuclear morphology characteristic of vim+ cells. Conversely, when vim+ cells were transfected with a carboxy-terminally truncated mutant vimentin, expression of the mutant protein disrupted the organization of the endogenous vimentin filaments and resulted in nuclei with a prominently invaginated morphology. These results indicated that in SW-13 cells the vimentin filament system affects the shape of the nucleus.
Collapse
Affiliation(s)
- A J Sarria
- Department of Pathology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- L S Cox
- Department of Biochemistry, University of Dundee, Scotland
| | | |
Collapse
|
9
|
Mínguez A, Moreno Díaz de la Espina S. Immunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 1993; 106 ( Pt 1):431-9. [PMID: 8270641 DOI: 10.1242/jcs.106.1.431] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used polyclonal and monoclonal antibodies against different lamins from vertebrates, and the IFA antibody recognizing all kinds of intermediate filament proteins, to investigate the lamins of the nuclear matrix of Allium cepa meristematic root cells. All the antibodies react in the onion nuclear matrix with bands in the range of 60–65 kDa, which are enriched in the nuclear matrix after urea extraction, and do not crossreact with other antibodies recognizing intermediate filaments in plants (AFB, anti-vimentin and MAC 322), ruling out crossreaction with contaminating intermediate filaments of cytoplasmic bundles. In 2-D blots the chicken anti-lamin serum reacts with one spot at 65 kDa and pI 6.8 and the anti B-type lamin antibodies with another one at 64 kDa and pI 5.75. Both crossreact with IFA. The lamin is localized at the nuclear periphery and the lamina by indirect immunofluorescence. Immunogold labelling of nuclear matrix sections reveals that the protein is not only associated with the lamina, but also with the internal matrix. Taken together these results reveal that higher plants, which do not possess an organized network of cytoplasmic intermediate filaments, nevertheless present a well-organized lamina containing lamins in which at least one of them is immunologically related to vertebrate lamin B. Our data confirm that lamins are very old members of the intermediate filament proteins that have been better conserved in plants during evolution than their cytoplasmic counterparts.
Collapse
Affiliation(s)
- A Mínguez
- Laboratorio de Biología Celular y Molecular Vegetal, Centro de Investigaciones Biológicas, Madrid, Spain
| | | |
Collapse
|
10
|
Klymkowsky MW, Shook DR, Maynell LA. Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation. Proc Natl Acad Sci U S A 1992; 89:8736-40. [PMID: 1382297 PMCID: PMC49995 DOI: 10.1073/pnas.89.18.8736] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To study the role of keratin filaments in Xenopus development, fertilized eggs were injected with anti-keratin monoclonal antibodies. The anti-keratin monoclonal antibodies AE1 and AE3 induce abnormal gastrulation; in the most severely affected embryos gastrulation fails completely. In contrast, embryos injected with the anti-keratin antibody 1h5 develop normally. Immunocytochemical data indicate that injected 1h5 binds to the dense superficial keratin filament system of the embryo but not to the deeper keratin filament networks of ectodermal and subectodermal cells. Injected AE1 and AE3 do not bind to the superficial keratin system but appear to interact preferentially with the deep keratin filament systems of the embryo. We conclude that the superficial keratin filament system is not involved in the process of gastrulation per se but may protect the embryo from mechanical damage. On the other hand, our results suggest that the integrity of the deeper keratin filament systems is required for the mechanical integration of the morphogenetic movements that underlie gastrulation in Xenopus.
Collapse
|
11
|
Martelli AM, Billi AM, Gilmour RS, Manzoli L, Di Primio R, Cocco L. Mouse and human hemopoietic cell lines of erythroid lineage express lamins A,B and C. Biochem Biophys Res Commun 1992; 185:271-6. [PMID: 1599464 DOI: 10.1016/s0006-291x(05)80986-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using monoclonal antibodies, we have studied the expression of lamins A,B,C and vimentin in mouse and human erythroleukemia cells. We have found that in contrast with previous reports these cells have all three lamins. Mouse cells lack vimentin, whereas human cells express it. Lamins B and C are the most abundant lamins, whereas considerably less lamin A is detectable. Our results argue that some mouse and human hemopoietic cells can express all three lamins and that production of vimentin does not necessarily precede that of lamins A/C, as other reports have suggested in the past. The data also show that the absence of a salt resistant inner nuclear matrix is not always related with the lack of lamins A/C and vimentin, as recently proposed.
