1
|
Saleh HA, Mitwasi N, R Loureiro L, Kegler A, Soto KEG, Hoffmann L, Crespo E, Arndt C, Bergmann R, Bachmann M, Feldmann A. RevCAR-expressing immune effector cells for targeting of Fn14-positive glioblastoma. Cancer Gene Ther 2024; 31:1323-1334. [PMID: 38582787 PMCID: PMC11405279 DOI: 10.1038/s41417-024-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In recent studies, we have established the unique adapter chimeric antigen receptor (CAR) platform RevCAR which uses, as an extracellular CAR domain, a peptide epitope instead of an antibody domain. RevCAR adapters (termed RevCAR target modules, RevTMs) are bispecific antibodies that enable the reversible ON/OFF switch of the RevCAR system, improving the safety compared to conventional CARs. Here, we describe for the first time its use for retargeting of both T and NK-92 cells. In addition, we describe the development and preclinical validation of a novel RevTM for targeting of the fibroblast growth factor-inducible 14 (Fn14) surface receptor which is overexpressed on Glioblastoma (GBM) cells, and therefore serves as a promising target for the treatment of GBM. The novel RevTM efficiently redirects RevCAR modified T and NK-92 cells and leads to the killing of GBM cells both in vitro and in vivo. Tumor cell killing is associated with increased IL-2, TNF-α and/or IFN-γ secretion. Hence, these findings give an insight into the complementary potential of both RevCAR T and NK-92 systems as a safe and specific immunotherapeutic approach against GBM.
Collapse
Affiliation(s)
- Haidy A Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Karla Elizabeth González Soto
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Lydia Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Eugenia Crespo
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307, Dresden, Germany
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Boutier H, Loureiro LR, Hoffmann L, Arndt C, Bartsch T, Feldmann A, Bachmann MP. UniCAR T-Cell Potency-A Matter of Affinity between Adaptor Molecules and Adaptor CAR T-Cells? Int J Mol Sci 2024; 25:7242. [PMID: 39000348 PMCID: PMC11241561 DOI: 10.3390/ijms25137242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Although Chimeric Antigen Receptor (CAR) T-cells have shown high efficacy in hematologic malignancies, they can cause severe to life-threatening side effects. To address these safety concerns, we have developed adaptor CAR platforms, like the UniCAR system. The redirection of UniCAR T-cells to target cells relies on a Target Module (TM), containing the E5B9 epitope and a tumor-specific binding moiety. Appropriate UniCAR-T activation thus involves two interactions: between the TM and the CAR T-cell, and the TM and the target cell. Here, we investigate if and how alterations of the amino acid sequence of the E5B9 UniCAR epitope impact the interaction between TMs and the UniCAR. We identify the new epitope E5B9L, for which the monoclonal antibody 5B9 has the greatest affinity. We then integrate the E5B9L peptide in previously established TMs directed to Fibroblast Activation Protein (FAP) and assess if such changes in the UniCAR epitope of the TMs affect UniCAR T-cell potency. Binding properties of the newly generated anti-FAP-E5B9L TMs to UniCAR and their ability to redirect UniCAR T-cells were compared side-by-side with the ones of anti-FAP-E5B9 TMs. Despite a substantial variation in the affinity of the different TMs to the UniCAR, no significant differences were observed in the cytotoxic and cytokine-release profiles of the redirected T-cells. Overall, our work indicates that increasing affinity of the UniCAR to the TM does not play a crucial role in such adaptor CAR system, as it does not significantly impact the potency of the UniCAR T-cells.
Collapse
Affiliation(s)
- Hugo Boutier
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Lydia Hoffmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (H.B.); (L.R.L.)
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Loureiro LR, Hoffmann L, Neuber C, Rupp L, Arndt C, Kegler A, Kubeil M, Hagemeyer CE, Stephan H, Schmitz M, Feldmann A, Bachmann M. Immunotheranostic target modules for imaging and navigation of UniCAR T-cells to strike FAP-expressing cells and the tumor microenvironment. J Exp Clin Cancer Res 2023; 42:341. [PMID: 38102692 PMCID: PMC10722841 DOI: 10.1186/s13046-023-02912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cells are a promising approach in cancer immunotherapy, particularly for treating hematologic malignancies. Yet, their effectiveness is limited when tackling solid tumors, where immune cell infiltration and immunosuppressive tumor microenvironments (TME) are major hurdles. Fibroblast activation protein (FAP) is highly expressed on cancer-associated fibroblasts (CAFs) and various tumor cells, playing an important role in tumor growth and immunosuppression. Aiming to modulate the TME with increased clinical safety and effectiveness, we developed novel small and size-extended immunotheranostic UniCAR target modules (TMs) targeting FAP. METHODS The specific binding and functionality of the αFAP-scFv TM and the size-extended αFAP-IgG4 TM were assessed using 2D and 3D in vitro models as well as in vivo. Their specific tumor accumulation and diagnostic potential were evaluated using PET studies after functionalization with a chelator and suitable radionuclide. RESULTS The αFAP-scFv and -IgG4 TMs effectively and specifically redirected UniCAR T-cells using 2D, 3D, and in vivo models. Moreover, a remarkably high and specific accumulation of radiolabeled FAP-targeting TMs at the tumor site of xenograft mouse models was observed. CONCLUSIONS These findings demonstrate that the novel αFAP TMs are promising immunotheranostic tools to foster cancer imaging and treatment, paving the way for a more convenient, individualized, and safer treatment of cancer patients.
Collapse
Affiliation(s)
- Liliana R Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
| | - Lydia Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexandra Kegler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christoph E Hagemeyer
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Soto KEG, Loureiro LR, Bartsch T, Arndt C, Kegler A, Mitwasi N, Drewitz L, Hoffmann L, Saleh HA, Crespo E, Mehnert M, Daglar C, Abken H, Momburg F, Bachmann M, Feldmann A. Targeting colorectal cancer cells using AND-gated adaptor RevCAR T-cells. Front Immunol 2023; 14:1302354. [PMID: 38169746 PMCID: PMC10758449 DOI: 10.3389/fimmu.2023.1302354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the success of chimeric antigen receptor (CAR) T-cells especially for treating hematological malignancies, critical drawbacks, such as "on-target, off-tumor" toxicities, need to be addressed to improve safety in translating to clinical application. This is especially true, when targeting tumor-associated antigens (TAAs) that are not exclusively expressed by solid tumors but also on hea9lthy tissues. To improve the safety profile, we developed switchable adaptor CAR systems including the RevCAR system. RevCAR T-cells are activated by cross-linking of bifunctional adaptor molecules termed target modules (RevTM). In a further development, we established a Dual-RevCAR system for an AND-gated combinatorial targeting by splitting the stimulatory and co-stimulatory signals of the RevCAR T-cells on two individual CARs. Examples of common markers for colorectal cancer (CRC) are the carcinoembryonic antigen (CEA) and the epithelial cell adhesion molecule (EpCAM), while these antigens are also expressed by healthy cells. Here we describe four novel structurally different RevTMs for targeting of CEA and EpCAM. All anti-CEA and anti-EpCAM RevTMs were validated and the simultaneous targeting of CEA+ and EpCAM+ cancer cells redirected specific in vitro and in vivo killing by Dual-RevCAR T-cells. In summary, we describe the development of CEA and EpCAM specific adaptor RevTMs for monospecific and AND-gated targeting of CRC cells via the RevCAR platform as an improved approach to increase tumor specificity and safety of CAR T-cell therapies.
Collapse
Affiliation(s)
- Karla E. G. Soto
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Liliana R. Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tabea Bartsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Alexandra Kegler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Nicola Mitwasi
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Laura Drewitz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Lydia Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Haidy A. Saleh
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Eugenia Crespo
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Maria Mehnert
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Cansu Daglar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Hinrich Abken
- Department of Gene-Immunotherapy, Leibniz-Institute of Immunotherapy, and University Regensburg, Regensburg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), partner site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), partner site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
5
|
Peschke JC, Bergmann R, Mehnert M, Gonzalez Soto KE, Loureiro LR, Mitwasi N, Kegler A, Altmann H, Wobus M, Máthé D, Szigeti K, Feldmann A, Bornhäuser M, Bachmann M, Fasslrinner F, Arndt C. FLT3-directed UniCAR T-cell therapy of acute myeloid leukaemia. Br J Haematol 2023; 202:1137-1150. [PMID: 37460273 DOI: 10.1111/bjh.18971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 09/12/2023]
Abstract
Adaptor chimeric antigen receptor (CAR) T-cell therapy offers solutions for improved safety and antigen escape, which represent main obstacles for the clinical translation of CAR T-cell therapy in myeloid malignancies. The adaptor CAR T-cell platform 'UniCAR' is currently under early clinical investigation. Recently, the first proof of concept of a well-tolerated, rapidly switchable, CD123-directed UniCAR T-cell product treating patients with acute myeloid leukaemia (AML) was reported. Relapsed and refractory AML is prone to high plasticity under therapy pressure targeting one single tumour antigen. Thus, targeting of multiple tumour antigens seems to be required to achieve durable anti-tumour responses, underlining the need to further design alternative AML-specific target modules (TM) for the UniCAR platform. We here present the preclinical development of a novel FMS-like tyrosine kinase 3 (FLT3)-directed UniCAR T-cell therapy, which is highly effective for in vitro killing of both AML cell lines and primary AML samples. Furthermore, we show in vivo functionality in a murine xenograft model. PET analyses further demonstrate a short serum half-life of FLT3 TMs, which will enable a rapid on/off switch of UniCAR T cells. Overall, the presented preclinical data encourage the further development and clinical translation of FLT3-specific UniCAR T cells for the therapy of AML.
