1
|
Ecard J, Lian YL, Divoux S, Gouveia Z, Vigne E, Perez F, Boncompain G. Lysosomal membrane proteins LAMP1 and LIMP2 are segregated in the Golgi apparatus independently of their clathrin adaptor binding motif. Mol Biol Cell 2024; 35:ar42. [PMID: 38231876 PMCID: PMC10916873 DOI: 10.1091/mbc.e23-06-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
To reach the lysosome, lysosomal membrane proteins (LMPs) are translocated in the endoplasmic reticulum after synthesis and then transported to the Golgi apparatus. The existence of a direct transport from the Golgi apparatus to the endosomes but also of an indirect route through the plasma membrane has been described. Clathrin adaptor binding motifs contained in the cytosolic tail of LMPs have been described as key players in their intracellular trafficking. Here we used the RUSH assay to synchronize the biosynthetic transport of multiple LMPs. After exiting the Golgi apparatus, RUSH-synchronized LAMP1 was addressed to the cell surface both after overexpression or at endogenous level. Its YXXΦ motif was not involved in the transport from the Golgi apparatus to the plasma membrane but in its endocytosis. LAMP1 and LIMP2 were sorted from each other after reaching the Golgi apparatus. LIMP2 was incorporated in punctate structures for export from the Golgi apparatus from which LAMP1 is excluded. LIMP2-containing post-Golgi transport intermediates did not rely neither on its adaptor binding signal nor on its C-terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Jason Ecard
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
- Large Molecules Research, Sanofi, 94400 Vitry-Sur-Seine, France
| | - Yen-Ling Lian
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Séverine Divoux
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Zelia Gouveia
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | | | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| |
Collapse
|
2
|
Miyoshi K, Hagita H, Horiguchi T, Tanimura A, Noma T. Redefining GBA gene structure unveils the ability of Cap-independent, IRES-dependent gene regulation. Commun Biol 2022; 5:639. [PMID: 35831491 PMCID: PMC9279297 DOI: 10.1038/s42003-022-03577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Glucosylceramide is the primary molecule of glycosphingolipids, and its metabolic regulation is crucial for life. Defects in the catabolizing enzyme, glucocerebrosidase (GCase), cause a lysosomal storage disorder known as Gaucher disease. However, the genetic regulation of GCase has not been fully understood. Here we show the redefined structure of the GCase coding gene (GBA), and clarify the regulatory mechanisms of its transcription and translation. First, alternative uses of the two GBA gene promoters were identified in fibroblasts and HL60-derived macrophages. Intriguingly, both GBA transcripts and GCase activities were induced in macrophages but not in neutrophils. Second, we observed cap-independent translation occurs via unique internal ribosome entry site activities in first promoter-driven GBA transcripts. Third, the reciprocal expression was observed in GBA and miR22-3p versus GBAP1 transcripts before and after HL60-induced macrophage differentiation. Nevertheless, these findings clearly demonstrate novel cell-type-specific GBA gene expression regulatory mechanisms, providing new insights into GCase biology. The cell type-specific expression of the glucocerebrosidase gene, associated with the lysosomal storage disorder called Gaucher disease, is linked to cis- and trans-regulatory transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Keiko Miyoshi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan.
| | - Hiroko Hagita
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan
| | - Taigo Horiguchi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan
| | - Ayako Tanimura
- Division of Food & Health Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan
| | - Takafumi Noma
- Department of Nutrition and Health Promotion, Faculty of Human Life Studies, Hiroshima Jogakuin University, 4-13-1 Ushita-higashi, Higashi-ku, Hiroshima, 732-0063, Japan
| |
Collapse
|
3
|
Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M. Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2. Traffic 2015; 16:1127-36. [PMID: 26219725 DOI: 10.1111/tra.12313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
The lysosomal integral membrane protein type 2 (LIMP-2/SCARB2) has been described as a mannose 6-phosphate (M6P)-independent trafficking receptor for β-glucocerebrosidase (GC). Recently, a putative M6P residue in a crystal structure of a recombinantly expressed LIMP-2 ectodomain has been reported. Based on surface plasmon resonance and fluorescence lifetime imaging analyses, it was suggested that the interaction of soluble LIMP-2 with the cation-independent M6P receptor (MPR) results in M6P-dependent targeting of LIMP-2 to lysosomes. As the physiological relevance of this observation was not addressed, we investigated M6P-dependent delivery of LIMP-2 to lysosomes in murine liver and mouse embryonic fibroblasts. We demonstrate that LIMP-2 and GC reach lysosomes independent of the M6P pathway. In fibroblasts lacking either MPRs or the M6P-forming N-acetylglucosamine (GlcNAc)-1-phosphotransferase, LIMP-2 still localizes to lysosomes. Immunoblot analyses also revealed comparable LIMP-2 levels within lysosomes purified from liver of wild-type (wt) and GlcNAc-1-phosphotransferase-defective mice. Heterologous expression of the luminal domain of LIMP-2 in wild-type, LIMP-2-deficient and GlcNAc-1-phosphotransferase-defective cells further established that the M6P modification is dispensable for lysosomal sorting of LIMP-2. Finally, cathepsin Z, a known GlcNAc-1-phosphotransferase substrate, but not LIMP-2, could be precipitated with M6P-specific antibodies. These data prove M6P-independent lysosomal sorting of LIMP-2 and subsequently GC in vivo.