Collapse
Affiliation(s)
- A M Martelli
- Istituto di Anatomia Umana Normale, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Frederick SE, Mangan ME, Carey JB, Gruber PJ. Intermediate filament antigens of 60 and 65 kDa in the nuclear matrix of plants: their detection and localization. Exp Cell Res 1992; 199:213-22. [PMID: 1544367 DOI: 10.1016/0014-4827(92)90426-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the presence of a matrix in plant nuclei has been reported, major questions remain about its structural and biochemical features. We have used an intermediate filament antibody of broad specificity to explore whether Daucus carota (carrot) nuclei and nuclear matrices contain intermediate filament/lamin antigens and, if so, where specifically they are localized. SDS-PAGE and Western blotting revealed two bands, at 60 and 65 kDa, that were highly immunoreactive with the intermediate filament antibody (IFA) of Pruss et al. (1981, Cell 27, 419-428). This pattern was observed consistently, not only with carrot cell-free nuclei and nuclear matrices, but also with nuclear preparations from Vicia faba (broad bean) and Pisum sativum (pea). Immunofluorescence studies with whole carrot nuclei localized the IFA antigens to the nucleoplasm and disclosed no accentuated peripheral labeling. Agarose-embedded nuclear matrices showed not only fluorescence throughout the nucleoplasm but also heavy labeling surrounding the nucleoli and suggestions of peripheral labeling. At the ultrastructural level, immunogold results from pre- and postembedment treatments supported the conclusion that IFA antigens occur throughout the nucleoplasm, with possibly a slight concentration at the periphery. These combined results provide substantial evidence that plant nuclei and their matrices possess at least two major intermediate filament antigens with molecular weights characteristic of animal lamins. Whether or not these antigens represent plant lamins, their nonperipheral localization hints at significant differences among the eukaryotic kingdoms in nuclear organization.
Collapse
Affiliation(s)
- S E Frederick
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts 01075
| | | | | | | |
Collapse
|
13
|
Lassoued K, Danon F, Brouet JC. Human autoantibodies to lamin B receptor are also anti-idiotypic to certain anti-lamin B antibodies. Eur J Immunol 1991; 21:1959-62. [PMID: 1651247 DOI: 10.1002/eji.1830210826] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoantibodies reactive with nuclear envelope proteins are mainly detected in human sera from patients with liver diseases. Some of these antibodies are directed to lamin B, lamins A and C, or to the lamin B receptor (LBR). We show here that the latter one are anti-idiotypic to certain anti-lamin B antibodies. Using an enzyme-linked immunosorbent assay specific for lamins we found that serum M containing anti-LBR antibodies inhibited the binding to lamins of anti-lamin B autoantibodies from three of five sera tested. Similar results were obtained using patient's M purified IgG. The binding of monoclonal IgM, lambda anti-lamin B antibodies produced by a lymphoblastoid cell line derived from the patient's blood lymphocytes was also inhibited. Absorption of serum M with nuclei abolished the inhibitory activity. No inhibition was recorded with normal sera or sera containing other antinuclear specificities. Anti-LBR antibodies did not alter the binding to lamins of sera containing anti-lamins A and C antibodies. Altogether these findings demonstrate that anti-LBR antibodies are also combining site related anti-idiotypic antibodies (Ab2) to certain anti-lamin B antibodies, provide further evidence for discrete specificities among anti-lamin B antibodies and suggest that the occurrence of autoantibodies to nuclear envelope antigens may be under idiotypic regulation.
Collapse
Affiliation(s)
- K Lassoued
- Laboratory of Immunochemistry and Immunopathology, Institut National de la Santé et de la Recherche Médicale U.108, Hôpital Saint-Louis, Paris, France
| | | | | |
Collapse
|
14
|
Hakes DJ, Berezney R. Molecular cloning of matrin F/G: A DNA binding protein of the nuclear matrix that contains putative zinc finger motifs. Proc Natl Acad Sci U S A 1991; 88:6186-90. [PMID: 2068100 PMCID: PMC52047 DOI: 10.1073/pnas.88.14.6186] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have isolated a 2.7-kilobase rat liver cDNA clone that contains the entire 544-amino acid coding sequence for matrin F/G. This protein has previously been localized to the internal, fibrogranular areas of the nuclear matrix and shown to bind to DNA on nitrocellulose blots. The predicted amino acid sequence from the coding region of this cDNA shows that this protein contains approximately 50% hydrophobic amino acids with secondary structure predictions suggesting a large percentage of beta-sheet regions. No significant homologies were found with any other known proteins, including the nuclear lamins. The predicted amino acid sequence was also searched for DNA binding motifs. Two putative zinc finger motifs were found. In addition, a 7-mer palindromic sequence (Ser-Ser-Thr-Asn-Thr-Ser-Ser) was discovered within one of these zinc finger DNA binding regions. A possible regulatory role for this element is discussed.