Collapse
Affiliation(s)
- J C Peschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Partner Site, Dresden, Germany
| | - R Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - M Mehnert
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - K E Gonzalez Soto
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - L R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - N Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - A Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - H Altmann
- National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Partner Site, Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Wobus
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, In Vivo Imaging Advanced Core Facility, Szeged, Hungary
| | - K Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - A Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Partner Site, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Bornhäuser
- National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Partner Site, Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- School of Cancer and Pharmaceutical Science, King's College, London, UK
| | - M Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Partner Site, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Fasslrinner
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Kegler A, Drewitz L, Arndt C, Daglar C, Rodrigues Loureiro L, Mitwasi N, Neuber C, González Soto KE, Bartsch T, Baraban L, Ziehr H, Heine M, Nieter A, Moreira-Soto A, Kühne A, Drexler JF, Seliger B, Laube M, Máthé D, Pályi B, Hajdrik P, Forgách L, Kis Z, Szigeti K, Bergmann R, Feldmann A, Bachmann M. A novel ACE2 decoy for both neutralization of SARS-CoV-2 variants and killing of infected cells. Front Immunol 2023; 14:1204543. [PMID: 37383226 PMCID: PMC10293748 DOI: 10.3389/fimmu.2023.1204543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment.
Collapse
Affiliation(s)
- Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Laura Drewitz
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cansu Daglar
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christin Neuber
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Karla Elizabeth González Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Larysa Baraban
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Holger Ziehr
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Markus Heine
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Annabel Nieter
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Andres Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Barbara Seliger
- Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute of Translational Immunology, Medical High School, Brandenburg an der Havel, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, In Vivo Imaging Advanced Core Facility, Szeged, Hungary
- CROmed Translational Research Ltd., Budapest, Hungary
| | - Bernadett Pályi
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Forgách
- Semmelweis University School of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zoltán Kis
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
8
|
Saleh HA, Mitwasi N, Ullrich M, Kubeil M, Toussaint M, Deuther-Conrad W, Neuber C, Arndt C, R. Loureiro L, Kegler A, González Soto KE, Belter B, Rössig C, Pietzsch J, Frenz M, Bachmann M, Feldmann A. Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells. Front Immunol 2023; 14:1166169. [PMID: 37122703 PMCID: PMC10145173 DOI: 10.3389/fimmu.2023.1166169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, Technische Universität Dresden, Dresden, Germany
| | - Liliana R. Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Birgit Belter
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Münster, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, Frankfurt, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
- *Correspondence: Michael Bachmann,
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
| |
Collapse
|
9
|
Lindner D, Arndt C, Loureiro LR, Feldmann A, Kegler A, Koristka S, Berndt N, Mitwasi N, Bergmann R, Frenz M, Bachmann MP. Combining Radiation- with Immunotherapy in Prostate Cancer: Influence of Radiation on T Cells. Int J Mol Sci 2022; 23:ijms23147922. [PMID: 35887271 PMCID: PMC9324763 DOI: 10.3390/ijms23147922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Radiation of tumor cells can lead to the selection and outgrowth of tumor escape variants. As radioresistant tumor cells are still sensitive to retargeting of T cells, it appears promising to combine radio- with immunotherapy keeping in mind that the radiation of tumors favors the local conditions for immunotherapy. However, radiation of solid tumors will not only hit the tumor cells but also the infiltrated immune cells. Therefore, we wanted to learn how radiation influences the functionality of T cells with respect to retargeting to tumor cells via a conventional bispecific T cell engager (BiTE) and our previously described modular BiTE format UNImAb. T cells were irradiated between 2 and 50 Gy. Low dose radiation of T cells up to about 20 Gy caused an increased release of the cytokines IL-2, TNF and interferon-γ and an improved capability to kill target cells. Although radiation with 50 Gy strongly reduced the function of the T cells, it did not completely abrogate the functionality of the T cells.
Collapse
Affiliation(s)
- Diana Lindner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
- Tumor Immunology, University Hospital Carl Gustav Carus, University Cancer Center (UCC), Technical University Dresden, 01307 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Liliana Rodrigues Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, 65926 Frankfurt, Germany;
| | - Michael P. Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-351-260-3170
| |
Collapse
|
10
|
Mitwasi N, Arndt C, Loureiro LR, Kegler A, Fasslrinner F, Berndt N, Bergmann R, Hořejší V, Rössig C, Bachmann M, Feldmann A. Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR). Int J Mol Sci 2022; 23:4920. [PMID: 35563312 PMCID: PMC9105388 DOI: 10.3390/ijms23094920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Chimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough therapy for hematological malignancies. Despite their success, clinical experience has revealed several challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens, should be considered to further improve CAR T-cell therapy for B-ALL. In this paper, we address both issues by investigating the use of CD10 as a therapeutic target for B-ALL with our switchable UniCAR system. The UniCAR platform is a modular platform that depends on the presence of two elements to function. These include UniCAR T-cells and the target modules (TMs), which cross-link the T-cells to their respective targets on tumor cells. The TMs function as keys that control the switchability of UniCAR T-cells. Here, we demonstrate that UniCAR T-cells, armed with anti-CD10 TM, can efficiently kill B-ALL cell lines, as well as patient-derived B-ALL blasts, thereby highlighting the exciting possibility for using CD10 as an emerging therapeutic target for B-cell malignancies.
Collapse
MESH Headings
- Antigens, CD19/metabolism
- Humans
- Immunotherapy, Adoptive
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Neprilysin/therapeutic use
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes
Collapse
Affiliation(s)
- Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, D-01307 Dresden, Germany;
| | - Liliana R. Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
| | - Frederick Fasslrinner
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TU Dresden, D-01307 Dresden, Germany;
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, TU Dresden, D-01307 Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
| | - Vaclav Hořejší
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic;
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany;
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, TU Dresden, D-01307 Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany; (N.M.); (C.A.); (L.R.L.); (A.K.); (N.B.); (R.B.); (A.F.)
| |
Collapse
|
11
|
Development and Functional Characterization of a Versatile Radio-/Immunotheranostic Tool for Prostate Cancer Management. Cancers (Basel) 2022; 14:cancers14081996. [PMID: 35454902 PMCID: PMC9027777 DOI: 10.3390/cancers14081996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In previous studies, we described a modular Chimeric Antigen Receptor (CAR) T cell platform which we termed UniCAR. In contrast to conventional CARs, the interaction of UniCAR T cells does not occur directly between the CAR T cell and the tumor cell but is mediated via bispecific adaptor molecules so-called target modules (TMs). Here we present the development and functional characterization of a novel IgG4-based TM, directed to the tumor-associated antigen (TAA) prostate stem cell antigen (PSCA), which is overexpressed in prostate cancer (PCa). We show that this anti-PSCA IgG4-TM cannot only be used for (i) redirection of UniCAR T cells to PCa cells but also for (ii) positron emission tomography (PET) imaging, and (iii) alpha particle-based endoradiotherapy. For radiolabeling, the anti-PSCA IgG4-TM was conjugated with the chelator DOTAGA. PET imaging was performed using the 64Cu-labeled anti-PSCA IgG4-TM. According to PET imaging, the anti-PSCA IgG4-TM accumulates with high contrast in the PSCA-positive tumors of experimental mice without visible uptake in other organs. For endoradiotherapy the anti-PSCA IgG4-TM-DOTAGA conjugate was labeled with 225Ac3+. Targeted alpha therapy resulted in tumor control over 60 days after a single injection of the 225Ac-labeled TM. The favorable pharmacological profile of the anti-PSCA IgG4-TM, and its usage for (i) imaging, (ii) targeted alpha therapy, and (iii) UniCAR T cell immunotherapy underlines the promising radio-/immunotheranostic capabilities for the diagnostic imaging and treatment of PCa. Abstract Due to its overexpression on the surface of prostate cancer (PCa) cells, the prostate stem cell antigen (PSCA) is a potential target for PCa diagnosis and therapy. Here we describe the development and functional characterization of a novel IgG4-based anti-PSCA antibody (Ab) derivative (anti-PSCA IgG4-TM) that is conjugated with the chelator DOTAGA. The anti-PSCA IgG4-TM represents a multimodal immunotheranostic compound that can be used (i) as a target module (TM) for UniCAR T cell-based immunotherapy, (ii) for diagnostic positron emission tomography (PET) imaging, and (iii) targeted alpha therapy. Cross-linkage of UniCAR T cells and PSCA-positive tumor cells via the anti-PSCA IgG4-TM results in efficient tumor cell lysis both in vitro and in vivo. After radiolabeling with 64Cu2+, the anti-PSCA IgG4-TM was successfully applied for high contrast PET imaging. In a PCa mouse model, it showed specific accumulation in PSCA-expressing tumors, while no uptake in other organs was observed. Additionally, the DOTAGA-conjugated anti-PSCA IgG4-TM was radiolabeled with 225Ac3+ and applied for targeted alpha therapy. A single injection of the 225Ac-labeled anti-PSCA IgG4-TM was able to significantly control tumor growth in experimental mice. Overall, the novel anti-PSCA IgG4-TM represents an attractive first member of a novel group of radio-/immunotheranostics that allows diagnostic imaging, endoradiotherapy, and CAR T cell immunotherapy.
Collapse
|
12
|
Köseer AS, Loureiro LR, Jureczek J, Mitwasi N, González Soto KE, Aepler J, Bartsch T, Feldmann A, Kunz-Schughart LA, Linge A, Krause M, Bachmann M, Arndt C, Dubrovska A. Validation of CD98hc as a Therapeutic Target for a Combination of Radiation and Immunotherapies in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:1677. [PMID: 35406454 PMCID: PMC8997111 DOI: 10.3390/cancers14071677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Most patients with head and neck squamous cell carcinomas (HNSCC) are diagnosed at a locally advanced stage and show heterogeneous treatment responses. Low SLC3A2 (solute carrier family 3 member 2) mRNA and protein (CD98hc) expression levels are associated with higher locoregional control in HNSCC patients treated with primary radiochemotherapy or postoperative radiochemotherapy, suggesting that CD98hc could be a target for HNSCC radiosensitization. One of the targeted strategies for tumor radiosensitization is precision immunotherapy, e.g., the use of chimeric antigen receptor (CAR) T cells. This study aimed to define the potential clinical value of new treatment approaches combining conventional radiotherapy with CD98hc-targeted immunotherapy. To address this question, we analyzed the antitumor activity of the combination of fractionated irradiation and switchable universal CAR (UniCAR) system against radioresistant HNSCC cells in 3D culture. CD98hc-redirected UniCAR T cells showed the ability to destroy radioresistant HNSCC spheroids. Also, the infiltration rate of the UniCAR T cells was enhanced in the presence of the CD98hc target module. Furthermore, sequential treatment with fractionated irradiation followed by CD98hc-redirected UniCAR T treatment showed a synergistic effect. Taken together, our obtained data underline the improved antitumor effect of the combination of radiotherapy with CD98hc-targeted immunotherapy. Such a combination presents an attractive approach for the treatment of high-risk HNSCC patients.