Collapse
Affiliation(s)
- Judith Blanz
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Friederike Zunke
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Sandra Markmann
- Arbeitsbereich Molekularbiologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Damme
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Thomas Braulke
- Arbeitsbereich Molekularbiologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Biochemisches Institut der Christian Albrechts Universität zu Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Michael Schwake
- Biochemie III/ Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
4
|
Kallemeijn WW, Witte MD, Wennekes T, Aerts JMFG. Mechanism-based inhibitors of glycosidases: design and applications. Adv Carbohydr Chem Biochem 2015; 71:297-338. [PMID: 25480507 DOI: 10.1016/b978-0-12-800128-8.00004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article covers recent developments in the design and application of activity-based probes (ABPs) for glycosidases, with emphasis on the different enzymes involved in metabolism of glucosylceramide in humans. Described are the various catalytic reaction mechanisms employed by inverting and retaining glycosidases. An understanding of catalysis at the molecular level has stimulated the design of different types of ABPs for glycosidases. Such compounds range from (1) transition-state mimics tagged with reactive moieties, which associate with the target active site—forming covalent bonds in a relatively nonspecific manner in or near the catalytic pocket—to (2) enzyme substrates that exploit the catalytic mechanism of retaining glycosidase targets to release a highly reactive species within the active site of the enzyme, to (3) probes based on mechanism-based, covalent, and irreversible glycosidase inhibitors. Some applications in biochemical and biological research of the activity-based glycosidase probes are discussed, including specific quantitative visualization of active enzyme molecules in vitro and in vivo, and as strategies for unambiguously identifying catalytic residues in glycosidases in vitro.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin D Witte
- Department of Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Tom Wennekes
- Department of Synthetic Organic Chemistry, Wageningen University, Wageningen, The Netherlands.
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Grabowski GA. Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example. Expert Opin Drug Deliv 2006; 3:771-82. [PMID: 17076599 DOI: 10.1517/17425247.3.6.771] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enzyme therapies for lysosomal storage diseases have developed over the past decade into the standard-of-care for affected patients. Such therapy for Gaucher disease has been the prototype, using natural source or recombinant forms of human acid beta-glucosidase (GCase). In Gaucher disease, macrophages are the repository for the pathological lipid and the target for delivery of GCase. The macrophage mannose receptor provides a Trojan horse for intracellular delivery of intravenously administered GCase (man-GCase) with mannosyl-terminated oligosaccharide chains. Passage through several hostile compartments (e.g., plasma) leads to inefficient delivery of man-GCase to macrophage lysosomes. However, regular infusions of man-GCase re-establishes health in affected patients. Similar results are being obtained in several other lysosomal storage diseases. Evolving gene and chaperone approaches provide alternative treatment strategies.
Collapse
Affiliation(s)
- Gregory A Grabowski
- The Division and Programme in Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
6
|
Ohashi T, Hong CM, Weiler S, Tomich JM, Aerts JM, Tager JM, Barranger JA. Characterization of human glucocerebrosidase from different mutant alleles. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67845-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Van Weely S, Aerts JM, Van Leeuwen MB, Heikoop JC, Donker-Koopman WE, Barranger JA, Tager JM, Schram AW. Function of oligosaccharide modification in glucocerebrosidase, a membrane-associated lysosomal hydrolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:669-77. [PMID: 2143986 DOI: 10.1111/j.1432-1033.1990.tb19173.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nature and function of oligosaccharide modification in glucocerebrosidase, a membrane-associated lysosomal hydrolase, have been investigated in cultured human skin fibroblasts. Glucocerebrosidase is synthesised as a 62.5-kDa precursor with high-mannose-type oligosaccharide chains and an apparent native isoelectric point of 6.0-7.0. Subsequent processing of the oligosaccharide moieties to sialylated complex-type structures results in formation of 65-68-kDa forms of the enzyme with apparent native isoelectric points of 4.3-5.0. These forms are transported to lysosomes and subsequently modified by the sequential action of lysosomal exoglycosidases, finally resulting in a 59-kDa form with an isoelectric point near neutrality. The existence of oligosaccharide modification of the enzyme in the lysosomes is illustrated by the accumulation of different intermediate forms of glucocerebrosidase in mutant cell lines deficient in lysosomal exoglycosidases. The enzyme does not undergo proteolytic modification during maturation. The possible physiological relevance of the oligosaccharide modification of glucocerebrosidase in the lysosomes was investigated by studying the properties of the enzyme in fibroblasts deficient in lysosomal exoglycosidases, and also the properties of homogeneous pure glucocerebrosidase from placenta, modified in the oligosaccharide moieties by digestion in vitro with glycosidases. Modification of the oligosaccharide moieties of glucocerebrosidase had no significant effect on the catalytic activity of the enzyme as measured with either artificial or natural substrates in the presence of artificial or natural activators. There was also no effect of modification of the oligosaccharide chains on the intracellular stability of the enzyme or on its apparent hydrophobicity. We conclude that oligosaccharide modification of glucocerebrosidase in the lysosomes simply reflects further maturation of the enzyme in the lysosome and is of no importance to its function.
Collapse
Affiliation(s)
- S Van Weely
- E. C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|