Collapse
Affiliation(s)
- D J Hakes
- Department of Biological Sciences, State University of New York, Buffalo 14260
| | | |
Collapse
|
15
|
Ciesielski-Treska J, Ulrich G, Aunis D. Protein kinase C-induced redistribution of the cytoskeleton and phosphorylation of vimentin in cultured brain macrophages. J Neurosci Res 1991; 29:362-78. [PMID: 1920533 DOI: 10.1002/jnr.490290312] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The phorbol ester 12-O-tetradecanoyl-acetate (TPA) induced prominent and transient changes in the organization of the cytoskeleton in cultured amoeboid microglial cells including redistribution of actin toward the center of the cells and in the subplasmalemmal region, appearance of fine actin filaments, retraction of microtubules (MT), and rearrangement of intermediate filaments (IF) containing vimentin. The possible implication of protein kinase C (PKC) in mediating the effects of TPA was suggested by a parallel shift of PKC activity from the soluble to membrane fractions and phosphorylation of several microglial proteins. The rearrangement of IF closely correlated with increased vimentin phosphorylation, detected by pulse labeling of intact cells. Two monoclonal antivimentin antibodies, B3 and V9, showed different staining patterns. Immunoreactivity with the antibody B3 was more restricted and could be abolished by treatment of fixed, permeabilized cells with alkaline phosphatase, thus suggesting that the antibody reacts with a phosphorylated epitope. Using this antibody, rearrangement of IF involving vimentin phosphorylation was detected within 15 to 60 min of treatment with 50 nM TPA and consisted in the appearance of intense perinuclear fluorescent label. This perinuclear fluorescence persisted up to 24 hr after TPA removal and gradually diminished during the following 2 to 3 days. Immunochemical analysis of nonionic detergent-soluble and -insoluble extracts from untreated and TPA-treated cells revealed no differences in vimentin solubility suggesting that TPA induced vimentin phosphorylation does not result in notable vimentin filament disassembly. However the extent of vimentin degradation was more prominent in TPA-treated cultures indicating a higher sensitivity of vimentin to proteolytic degradation. The data show that PKC-mediated phosphorylation of vimentin results in precise spatial and temporal rearrangement of IF which are not associated with altered vimentin solubility, but possibly changes the mechanical properties and interactions of vimentin filaments.
Collapse
Affiliation(s)
- J Ciesielski-Treska
- Unité INSERM U-338 de Biologie de la Communication Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
16
|
Jiao RJ, Wu DL, Zhang B, Cai ST, Zhai ZH. Immunogold labelling of the intermediate filament-lamina-nuclear matrix system in HeLa and BHK-21 cells. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1991; 18:126-34. [PMID: 1885996 DOI: 10.1002/jemt.1060180206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whole-mount, sequentially extracted cells combined with immunogold electron microscopy were developed to demonstrate the intermediate filaments, lamina, and nuclear matrix (IF-L-NM) and to identify their protein components. The IFs of HeLa cells were reacted both with keratin and vimentin monoclonal antibodies; meanwhile, the IF network of BHK-21 cell was reacted only with vimentin monoclonal antibody. The lamina and nuclear matrices of both HeLa and BHK-21 cell were labelled, respectively, with lamin monoclonal antibody-gold complex and 280 Kd nuclear matrix protein monoclonal antibody-gold complex. The monoclonal antibody to keratin could cross-react with the lamina both of HeLa and BHK-21 cells.
Collapse
Affiliation(s)
- R J Jiao
- Department of Biology, Peking University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Molecular cloning of matrin 3. A 125-kilodalton protein of the nuclear matrix contains an extensive acidic domain. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92902-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Abstract
Intermediate filaments are major components of most eukaryotic cells that form from the polymerization of protein subunits that are expressed in tissue and development specific fashions. The interactions of intermediate filaments with a myriad of other cellular proteins and structures give rise to a complex overall cellular architecture that is likely responsible for cellular well-being. The mature 10-nm filaments are relatively stable cellular structures, but the intermediate filaments undergo major morphological and biochemical changes, especially during mitosis, differentiation, and in response to certain drugs. Evidence exists that hepatocyte intermediate filaments (keratin filaments) are deranged in alcoholic hepatitis, an inflammatory liver disease of alcoholics and heavy spree drinkers. The classical and characteristic pathological hepatocyte inclusion bodies of alcoholic hepatitis, Mallory bodies, are composed in part of normal keratins that likely derive from the pre-existing hepatocyte intermediate filament network. It is unclear if intermediate filament network derangement in alcoholic hepatitis is directly caused by the actions of ethanol or its metabolites on intermediate filaments or their associated structures, or whether alcohol causes a cellular insult or injury elsewhere and a subsequent response (e.g., immune) causes intermediate filament network derangement. The precise mechanisms responsible for intermediate filament derangement remain to be elucidated; however, experimental data exist that support and refute several hypotheses. Hopefully, further studies will help determine a better overall understanding of the abnormalities of intermediate filaments and their relationship to the pathophysiology of alcoholic hepatitis and other diseases.