Collapse
Affiliation(s)
- Ayşe Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
| | - Liliana R. Loureiro
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Justyna Jureczek
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nicola Mitwasi
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Karla Elizabeth González Soto
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Julia Aepler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Tabea Bartsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Anja Feldmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
| | - Leoni A. Kunz-Schughart
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Annett Linge
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Claudia Arndt
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (J.J.); (N.M.); (K.E.G.S.); (J.A.); (T.B.)
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany; (A.S.K.); (L.R.L.); (A.F.); (L.A.K.-S.); (A.L.); (M.K.); (M.B.)
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany
| |
Collapse
|
13
|
Adoptive NK Cell Therapy: A Promising Treatment Prospect for Metastatic Melanoma. Cancers (Basel) 2021; 13:cancers13184722. [PMID: 34572949 PMCID: PMC8471577 DOI: 10.3390/cancers13184722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The incidence of metastatic melanoma has been increasing over the past years with current therapies showing limited efficacy to cure the disease. Therefore, other options are being investigated, such as adoptive cell therapy (ACT) where activated immune cells are infused into a patient to attack melanoma. Natural killer (NK) cells are part of the innate immune system and extremely suitable for this kind of therapy since they show minimal toxicities in the clinical setting. In this review, we focus on current strategies for NK cell therapy and the development of new approaches that hold great promise for the treatment of advanced melanoma. Abstract Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, “activated” autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.
Collapse
|
14
|
Berndt N, Bippes CC, Michalk I, Bartsch T, Arndt C, Puentes-Cala E, Soto JA, Loureiro LR, Kegler A, Bachmann D, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Bergmann R, Schmitz M, Feldmann A, Bachmann MP. And Yet It Moves: Oxidation of the Nuclear Autoantigen La/SS-B Is the Driving Force for Nucleo-Cytoplasmic Shuttling. Int J Mol Sci 2021; 22:9699. [PMID: 34575862 PMCID: PMC8470643 DOI: 10.3390/ijms22189699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Decades ago, we and many other groups showed a nucleo-cytoplasmic translocation of La protein in cultured cells. This shuttling of La protein was seen after UV irradiation, virus infections, hydrogen peroxide exposure and the Fenton reaction based on iron or copper ions. All of these conditions are somehow related to oxidative stress. Unfortunately, these harsh conditions could also cause an artificial release of La protein. Even until today, the shuttling and the cytoplasmic function of La/SS-B is controversially discussed. Moreover, the driving mechanism for the shuttling of La protein remains unclear. Recently, we showed that La protein undergoes redox-dependent conformational changes. Moreover, we developed anti-La monoclonal antibodies (anti-La mAbs), which are specific for either the reduced form of La protein or the oxidized form. Using these tools, here we show that redox-dependent conformational changes are the driving force for the shuttling of La protein. Moreover, we show that translocation of La protein to the cytoplasm can be triggered in a ligand/receptor-dependent manner under physiological conditions. We show that ligands of toll-like receptors lead to a redox-dependent shuttling of La protein. The shuttling of La protein depends on the redox status of the respective cell type. Endothelial cells are usually resistant to the shuttling of La protein, while dendritic cells are highly sensitive. However, the deprivation of intracellular reducing agents in endothelial cells makes endothelial cells sensitive to a redox-dependent shuttling of La protein.
Collapse
Affiliation(s)
- Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Irene Michalk
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Instituto de Investigación Masira, Facultad de Ciencias Médicas y de la Salud, Universidad de Santander, Cúcuta 540001, Colombia
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Dominik Bachmann
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Technische Universität Dresden, 01307 Dresden, Germany;
| | - Joanne K. Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Department of Biophysics and Radiobiology, Semmelweis University, 1094 Budapest, Hungary
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (N.B.); (T.B.); (C.A.); (E.P.-C.); (J.A.S.); (L.R.L.); (A.K.); (R.B.); (A.F.)
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (C.C.B.); (I.M.); (M.S.)
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
| |
Collapse
|
15
|
Arndt C, Fasslrinner F, Loureiro LR, Koristka S, Feldmann A, Bachmann M. Adaptor CAR Platforms-Next Generation of T Cell-Based Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12051302. [PMID: 32455621 PMCID: PMC7281723 DOI: 10.3390/cancers12051302] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
The success of conventional chimeric antigen receptor (CAR) therapy in the treatment of refractory hematologic malignancies has triggered the development of novel exciting experimental CAR technologies. Among them, adaptor CAR platforms have received much attention. They combine the flexibility and controllability of recombinant antibodies with the power of CARs. Due to their modular design, adaptor CAR systems propose answers to the central problems of conventional CAR therapy, such as safety and antigen escape. This review provides an overview on the different adaptor CAR platforms available, discusses the possibilities and challenges of adaptor CAR therapy, and summarizes the first clinical experiences.
Collapse
Affiliation(s)
- Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Frederick Fasslrinner
- Medical Clinic and Polyclinic I, Medical Faculty, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany;
| | - Liliana R. Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie Koristka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-351-260-3170
| |
Collapse
|
16
|
Mitwasi N, Feldmann A, Arndt C, Koristka S, Berndt N, Jureczek J, Loureiro LR, Bergmann R, Máthé D, Hegedüs N, Kovács T, Zhang C, Oberoi P, Jäger E, Seliger B, Rössig C, Temme A, Eitler J, Tonn T, Schmitz M, Hassel JC, Jäger D, Wels WS, Bachmann M. "UniCAR"-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Sci Rep 2020; 10:2141. [PMID: 32034289 PMCID: PMC7005792 DOI: 10.1038/s41598-020-59082-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Antigen-specific redirection of immune effector cells with chimeric antigen receptors (CARs) demonstrated high therapeutic potential for targeting cancers of different origins. Beside CAR-T cells, natural killer (NK) cells represent promising alternative effectors that can be combined with CAR technology. Unlike T cells, primary NK cells and the NK cell line NK-92 can be applied as allogeneic off-the-shelf products with a reduced risk of toxicities. We previously established a modular universal CAR (UniCAR) platform which consists of UniCAR-expressing immune cells that cannot recognize target antigens directly but are redirected by a tumour-specific target module (TM). The TM contains an antigen-binding moiety fused to a peptide epitope which is recognized by the UniCAR molecule, thereby allowing an on/off switch of CAR activity, and facilitating flexible targeting of various tumour antigens depending on the presence and specificity of the TM. Here, we provide proof of concept that it is feasible to generate a universal off-the-shelf cellular therapeutic based on UniCAR NK-92 cells targeted to tumours expressing the disialoganglioside GD2 by GD2-specific TMs that are either based on an antibody-derived single-chain fragment variable (scFv) or an IgG4 backbone. Redirected UniCAR NK-92 cells induced specific killing of GD2-expressing cells in vitro and in vivo, associated with enhanced production of interferon-γ. Analysis of radiolabelled proteins demonstrated that the IgG4-based format increased the in vivo half-life of the TM markedly in comparison to the scFv-based molecule. In summary, UniCAR NK-92 cells represent a universal off-the-shelf platform that is highly effective and flexible, allowing the use of different TM formats for specific tumour targeting.
Collapse
Affiliation(s)
- Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Justyna Jureczek
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| | - Domokos Máthé
- Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| | - Nikolett Hegedüs
- Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| | | | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Jäger
- Department of Hematology and Oncology, Krankenhaus Nordwest, Frankfurt am Main, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Münster, Münster, Germany
| | - Achim Temme
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany
| | - Jiri Eitler
- Expermintal Transfusion Medicine, Medical Faculty 'Carl Gustav Carus', TU Dresden, Dresden, Germany
| | - Torsten Tonn
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Expermintal Transfusion Medicine, Medical Faculty 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany.,Institute of Immunology, Medical Faculty 'Carl Gustav Carus', TU Dresden, Dresden, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Medical Center Heidelberg, Heidelberg, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany. .,German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany. .,Tumor Immunology, University Cancer Center (UCC) 'Carl Gustav Carus', TU Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Feldmann A, Arndt C, Koristka S, Berndt N, Bergmann R, Bachmann MP. Conventional CARs versus modular CARs. Cancer Immunol Immunother 2019; 68:1713-1719. [PMID: 31542798 PMCID: PMC6805801 DOI: 10.1007/s00262-019-02399-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
The clinical application of immune effector cells genetically modified to express chimeric antigen receptors (CARs) has shown impressive results including complete remissions of certain malignant hematological diseases. However, their application can also cause severe side effects such as cytokine release syndrome (CRS) or tumor lysis syndrome (TLS). One limitation of currently applied CAR T cells is their lack of regulation. Especially, an emergency shutdown of CAR T cells in case of life-threatening side effects is missing. Moreover, targeting of tumor-associated antigens (TAAs) that are not only expressed on tumor cells but also on vital tissues requires the possibility of a switch allowing to repeatedly turn the activity of CAR T cells on and off. Here we summarize the development of a modular CAR variant termed universal CAR (UniCAR) system that promises to overcome these limitations of conventional CARs.
Collapse
Affiliation(s)
- Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Michael P Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Center (UCC) Dresden, Tumor Immunology, Carl Gustav Carus' Technische Universität Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Arndt C, Feldmann A, Koristka S, Schäfer M, Bergmann R, Mitwasi N, Berndt N, Bachmann D, Kegler A, Schmitz M, Puentes-Cala E, Soto JA, Ehninger G, Pietzsch J, Liolios C, Wunderlich G, Kotzerke J, Kopka K, Bachmann M. A theranostic PSMA ligand for PET imaging and retargeting of T cells expressing the universal chimeric antigen receptor UniCAR. Oncoimmunology 2019; 8:1659095. [PMID: 31646084 PMCID: PMC6791425 DOI: 10.1080/2162402x.2019.1659095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/19/2019] [Accepted: 08/18/2019] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown impressive therapeutic potential. Due to the lack of direct control mechanisms, therapy-related adverse reactions including cytokine release- and tumor lysis syndrome can even become life-threatening. In case of target antigen expression on non-malignant cells, CAR T cells can also attack healthy tissues. To overcome such side effects, we have established a modular CAR platform termed UniCAR: UniCAR T cells per se are inert as they recognize a peptide epitope (UniCAR epitope) that is not accessible on the surface of living cells. Bifunctional adapter molecules termed target modules (TM) can cross-link UniCAR T cells with target cells. In the absence of TMs, UniCAR T cells automatically turn off. Until now, all UniCAR TMs were constructed by fusion of the UniCAR epitope to an antibody domain. To open up the wide field of low-molecular-weight compounds for retargeting of UniCAR T cells to tumor cells, and to follow in parallel the progress of UniCAR T cell therapy by PET imaging we challenged the idea to convert a PET tracer into a UniCAR-TM. For proof of concept, we selected the clinically used PET tracer PSMA-11, which binds to the prostate-specific membrane antigen overexpressed in prostate carcinoma. Here we show that fusion of the UniCAR epitope to PSMA-11 results in a low-molecular-weight theranostic compound that can be used for both retargeting of UniCAR T cells to tumor cells, and for non-invasive PET imaging and thus represents a member of a novel class of theranostics.
Collapse
Affiliation(s)
- Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Martin Schäfer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dominik Bachmann
- UniversityCancerCenter (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | | | | - Jens Pietzsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany
| | - Christos Liolios
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerd Wunderlich
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), partner site Dresden, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,UniversityCancerCenter (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Jureczek J, Bergmann R, Berndt N, Koristka S, Kegler A, Puentes-Cala E, Soto JA, Arndt C, Bachmann M, Feldmann A. An oligo-His-tag of a targeting module does not influence its biodistribution and the retargeting capabilities of UniCAR T cells. Sci Rep 2019; 9:10547. [PMID: 31332252 PMCID: PMC6646371 DOI: 10.1038/s41598-019-47044-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, we established the controllable modular UniCAR platform technology to advance the efficacy and safety of CAR T cell therapy. The UniCAR system is composed of (i) target modules (TMs) and (ii) UniCAR armed T cells. TMs are bispecific molecules that are able to bind to the tumor cell surface and simultaneously to UniCAR T cells. For interaction with UniCAR T cells, TMs contain a peptide epitope sequence which is recognised by UniCAR T cells. So far, a series of TMs against a variety of tumor targets including against the prostate stem cell antigen (PSCA) were constructed and functionally characterised. In order to facilitate their purification all these TMs are expressed as recombinant proteins equipped with an oligo-His-tag. The aim of the here presented manuscript was to learn whether or not the oligo-His-tag of the TM influences the UniCAR system. For this purpose, we constructed TMs against PSCA equipped with or lacking an oligo-His-tag. Both TMs were compared side by side including for functionality and biodistribution. According to our data, an oligo-His-tag of a UniCAR TM has only little if any effect on its binding affinity, in vitro and in vivo killing capability and in vivo biodistribution.
Collapse
Affiliation(s)
- Justyna Jureczek
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicole Berndt
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Stefanie Koristka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Alexandra Kegler
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | | | | | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Michael Bachmann
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany. .,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
20
|
Arndt C, Bachmann M, Bergmann R, Berndt N, Feldmann A, Koristka S. Theranostic CAR T cell targeting: A brief review. J Labelled Comp Radiopharm 2019; 62:533-540. [PMID: 30889625 DOI: 10.1002/jlcr.3727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
More than hundred years ago, Paul Ehrlich postulated that our immune system should be able to recognize tumor cells. Just recently, the development of check point inhibitors, bispecific antibodies, and T cells genetically modified to express chimeric antigen receptors (CARs) underlines the true power of our immune system. T cells genetically modified with CARs can lead to complete remission of malignant hematologic diseases. However, they can also cause life-threatening side effects. In case of cytokine release syndrome, tumor lysis syndrome, or deadly side effects on the central nervous system, an emergency shut down of CAR T cells is needed. Targeting of tumor-associated antigens that are also expressed on vital tissues require a possibility to repeatedly switch the activity of CAR T cells on and off on demand and to follow the treatment by imaging. Theranostic, modular CARs such as the UniCAR system may help to overcome these problems.
Collapse
Affiliation(s)
- Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,UniversityCancerCenter (UCC) Dresden, Tumor Immunology, 'Carl Gustav Carus' Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| |
Collapse
|
21
|
The UniCAR system: A modular CAR T cell approach to improve the safety of CAR T cells. Immunol Lett 2019; 211:13-22. [PMID: 31091431 DOI: 10.1016/j.imlet.2019.05.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
The idea to eliminate tumor cells via our own immune system is more than a hundred years old. However, a real break through came first with the development of check point inhibitors, bispecific antibodies (bsAbs) and T cells genetically modified to express Chimeric Antigen Receptors (CARs). Eventhough the clinical application of T cells equipped with CARs can lead to a complete remission, unfortunately, their application can also cause severe or even life threatening side effects as their activity can no more be adjusted once given to the patient. For targeting of tumor cells expressing tumor associated antigens (TAAs) which are not limited to tumor cells but also accessible on healthy tissues CAR T cells should not be permanently in a killing mode but be equipped with some kind of a switch whereby the activity of CAR T cells can reversely be turned "on and off ". Moreover, in case of cytokine release syndrome (CRS), tumor lysis syndrome (TLS), or other deadly side effects the possibility of an emergency shut down of the CAR T cell activity should exist. Modular CAR variants such as the UniCAR system may fulfill these requirements.
Collapse
|
22
|
Albert S, Koristka S, Gerbaulet A, Cartellieri M, Arndt C, Feldmann A, Berndt N, Loureiro LR, von Bonin M, Ehninger G, Eugster A, Bonifacio E, Bornhäuser M, Bachmann MP, Ehninger A. Tonic Signaling and Its Effects on Lymphopoiesis of CAR-Armed Hematopoietic Stem and Progenitor Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1735-1746. [PMID: 30728213 DOI: 10.4049/jimmunol.1801004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
Abstract
Long-term survival of adoptively transferred chimeric Ag receptor (CAR) T cells is often limited. Transplantation of hematopoietic stem cells (HSCs) transduced to express CARs could help to overcome this problem as CAR-armed HSCs can continuously deliver CAR+ multicell lineages (e.g., T cells, NK cells). In dependence on the CAR construct, a variable extent of tonic signaling in CAR T cells was reported; thus, effects of CAR-mediated tonic signaling on the hematopoiesis of CAR-armed HSCs is unclear. To assess the effects of tonic signaling, two CAR constructs were established and analyzed 1) a signaling CAR inducing a solid Ag-independent tonic signaling termed CAR-28/ζ and 2) a nonstimulating control CAR construct lacking intracellular signaling domains termed CAR-Stop. Bone marrow cells from immunocompetent mice were isolated, purified for HSC-containing Lin-cKit+ cells or the Lin-cKit+ Sca-1+ subpopulation (Lin-Sca-1+cKit+), and transduced with both CAR constructs. Subsequently, modified bone marrow cells were transferred into irradiated mice, in which they successfully engrafted and differentiated into hematopoietic progenitors. HSCs expressing the CAR-Stop sustained normal hematopoiesis. In contrast, expression of the CAR-28/ζ led to elimination of mature CAR+ T and B cells, suggesting that the CAR-mediated tonic signaling mimics autorecognition via the newly recombined immune receptors in the developing lymphocytes.
Collapse
Affiliation(s)
- Susann Albert
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.,University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Stefanie Koristka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Alexander Gerbaulet
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | | | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Nicole Berndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Liliana R Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Malte von Bonin
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Gerhard Ehninger
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.,Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.,National Center for Tumor Diseases (NCT), partner site Dresden, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Anne Eugster
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, 01307 Dresden, Germany; and
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, 01307 Dresden, Germany; and
| | - Martin Bornhäuser
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.,National Center for Tumor Diseases (NCT), partner site Dresden, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Michael P Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; .,University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,National Center for Tumor Diseases (NCT), partner site Dresden, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Armin Ehninger
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.,GEMoaB Monoclonals GmbH, 01307 Dresden, Germany
| |
Collapse
|
23
|
Feldmann A, Arndt C, Bergmann R, Loff S, Cartellieri M, Bachmann D, Aliperta R, Hetzenecker M, Ludwig F, Albert S, Ziller-Walter P, Kegler A, Koristka S, Gärtner S, Schmitz M, Ehninger A, Ehninger G, Pietzsch J, Steinbach J, Bachmann M. Retargeting of T lymphocytes to PSCA- or PSMA positive prostate cancer cells using the novel modular chimeric antigen receptor platform technology "UniCAR". Oncotarget 2018; 8:31368-31385. [PMID: 28404896 PMCID: PMC5458214 DOI: 10.18632/oncotarget.15572] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
New treatment options especially of solid tumors including for metastasized prostate cancer (PCa) are urgently needed. Recent treatments of leukemias with chimeric antigen receptors (CARs) underline their impressive therapeutic potential. However CARs currently applied in the clinics cannot be repeatedly turned on and off potentially leading to severe life threatening side effects. To overcome these problems, we recently described a modular CAR technology termed UniCAR: UniCAR T cells are inert but can be turned on by application of one or multiple target modules (TMs). Here we present preclinical data summarizing the retargeting of UniCAR T cells to PCa cells using TMs directed to prostate stem cell- (PSCA) or/and prostate specific membrane antigen (PSMA). In the presence of the respective TM(s), we see a highly efficient target-specific and target-dependent activation of UniCAR T cells, secretion of pro-inflammatory cytokines, and PCa cell lysis both in vitro and experimental mice.