Collapse
Affiliation(s)
- H J Worman
- Laboratory of Cell Biology, Rockefeller University, New York, New York
| |
Collapse
|
19
|
Cytoskeletal organization and cell organelle transport in basal epithelial cells of the freshwater sponge Spongilla lacustris. Cell Tissue Res 1990. [DOI: 10.1007/bf00329447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
St-Pierre J, Dufresne L. Identification and localization of proteins immunologically related to intermediate filament proteins in sea urchin eggs and embryos. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/cm.970170203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
|
22
|
Escurat M, Phamgia H, Huc C, Pouplard-Barthelaix A, Boitard C, Bach JF, Gros F, Portier MM. A new monoclonal antibody recognizing the amino-terminal consensus sequence of vertebrate intermediate filament proteins. FEBS Lett 1989; 253:157-62. [PMID: 2474457 DOI: 10.1016/0014-5793(89)80950-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mouse monoclonal antibody ME 101 raised against human peripherin, an intermediate filament protein (IFP) specific to well defined neuronal populations, recognizes all the major classes of vertebrate IFP in immunoblotting assays. Desmin, GFAP, vimentin, peripherin and the lightest neurofilament protein (NF-L) were cleaved into carboxy- and amino-terminal halves by N-chlorosuccinimide at their unique trytophan residue. Whereas the antibody directed against the epitope common to every IFP (intermediate filament antigen or IFA) and located on the carboxy-terminal end of the rod domain recognizes the carboxy-terminal half, the ME 101 antibody, as the present study illustrates, recognizes specifically the amino-terminal half. From the amino acid sequence data of IFP, it is deduced that the cognate epitope is localized on the amino-terminal part of coil la.
Collapse
Affiliation(s)
- M Escurat
- Collège de France, Laboratoire de Biochimie Cellulaire, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Lamb NJ, Fernandez A, Feramisco JR, Welch WJ. Modulation of vimentin containing intermediate filament distribution and phosphorylation in living fibroblasts by the cAMP-dependent protein kinase. J Cell Biol 1989; 108:2409-22. [PMID: 2661562 PMCID: PMC2115604 DOI: 10.1083/jcb.108.6.2409] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microinjection of the purified catalytic subunit of the cAMP-dependent protein kinase (A-kinase) into living rat embryo fibroblasts leads to dramatic changes in vimentin intermediate filament (IF) organization, involving the collapse of the filaments into tight bundles. In some cell types, this rearrangement of the IF proceeds further, leading to an apparent loss of filament integrity, resulting in a punctate staining pattern throughout the cytoplasm. Both these types of IF rearrangement are fully reversible, and similar to structural changes previously described for IF during mitosis. As shown by electron microscopy, in rat embryo fibroblasts these changes in IF structure do not involve the loss of the 10-nM filament structure but instead correspond to the bundling together of 25 or more individual filaments. Metabolic pulse labeling of injected cells reveals that accompanying these changes in IF organization is a dramatic increase in vimentin phosphorylation which appears maximal when the IF are fully rearranged. However, this increase in IF phosphorylation is not accompanied by any significant increase in soluble vimentin. Analysis of the sites of phosphorylation on vimentin from injected cells by either V8 protease cleavage, or two-dimensional tryptic peptide mapping, revealed increased de novo phosphorylation of two vimentin phosphopeptides after microinjection of A-kinase. These data strongly suggest that the site-specific phosphorylation of vimentin by A-kinase is responsible for the dynamic changes in IF organization observed after injection of the kinase into living cells, and may be involved in similar rearrangement of the IF previously described during mitosis or after heat shock.