Collapse
Affiliation(s)
- Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Simon Loff
- UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany.,GEMoaB Monoclonals GmbH, Dresden, Germany
| | - Marc Cartellieri
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Cellex Patient Treatment GmbH, Dresden, Germany
| | - Dominik Bachmann
- UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany
| | - Roberta Aliperta
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Mirjam Hetzenecker
- UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany
| | - Florian Ludwig
- UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany
| | - Susann Albert
- UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany
| | - Pauline Ziller-Walter
- UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sebastian Gärtner
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, 'Carl Gustav Carus' TU Dresden, Dresden, Germany
| | | | - Gerhard Ehninger
- UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany.,Medical Clinic and Policlinic I, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, 'Carl Gustav Carus' TU Dresden, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, 'Carl Gustav Carus' TU Dresden, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,UniversityCancerCenter (UCC) 'Carl Gustav Carus' TU Dresden, Tumor Immunology, Dresden, Germany.,Medical Clinic and Policlinic I, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, 'Carl Gustav Carus' TU Dresden, Dresden, Germany
| |
Collapse
|
24
|
Bachmann D, Aliperta R, Bergmann R, Feldmann A, Koristka S, Arndt C, Loff S, Welzel P, Albert S, Kegler A, Ehninger A, Cartellieri M, Ehninger G, Bornhäuser M, von Bonin M, Werner C, Pietzsch J, Steinbach J, Bachmann M. Retargeting of UniCAR T cells with an in vivo synthesized target module directed against CD19 positive tumor cells. Oncotarget 2017; 9:7487-7500. [PMID: 29484126 PMCID: PMC5800918 DOI: 10.18632/oncotarget.23556] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
Recent treatments of leukemias with T cells expressing chimeric antigen receptors (CARs) underline their impressive therapeutic potential but also their risk of severe side effects including cytokine release storms and tumor lysis syndrome. In case of cross-reactivities, CAR T cells may also attack healthy tissues. To overcome these limitations, we previously established a switchable CAR platform technology termed UniCAR. UniCARs are not directed against typical tumor-associated antigens (TAAs) but instead against a unique peptide epitope: Fusion of this peptide epitope to a recombinant antibody domain results in a target module (TM). TMs can cross-link UniCAR T cells with tumor cells and thereby lead to their destruction. So far, we constructed TMs with a short half-life. The fast turnover of such a TM allows to rapidly interrupt the treatment in case severe side effects occur. After elimination of most of the tumor cells, however, longer lasting TMs which have not to be applied via continous infusion would be more convenient for the patient. Here we describe and characterize a TM for retargeting UniCAR T cells to CD19 positive tumor cells. Moreover, we show that the TM can efficiently be produced in vivo from producer cells housed in a sponge-like biomimetic cryogel and, thereby, serving as an in vivo TM factory for an extended retargeting of UniCAR T cells to CD19 positive leukemic cells.
Collapse
Affiliation(s)
- Dominik Bachmann
- University Cancer Center, Carl Gustav Carus TU Dresden, Tumor Immunology, Dresden, Germany
| | - Roberta Aliperta
- University Cancer Center, Carl Gustav Carus TU Dresden, Tumor Immunology, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Simon Loff
- GEMoaB Monoclonals GmbH, Dresden, Germany
| | - Petra Welzel
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Susann Albert
- University Cancer Center, Carl Gustav Carus TU Dresden, Tumor Immunology, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | | | - Gerhard Ehninger
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium, Carl Gustav Carus TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium, Carl Gustav Carus TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium, Carl Gustav Carus TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Carl Gustav Carus TU Dresden, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany
| | - Michael Bachmann
- University Cancer Center, Carl Gustav Carus TU Dresden, Tumor Immunology, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium, Carl Gustav Carus TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Carl Gustav Carus TU Dresden, Dresden, Germany
| |
Collapse
|
25
|
Development of novel target modules for retargeting of UniCAR T cells to GD2 positive tumor cells. Oncotarget 2017; 8:108584-108603. [PMID: 29312553 PMCID: PMC5752466 DOI: 10.18632/oncotarget.21017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/25/2017] [Indexed: 01/17/2023] Open
Abstract
As the expression of a tumor associated antigen (TAA) is commonly not restricted to tumor cells, adoptively transferred T cells modified to express a conventional chimeric antigen receptor (CAR) might not only destroy the tumor cells but also attack target-positive healthy tissues. Furthermore, CAR T cells in patients with large tumor bulks will unpredictably proliferate and put the patients at high risk of adverse side effects including cytokine storms and tumor lysis syndrome. To overcome these problems, we previously established a modular CAR technology termed UniCAR: UniCAR T cells can repeatedly be turned on and off via dosing of a target module (TM). TMs are bispecific molecules which cross-link UniCAR T cells with target cells. After elimination of the respective TM, UniCAR T cells automatically turn off. Here we describe novel TMs against the disialoganglioside GD2 which is overexpressed in neuroectodermal but also many other tumors. In the presence of GD2-specific TMs, we see a highly efficient target-specific and -dependent activation of UniCAR T cells, secretion of pro-inflammatory cytokines, and tumor cell lysis both in vitro and experimental mice. According to PET-imaging, anti-GD2 TM enrich at the tumor site and are rapidly eliminated thus fulfilling all prerequisites of a UniCAR TM.
Collapse
|
26
|
Pishali Bejestani E, Cartellieri M, Bergmann R, Ehninger A, Loff S, Kramer M, Spehr J, Dietrich A, Feldmann A, Albert S, Wermke M, Baumann M, Krause M, Bornhäuser M, Ehninger G, Bachmann M, von Bonin M. Characterization of a switchable chimeric antigen receptor platform in a pre-clinical solid tumor model. Oncoimmunology 2017; 6:e1342909. [PMID: 29123951 DOI: 10.1080/2162402x.2017.1342909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
The universal modular chimeric antigen receptor (UniCAR) platform redirects CAR-T cells using a separated, soluble targeting module with a short half-life. This segregation allows precise controllability and flexibility. Herein we show that the UniCAR platform can be used to efficiently target solid cancers in vitro and in vivo using a pre-clinical prostate cancer model which overexpresses prostate stem cell antigen (PSCA). Short-term administration of the targeting module to tumor bearing immunocompromised mice engrafted with human UniCAR-T cells significantly delayed tumor growth and prolonged survival of recipient mice both in a low and high tumor burden model. In addition, we analyzed phenotypic and functional changes of cancer cells and UniCAR-T cells in association with the administration of the targeting module to reveal potential immunoevasive mechanisms. Most notably, UniCAR-T cell activation induced upregulation of immune-inhibitory molecules such as programmed death ligands. In conclusion, this work illustrates that the UniCAR platform mediates potent anti-tumor activity in a relevant in vitro and in vivo solid tumor model.
Collapse
Affiliation(s)
- Elham Pishali Bejestani
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ralf Bergmann
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | | | - Simon Loff
- GEMoaB Monoclonals GmbH, Dresden, Germany
| | - Michael Kramer
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | - Antje Dietrich
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Susann Albert
- UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Martin Wermke
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Michael Baumann
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Martin Bornhäuser
- German Cancer Consortium (DKTK), Dresden, Germany.,Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Gerhard Ehninger
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cellex Patient Treatment GmbH, Dresden, Germany.,GEMoaB Monoclonals GmbH, Dresden, Germany.,Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Michael Bachmann
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cellex Patient Treatment GmbH, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,GEMoaB Monoclonals GmbH, Dresden, Germany.,UniversityCancerCenter (UCC), University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Malte von Bonin
- German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
27
|
Albert S, Arndt C, Feldmann A, Bergmann R, Bachmann D, Koristka S, Ludwig F, Ziller-Walter P, Kegler A, Gärtner S, Schmitz M, Ehninger A, Cartellieri M, Ehninger G, Pietzsch HJ, Pietzsch J, Steinbach J, Bachmann M. A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncoimmunology 2017; 6:e1287246. [PMID: 28507794 DOI: 10.1080/2162402x.2017.1287246] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
Recent treatments of leukemias with chimeric antigen receptor (CAR) expressing T cells underline their impressive therapeutic potential. However, once adoptively transferred into patients, there is little scope left to shut them down after elimination of tumor cells or in case adverse side effects occur. This becomes of special relevance if they are directed against commonly expressed tumor associated antigens (TAAs) such as receptors of the ErbB family. To overcome this limitation, we recently established a modular CAR platform technology termed UniCAR. UniCARs are not directed against TAAs but instead against a unique peptide epitope on engineered recombinant targeting modules (TMs), which guide them to the target. In the absence of a TM UniCAR T cells are inactive. Thus an interruption of any UniCAR activity requires an elimination of unbound TM and the TM complexed with UniCAR T cells. Elimination of the latter one requires a disassembly of the UniCAR-TM complexes. Here, we describe a first nanobody (nb)-based TM directed against EGFR. The novel TM efficiently retargets UniCAR T cells to EGFR positive tumors and mediates highly efficient target-specific and target-dependent tumor cell lysis both in vitro and in vivo. After radiolabeling of the novel TM with 64Cu and 68Ga, we analyzed its biodistribution and clearance as well as the stability of the UniCAR-TM complexes. As expected unbound TM is rapidly eliminated while the elimination of the TM complexed with UniCAR T cells is delayed. Nonetheless, we show that UniCAR-TM complexes dissociate in vitro and in vivo in a concentration-dependent manner in line with the concept of a repeated stop and go retargeting of tumor cells via the UniCAR technology.
Collapse
Affiliation(s)
- Susann Albert
- Tumor Immunology, University Cancer Center (UCC), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Dominik Bachmann
- Tumor Immunology, University Cancer Center (UCC), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Florian Ludwig
- Tumor Immunology, University Cancer Center (UCC), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany
| | - Pauline Ziller-Walter
- Tumor Immunology, University Cancer Center (UCC), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sebastian Gärtner
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, 'Carl Gustav Carus', TU Dresden, Dresden, Germany
| | | | | | - Gerhard Ehninger
- Medical Clinic and Policlinic I, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany.,Department of Chemistry and Food Chemistry, School of Science, TU Dresden, Dresden, Germany
| | - Michael Bachmann
- Tumor Immunology, University Cancer Center (UCC), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), 'Carl Gustav Carus,' TU Dresden, Dresden, Germany
| |
Collapse
|
28
|
Arndt C, Feldmann A, Töpfer K, Koristka S, Cartellieri M, Temme A, Ehninger A, Ehninger G, Bachmann M. Redirection of CD4+ and CD8+ T lymphocytes via a novel antibody-based modular targeting system triggers efficient killing of PSCA+ prostate tumor cells. Prostate 2014; 74:1347-58. [PMID: 25053504 DOI: 10.1002/pros.22851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is still a need for new therapeutic options against prostate cancer. Conventional single-chain bispecific antibodies (bsAbs), that directly cross-link T cells and tumor cells, hold great potential for efficient tumor treatment. However, rapid development of novel bsAbs is hampered by laborious optimization to improve their efficacy and reduce potential side effects. To accelerate the development of a novel antibody tool for the redirection of T cells to different tumor-associated antigens, we recently introduced a modular targeting system. METHODS We here describe a novel modular system for treatment of prostate cancer by retargeting of T cells to the prostate stem cell antigen (PSCA). Functionality of the novel PSCA-specific modular system was investigated in vitro by T cell activation and chromium release assays as well as in immunodeficient mice. RESULTS Similar to a conventional bsAb CD3-PSCA, the novel PSCA-specific modular system induces activation of both CD4+ and CD8+ T cells leading to secretion of pro-inflammatory cytokines and highly efficient target-specific tumor cell lysis. The novel TM was ready-to-use from the time point of construction and functional at low E:T ratios and picomolar concentrations without further optimization. In addition, the PSCA-specific modular system delays outgrowth of s.c. tumors in mice comparable to bsAb CD3-PSCA. CONCLUSIONS We have developed a novel PSCA-specific modular system which triggers an efficient T cell-mediated killing of PSCA+ tumor cells in vitro and in vivo. The new Ab-based targeting strategy can functionally replace conventional bsAbs and allows a flexible redirection of T cells to different tumor-associated antigens.
Collapse
Affiliation(s)
- Claudia Arndt
- Medical Faculty 'Carl Gustav Carus' TU Dresden, Institute of Immunology, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Arndt C, Feldmann A, Koristka S, Cartellieri M, Dimmel M, Ehninger A, Ehninger G, Bachmann M. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system. Prostate 2014; 74:1335-46. [PMID: 25053443 DOI: 10.1002/pros.22850] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/09/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. METHODS In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. RESULTS Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. CONCLUSIONS Overall, the novel modular system represents a promising tool for multiple tumor targeting.
Collapse
Affiliation(s)
- Claudia Arndt
- Medical Faculty 'Carl Gustav Carus' TU Dresden, Institute of Immunology, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Costimulation improves the killing capability of T cells redirected to tumor cells expressing low levels of CD33: description of a novel modular targeting system. Leukemia 2013; 28:59-69. [PMID: 23958923 DOI: 10.1038/leu.2013.243] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 11/09/2022]
Abstract
Owing to their clinical success, there is growing interest in novel bispecific antibodies (bsAbs) for retargeting of T cells to tumor cells including for the treatment of acute myeloid leukemia (AML). One potential target for retargeting of T cells to AML blasts is the surface molecule CD33. Here we describe a novel modular targeting platform that consists of a universal effector module (EM) and individual target modules (TMs). Both modules can form an immune complex via a peptide epitope. The resulting targeting complex can functionally replace a conventional bsAb. By fusion of a costimulatory domain (for example, the extracellular CD137 ligand domain) to the TM, the targeting complex can even provide a costimulatory signal to the redirected T cells at their side of interaction with the tumor cell. Furthermore, we observed that an efficient killing of tumor cells expressing low levels of the tumor target CD33 becomes critical at low effector-to-target cell ratios but can be improved by costimulation via CD137 using our novel targeting system.
Collapse
|
31
|
Feldmann A, Arndt C, Töpfer K, Stamova S, Krone F, Cartellieri M, Koristka S, Michalk I, Lindemann D, Schmitz M, Temme A, Bornhäuser M, Ehninger G, Bachmann M. Novel humanized and highly efficient bispecific antibodies mediate killing of prostate stem cell antigen-expressing tumor cells by CD8+ and CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:3249-59. [PMID: 22875801 DOI: 10.4049/jimmunol.1200341] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostate cancer is the most common noncutaneous malignancy in men. The prostate stem cell Ag (PSCA) is a promising target for immunotherapy of advanced disease. Based on a novel mAb directed to PSCA, we established and compared a series of murine and humanized anti-CD3-anti-PSCA single-chain bispecific Abs. Their capability to redirect T cells for killing of tumor cells was analyzed. During these studies, we identified a novel bispecific humanized Ab that efficiently retargets T cells to tumor cells in a strictly Ag-dependent manner and at femtomolar concentrations. T cell activation, cytokine release, and lysis of target cells depend on a cross-linkage of redirected T cells with tumor cells, whereas binding of the anti-CD3 domain alone does not lead to an activation or cytokine release. Interestingly, both CD8+ and CD4+ T cells are activated in parallel and can efficiently mediate the lysis of tumor cells. However, the onset of killing via CD4+ T cells is delayed. Furthermore, redirecting T cells via the novel humanized bispecific Abs results in a delay of tumor growth in xenografted nude mice.
Collapse
Affiliation(s)
- Anja Feldmann
- Institute of Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibody-induced T cell synapses. Anal Biochem 2012; 423:261-8. [PMID: 22274538 DOI: 10.1016/j.ab.2011.12.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 11/07/2011] [Accepted: 12/28/2011] [Indexed: 01/09/2023]
Abstract
There is growing interest in the development of novel single-chain bispecific antibodies for retargeting of immune effector T cells to tumor cells. Until today, functional fusion constructs consisting of a single-chain bispecific antibody and a fluorescent protein were not reported. Such molecules could be useful for an in vivo visualization of this retargeting process. Recently, we established two novel single-chain bispecific antibodies. One is capable of retargeting T cells to CD33, and the other is capable of retargeting T cells to the prostate stem cell antigen (PSCA). CD33 is an attractive immunotarget on the surface of tumor cells from patients with acute myeloid leukemia (AML). The PSCA is a potential target on prostate cancer cells. Flanking the reading frame encoding the green fluorescent protein (GFP) with a recently described novel helical linker element allowed us to establish novel single-chain bispecific fusion antibodies. These fluorescent fusion antibodies were useful to efficiently retarget T cells to the respective tumor cells and visualize the formation of immune synapses between effector and target cells.
Collapse
|
33
|
Koristka S, Cartellieri M, Theil A, Feldmann A, Arndt C, Stamova S, Michalk I, Töpfer K, Temme A, Kretschmer K, Bornhäuser M, Ehninger G, Schmitz M, Bachmann M. Retargeting of Human Regulatory T Cells by Single-Chain Bispecific Antibodies. THE JOURNAL OF IMMUNOLOGY 2011; 188:1551-8. [DOI: 10.4049/jimmunol.1101760] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Stamova S, Cartellieri M, Feldmann A, Arndt C, Koristka S, Bartsch H, Bippes CC, Wehner R, Schmitz M, von Bonin M, Bornhäuser M, Ehninger G, Bachmann M. Unexpected recombinations in single chain bispecific anti-CD3-anti-CD33 antibodies can be avoided by a novel linker module. Mol Immunol 2011; 49:474-82. [PMID: 22014687 DOI: 10.1016/j.molimm.2011.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/30/2011] [Accepted: 09/24/2011] [Indexed: 10/16/2022]
Abstract
CD33 is an attractive immunotarget on the surface of tumor cells from patients with acute myeloid leukemia (AML). In a first attempt for immunotargeting of AML blasts we constructed two bispecific antibodies in the single chain bispecific diabody (scBsDb) format by fusing the variable domains of monoclonal antibodies directed against CD3 and CD33. Unfortunately, protein expression of both scBsDbs resulted in varying mixtures of fragmented and full length proteins. As the non-functional fragments competed with the functional full length antibodies we tried to understand the reason for the fragmentation. We found that the anti-CD3 and anti-CD33 antibody genes show striking sequence homologies: during B cell development the same V(h) J558 heavy and V(l) kk4 light chain genes were selected. Moreover, the closely related D genes DSP2 (9 and 11) were combined with the same JH4 gene. And finally, during VJ recombination of the light chain the same JK5 element was selected. These homologies between the two monoclonal antibodies were the reason for recombinations in the cell lines generated for expression of the scBsDbs. Finally, we solved this problem by (i) rearranging the order of the heavy and light chains of the anti-CD3 and anti-CD33 domains, and (ii) a replacement of one of the commonly used glycine serine linkers with a novel linker domain. The resulting bispecific antibody in a single chain bispecific tandem format (scBsTaFv) was stable and capable of redirecting T cells to CD33-positive tumor cells including AML blasts of patients.