Collapse
Affiliation(s)
- N J Lamb
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
25
|
French SW, Kawahara H, Katsuma Y, Ohta M, Swierenga SH. Interaction of intermediate filaments with nuclear lamina and cell periphery. ELECTRON MICROSCOPY REVIEWS 1989; 2:17-51. [PMID: 2491340 DOI: 10.1016/0892-0354(89)90009-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ultrastructural observations of the cytoskeleton suggest that the connection of the intermediate filaments (IFs) to actin microfilaments (MFs) at the plasma membrane and the nuclear lamina inside the nuclear membrane link signals received at the cell periphery to the nucleus. When these connections are viewed in three dimensions using detergent extracted cytoskeletal preparations from tissue cultures or slices made from tissue, the IFs are seen to run without interruption from the cell periphery to the nucleus and back. The IFs form side to side connections with the nuclear lamina and pore complexes. The nucleus and the centrioles are supported and held suspended in these extracted cells where all organelles and cytosol have been removed. The IFs are particularly dense in the ectoplasm where they form a sheet and provide the scaffolding which maintains the shape of the extracted cells. The IFs in the ectoplasm are attached to desmoplakin at cell-cell desmosome adhesions and to MFs where the cells are attached to the fibronectin substratum possibly through integrin linkages at adhesion plaques. This was graphically shown by immunogold labelling of IF cells treated with nickel. In this way, it was possible to visualize the loss of the cell-cell connections at desmosomes and the disruption of the IF-MF connections in the ectoplasm. The MFs after losing their connections with the IFs, redistribute to cover the entire cell periphery. The nickel treatment of primary liver cell cultures lead to the loss of several functions including formation of the bile canaliculus, the ability to secrete fluorescein diacetate and the ability to take up horseradish peroxidase (HRP) by endocytosis. These observations support the conclusion that the IF-MF connections at the cell periphery provide both structural and functional polarity of the liver cells including uptake and secretion and the formation of bile canaliculi.
Collapse
Affiliation(s)
- S W French
- Dept. of Pathology, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
26
|
Dinsmore JH, Sloboda RD. Calcium and calmodulin-dependent phosphorylation of a 62 kd protein induces microtubule depolymerization in sea urchin mitotic apparatuses. Cell 1988; 53:769-80. [PMID: 2836067 DOI: 10.1016/0092-8674(88)90094-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sea urchin mitotic apparatuses (MAs) were isolated in a microtubule stabilizing buffer that contained detergent. These isolated MAs contain a calcium and calmodulin-dependent protein kinase that phosphorylates one specific MA-associated endogenous substrate with a relative molecular mass of 62 kd. No protein phosphorylation occurs in the presence of calcium or magnesium ion alone, or when magnesium ion is combined with 10 microM cyclic AMP or cyclic GMP. Because in vivo labeling studies showed that the 62 kd protein was also phosphorylated in living cells during mitosis, the effect of protein phosphorylation on MA stability was also studied. When isolated MAs were incubated under conditions that resulted in phosphorylation of the 62 kd protein, substantial depolymerization of MA microtubules occurred within 10 min. MAs incubated under similar conditions but in the absence of 62 kd phosphorylation lost many fewer microtubules and were stable for up to 30 min. The results are discussed with respect to a model for mitosis in which the specific role of protein phosphorylation in the events of anaphase is addressed.
Collapse
Affiliation(s)
- J H Dinsmore
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | | |
Collapse
|
27
|
Clawson GA, Lackey A, Tokes ZA. The 46-kDa nucleoside triphosphatase of rat liver nuclear scaffold represents the N-terminal portion of lamins A/C. Exp Cell Res 1988; 176:180-6. [PMID: 2836227 DOI: 10.1016/0014-4827(88)90132-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The major nucleoside triphosphatase (NTPase) of rat liver nuclear scaffold (NS) or envelope, which is thought to participate in nucleocytoplasmic transport, has been identified via photoaffinity labeling as a 46-kDa polypeptide. This 46-kDa protein was purified by SDS-polyacrylamide gel electrophoresis and cleaved with trypsin. The resulting peptides were purified by HPLC and five were microsequenced. All five peptides appear to be derived from the N-terminal region of lamins A/C. Subsequent experiments with photolabeled NS showed that the 46-kDa polypeptide was selectively immunoprecipitated by antiserum specific to lamins A/C and by affinity-purified anti-lamin antibodies. Photolabeling of nuclei prepared in the presence of protease inhibitors showed predominant labeling of the 46-kDa polypeptide, suggesting that it is an integral nuclear constituent and not an artifact produced during NS preparation. Use of protease inhibitors throughout purification of NS increased the specificity of photolabeling of the 46-kDa band by significantly reducing photolabeling of smaller molecular weight components, which arise by proteolysis. Anti-lamin antibodies also produced a significant inhibition of NTPase activity in NS. These results suggest that the N-terminal portion of lamins A/C represents the 46-kDa NTPase, which, according to previous reports, may participate in RNA transport.
Collapse
Affiliation(s)
- G A Clawson
- Department of Pathology, School of Medicine, University of California, San Francisco 94143
| | | | | |
Collapse
|