Collapse
Affiliation(s)
- Slava Stamova
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Feldmann A, Stamova S, Bippes CC, Bartsch H, Wehner R, Schmitz M, Temme A, Cartellieri M, Bachmann M. Retargeting of T cells to prostate stem cell antigen expressing tumor cells: comparison of different antibody formats. Prostate 2011; 71:998-1011. [PMID: 21541976 DOI: 10.1002/pros.21315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/08/2010] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignant disease in men. Novel treatment options are needed for patients after development of metastatic, hormone-refractory disease or for those who have failed a local treatment. The prostate stem cell antigen (PSCA) is expressed in >80% of primary PCa samples and bone metastases. Its expression is increased both in androgen-dependent and independent prostate tumors, particularly in carcinomas of high stages and Gleason scores. Therefore, PSCA is an attractive target for immunotherapy of PCa by retargeting of T cells to tumor cells. METHODS A series of different bispecific antibody formats for retargeting of T cells to tumor cells were described but, only very limited data obtained by side by side comparison of the different antibody formats are available. We established two novel bispecific antibodies in different formats. The functionality of both constructs was analyzed by FACS and chromium release assays. In parallel, the release of pro-inflammatory cytokines was determined by ELISA. RESULTS AND CONCLUSIONS Irrespective of the underlying antibody format, both novel bispecific antibodies cause an efficient killing of PSCA-positive tumor cells by pre- and non-pre-activated T cells. Killing and release of pro-inflammatory cytokines requires an antigen specific cross-linkage of the T cells with the target cells.
Collapse
Affiliation(s)
- Anja Feldmann
- Medical Faculty Carl Gustav Carus, Institute of Immunology, Technical University Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Simultaneous engagement of the activatory receptors NKG2D and CD3 for retargeting of effector cells to CD33-positive malignant cells. Leukemia 2011; 25:1053-6. [PMID: 21415850 DOI: 10.1038/leu.2011.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Bippes CC, Feldmann A, Stamova S, Cartellieri M, Schwarzer A, Wehner R, Schmitz M, Rieber EP, Zhao S, Schäkel K, Temme A, Scofield RH, Kurien BT, Bartsch H, Bachmann M. A novel modular antigen delivery system for immuno targeting of human 6-sulfo LacNAc-positive blood dendritic cells (SlanDCs). PLoS One 2011; 6:e16315. [PMID: 21283706 PMCID: PMC3025022 DOI: 10.1371/journal.pone.0016315] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/13/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previously, we identified a major myeloid-derived proinflammatory subpopulation of human blood dendritic cells which we termed slanDCs (e.g. Schäkel et al. (2006) Immunity 24, 767-777). The slan epitope is an O-linked sugar modification (6-sulfo LacNAc, slan) of P-selectin glycoprotein ligand-1 (PSGL-1). As slanDCs can induce neoantigen-specific CD4+ T cells and tumor-reactive CD8+ cytotoxic T cells, they appear as promising targets for an in vivo delivery of antigens for vaccination. However, tools for delivery of antigens to slanDCs were not available until now. Moreover, it is unknown whether or not antigens delivered via the slan epitope can be taken up, properly processed and presented by slanDCs to T cells. METHODOLOGY/PRINCIPAL FINDINGS Single chain fragment variables were prepared from presently available decavalent monoclonal anti-slan IgM antibodies but failed to bind to slanDCs. Therefore, a novel multivalent anti-slanDC scaffold was developed which consists of two components: (i) a single chain bispecific recombinant diabody (scBsDb) that is directed on the one hand to the slan epitope and on the other hand to a novel peptide epitope tag, and (ii) modular (antigen-containing) linker peptides that are flanked at both their termini with at least one peptide epitope tag. Delivery of a Tetanus Toxin-derived antigen to slanDCs via such a scBsDb/antigen scaffold allowed us to recall autologous Tetanus-specific memory T cells. CONCLUSIONS/SIGNIFICANCE In summary our data show that (i) the slan epitope can be used for delivery of antigens to this class of human-specific DCs, and (ii) antigens bound to the slan epitope can be taken up by slanDCs, processed and presented to T cells. Consequently, our novel modular scaffold system may be useful for the development of human vaccines.
Collapse
Affiliation(s)
- Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Anja Feldmann
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Slava Stamova
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Marc Cartellieri
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Adrian Schwarzer
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | - E. Peter Rieber
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Senming Zhao
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Third Hospital of Hebei Medical University, Hebei, China
| | - Knut Schäkel
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Achim Temme
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - R. Hal Scofield
- Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Biji T. Kurien
- Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States of America
| | - Holger Bartsch
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Michael Bachmann
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
38
|
Al-Ejeh F, Darby JM, Tsopelas C, Smyth D, Manavis J, Brown MP. APOMAB, a La-specific monoclonal antibody, detects the apoptotic tumor response to life-prolonging and DNA-damaging chemotherapy. PLoS One 2009; 4:e4558. [PMID: 19247492 PMCID: PMC2645692 DOI: 10.1371/journal.pone.0004558] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/16/2009] [Indexed: 12/16/2022] Open
Abstract
Background Antineoplastic therapy may impair the survival of malignant cells to produce cell death. Consequently, direct measurement of tumor cell death in vivo is a highly desirable component of therapy response monitoring. We have previously shown that APOMAB® representing the DAB4 clone of a La/SSB-specific murine monoclonal autoantibody is a malignant cell-death ligand, which accumulates preferentially in tumors in an antigen-specific and dose-dependent manner after DNA-damaging chemotherapy. Here, we aim to image tumor uptake of APOMAB® (DAB4) and to define its biological correlates. Methodology/Principal Findings Brisk tumor cell apoptosis is induced in the syngeneic EL4 lymphoma model after treatment of tumor-bearing mice with DNA-damaging cyclophosphamide/etoposide chemotherapy. Tumor and normal organ accumulation of Indium 111 (111In)-labeled La-specific DAB4 mAb as whole IgG or IgG fragments was quantified by whole-body static imaging and organ assay in tumor-bearing mice. Immunohistochemical measurements of tumor caspase-3 activation and PARP-1 cleavage, which are indicators of early and late apoptosis, respectively, were correlated with tumor accumulation of DAB4. Increased tumor accumulation of DAB4 was associated directly with both the extent of chemotherapy-induced tumor cell death and DAB4 binding per dead tumor cell. Tumor DAB4 accumulation correlated with cumulative caspase-3 activation and PARP-1 cleavage as tumor biomarkers of apoptosis and was directly related to the extended median survival time of tumor-bearing mice. Conclusions/Significance Radiolabeled La-specific monoclonal antibody, DAB4, detected dead tumor cells after chemotherapy, rather than chemosensitive normal tissues of gut and bone marrow. DAB4 identified late apoptotic tumor cells in vivo. Hence, radiolabeled DAB4 may usefully image responses to human carcinoma therapy because DAB4 would capture the protracted cell death of carcinoma. We believe that the ability of radiolabeled DAB4 to rapidly assess the apoptotic tumor response and, consequently, to potentially predict extended survival justifies its future clinical development as a radioimmunoscintigraphic agent. This article is part I of a two-part series providing proof-of-concept for the the diagnostic and therapeutic use of a La-specific monoclonal antibody, the DAB4 clone of which is represented by the registered trademark, APOMAB®.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Jocelyn M. Darby
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Chris Tsopelas
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Douglas Smyth
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jim Manavis
- Centre for Neurological Disease, Hanson Institute, Adelaide, South Australia, Australia
| | - Michael P. Brown
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medical Oncology, Royal Adelaide Hospital Cancer Centre and School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
39
|
Al-Ejeh F, Darby JM, Brown MP. The La autoantigen is a malignancy-associated cell death target that is induced by DNA-damaging drugs. Clin Cancer Res 2007; 13:5509s-5518s. [PMID: 17875783 DOI: 10.1158/1078-0432.ccr-07-0922] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the La autoantigen as a target for specific monoclonal antibody (mAb) binding in dead cancer cells after use of DNA-damaging chemotherapy. EXPERIMENTAL DESIGN In vitro studies of La-specific 3B9 mAb binding to malignant and normal primary cells with and without cytotoxic drug treatment were done using immunoblotting and flow cytometry. Chromatin-binding studies and immunofluorescence detection of gammaH2AX as a marker of DNA double-stranded breaks together with 3B9 binding assays were done to measure DNA damage responses. Incorporation of a transglutaminase 2 (TG2) substrate and TG2 inhibition were studied to measure protein cross-linking in dead cells. RESULTS La was overexpressed in human cancer cell lines with respect to normal primary cells. Within 3 h of the DNA-damaging stimulus, La became chromatin bound when it colocalized with gammaH2AX. Later, after the stimulus produced cell death, La-specific 3B9 mAb bound specifically and preferentially in the cytoplasm of dead cancer cells. Moreover, 3B9 binding to dead cancer cells increased with increasing DNA damage. Both La and 3B9 became cross-linked in dead cancer cells via TG2 activity. CONCLUSION La autoantigen represents a promising cancer cell death target to determine chemotherapy response because its expression was selectively induced in dead cancer cells after DNA-damaging chemotherapy.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Experimental Therapeutics Laboratory, Hanson Institute, Department of Medical Oncology, Royal Adelaide Hospital, South Australia, Australia
| | | | | |
Collapse
|
40
|
Leung AKL, Andersen JS, Mann M, Lamond AI. Bioinformatic analysis of the nucleolus. Biochem J 2004; 376:553-69. [PMID: 14531731 PMCID: PMC1223824 DOI: 10.1042/bj20031169] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/08/2003] [Indexed: 02/02/2023]
Abstract
The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.
Collapse
Affiliation(s)
- Anthony K L Leung
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Scotland, UK.
| | | | | | | |
Collapse
|
41
|
Pourmand N, Blange I, Ringertz N, Pettersson I. Intracellular localisation of the Ro 52kD auto-antigen in HeLa cells visualised with green fluorescent protein chimeras. Autoimmunity 1998; 28:225-33. [PMID: 9892504 DOI: 10.3109/08916939808995370] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Autoantibodies to the Ro/SSA and La/SSB antigens are found in patients with Sjogren's syndrome and systemic lupus erythematosus. The Ro/SSA autoantigen consists of a 52 kD and a 60 kD protein, complexed with one of four small RNA molecules. The La protein can associate with the complex. The Ro/SSA autoantigens are present in all mammalian cells, but their intracellular location is subject of controversy and their function remains unclear. To study the intracellular sorting and targeting of Ro 52 kD we have constructed expression plasmids encoding fusion proteins between the full-length Ro 52 kD protein as well as Ro 52 kD fragments and the green fluorescent protein (GFP) from the jelly fish, Aequorea Victoria. The subcellular distribution of the GFP-Ro 52 kD fusion proteins was investigated in transient expression experiments using transfected HeLa cells. The GFP-full-length Ro 52 kD fusion protein was accumulated in the cytoplasm and excluded from the nucleus. When GFP was fused with the La protein, the fluorescence was located in the nucleus. Clones coding for Ro 52 kD fragments containing the hydrophilic central part of the Ro 52 kD protein gave the same intracellular location and type of cytoplasmic speckles as the full-length Ro 52 kD protein. In contrast, both amino terminal and carboxy terminal fragments were uniformly distributed throughout the cell just like the GFP protein itself. These observations indicated a cytoplasmic location of the Ro 52 kD protein and demonstrated the crucial role of the hydrophilic domain in restricting the Ro 52 kD protein to this intracellular compartment.
Collapse
Affiliation(s)
- N Pourmand
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
42
|
Borsuk E, Vautier D, Szöllösi MS, Besombes D, Debey P. Development-dependent localization of nuclear antigens in growing mouse oocytes. Mol Reprod Dev 1996; 43:376-86. [PMID: 8868251 DOI: 10.1002/(sici)1098-2795(199603)43:3<376::aid-mrd12>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have analyzed the distribution of nuclear and nucleolar proteins during the period of oocyte's growth. Oocytes were isolated mechanically or enzymatically from ovaries of juvenile mice of various ages (from 1 to 28 days after birth). Small nuclear ribonucleoproteins (snRNPs), the splicing factor SC-35, and a protein linked to cell proliferation (p-120) were detected by indirect immunofluorescence. snRNP distribution is consistent with the prophase state of oocyte's nuclei, while SC-35 (and p-120) exhibit a "speckled" distribution throughout the entire period of growth. The number of speckles (or foci) appears maximal around 10 days after birth, i.e., in the period of maximal transcriptional activity, and is sensitive to alpha-amanitin treatment. On the other hand, the immunofluorescent distribution of of nucleolin and p-103 (a nucleolar marker of the granular component) is compared to the ultrastructural distribution of the granular component analyzed by electron microscopy on oocytes of the same age.
Collapse
Affiliation(s)
- E Borsuk
- Department of Embryology, University of Warsaw, Poland
| | | | | | | | | |
Collapse
|
43
|
Thiry M. Nucleic acid compartmentalization within the cell nucleus by in situ transferase-immunogold techniques. Microsc Res Tech 1995; 31:4-21. [PMID: 7542939 DOI: 10.1002/jemt.1070310103] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the present review, we report on recent results obtained by in situ transferase-immunogold techniques as to the ultrastructural distribution of DNA and RNA within the cell nucleus. Special emphasis is placed on the various nucleolar components and the various enigmatic structures of the extranucleolar region: interchromatin granules, coiled bodies, and simple nuclear bodies. These data are discussed in the light of our current understanding of the functional organization of the cell nucleus.
Collapse
Affiliation(s)
- M Thiry
- Laboratory of Cellular and Tissular Biology, University of Liège, Belgium
| |
Collapse
|
44
|
Pyne CK, Simon F, Loones MT, Géraud G, Bachmann M, Lacroix JC. Localization of antigens PwA33 and La on lampbrush chromosomes and on nucleoplasmic structures in the oocyte of the urodele Pleurodeles waltl: light and electron microscopic immunocytochemical studies. Chromosoma 1994; 103:475-85. [PMID: 7720414 DOI: 10.1007/bf00337386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monoclonal antibodies A33/22 and La11G7 have been used to study the distribution of the corresponding antigens, PwA33 and La, on the lampbrush chromosome loops and nucleoplasmic structures of P. waltl oocytes, using immunofluorescence, confocal laser scanning microscopy and immunogold labeling. The results obtained with these antibodies have been compared with those obtained with the Sm-antigen-specific monoclonal antibody Y12. All these monoclonal antibodies (mAbs) labeled the matrices of the majority of normal loops along their whole length. Nucleoplasmic RNP granules showed a strong staining with the mAbs La11G7 and Y12 throughout their mass, but with the mAb A33/22, they showed only a weak peripheral labeling in the form of patches on their surface. This patchy labeling was confirmed by confocal laser scanning microscopy. Electron microscopy revealed that this patchy labeling might be due to a hitherto undescribed type of submicroscopic granular structure, around 100 nm in either dimension, formed by 10-nm particles. Such granules were observed either attached to the RNP granules or free in the nucleoplasm, but rarely in relation with the normal loop matrices. These 100-nm granules may have a role in the movement of proteins and snRNPs inside the oocyte nuclei for storage, recycling, and/or degradation. Our results also suggest that all the microscopically visible free RNP granules of the nucleoplasm of P. waltl oocytes correspond to B snurposomes. The granules forming the B (globular) loops showed a labeling pattern similar to that of B snurposomes; their possible relationship is discussed.
Collapse
Affiliation(s)
- C K Pyne
- CNRS UA-1135, Laboratoire de Génétique du Développement, Université P. et M. Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Simons FH, Pruijn GJ, van Venrooij WJ. Analysis of the intracellular localization and assembly of Ro ribonucleoprotein particles by microinjection into Xenopus laevis oocytes. J Cell Biol 1994; 125:981-8. [PMID: 8195301 PMCID: PMC2120048 DOI: 10.1083/jcb.125.5.981] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.
Collapse
Affiliation(s)
- F H Simons
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
46
|
Affiliation(s)
- W J van Venrooij
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
47
|
Bachmann M, Zaubitzer T, Müller WE. The autoantigen La/SSB: detection on and uptake by mitotic cells. Exp Cell Res 1992; 201:387-98. [PMID: 1639136 DOI: 10.1016/0014-4827(92)90288-j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nuclear autoantigen La, a transcription/termination factor of RNA polymerase III, was recently shown to translocalize to the cell surface of growth-stimulated cells during transition from G0- to G1-phase. Here we describe the staining of living mitotic cells with the anti-La mab La11G7. Moreover, La protein added to cell culture medium was able to enter into synchronized mitotic cells. Uptake was inhibited by the anti-La mab. La protein taken up into prophase cells assembled into a fibrillar network. Taken up byu ana/telophase cells, La protein was preferentially transported into the newly forming or formed nuclei. This import allowed us to study directly the intranuclear localization of La protein in living cells by the use confocal laser scanning microscopy (cLSM). Adsorbed La protein was found in the nucleoplasm but also assembled into nuclear speckles. Some of these speckles surrounded the nucleolus like a ring.
Collapse
Affiliation(s)
- M Bachmann
- Institut für Physiologische Chemie, Johannes-Gutenberg Universität, Mainz, Germany
| | | | | |
Collapse
|
48
|
Bachmann M, Althoff H, Tröster H, Selenka C, Falke D, Müller WE. Translocation of the nuclear autoantigen La to the cell surface of herpes simplex virus type 1 infected cells. Autoimmunity 1992; 12:37-45. [PMID: 1617103 DOI: 10.3109/08916939209146128] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently we developed a procedure to translocalize one of the extractable nuclear antigens (ENAs), the La protein, to the cell surface of CV-1 cells. Here we report that herpes simplex virus type 1 infection can also induce a translocation of the autoantigen to the cell surface. On the cell surface we detected La protein assembled with large protrusions. Within these protrusions La protein colocalized with virus particles. These protrusions are known to be released from the cell after virus infections. Such complexes consisting of self and virus could provide helper determinants for an anti-self response, and therefore be important in generation of autoimmunity.
Collapse
Affiliation(s)
- M Bachmann
- Johannes Gutenberg University of Mainz, Inst. Physiol. Chem., Germany
| | | | | | | | | | | |
Collapse
|
49
|
Henderson SC, Locke M. A shell of F-actin surrounds the branched nuclei of silk gland cells. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/cm.970230302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Abstract
For most known nuclear domains (ND), specific functions have been identified. In this report we used murine mAbs and human autoantibodies to investigate precisely circumscribed structures 0.2-0.3 micron in diameter which appear as "nuclear dots" distributed throughout the nucleoplasm. Nuclear dots are metabolically stable and resistant to nuclease digestion and salt extraction. The localization of nuclear dots is separate from kinetochores, centromeres, sites of mRNA processing and tRNA synthesis, nuclear bodies, and chromosomes. The nuclear dots, therefore, represent a novel ND. Nuclear dots break down as cells enter metaphase and reassemble at telophase. In interphase cells, nuclear dots are frequently "paired," and some are visible as "doublets" when stained with one particular antiserum. The number of dot doublets increased when quiescent cells were stimulated with serum although the total number of dots did not change substantially. One of the antigens was identified as a protein with a molecular mass of approximately 55 kD showing three charge isomers in the pI range of 7.4 to 7.7. Autoantibodies affinity purified from this nuclear dot protein (NDP-55) show nuclear dots exclusively. Nuclear dot-negative rat liver parenchymal cells became positive after chemical hepatectomy, suggesting involvement of the NDP-55 in the proliferative state of cells.
Collapse
Affiliation(s)
- C A Ascoli
- Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|