1
|
Al-Husinat L, Azzam S, Al Sharie S, Al Sharie AH, Battaglini D, Robba C, Marini JJ, Thornton LT, Cruz FF, Silva PL, Rocco PRM. Effects of mechanical ventilation on the interstitial extracellular matrix in healthy lungs and lungs affected by acute respiratory distress syndrome: a narrative review. Crit Care 2024; 28:165. [PMID: 38750543 PMCID: PMC11094887 DOI: 10.1186/s13054-024-04942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.
Collapse
Affiliation(s)
- Lou'i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Saif Azzam
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | - Ahmed H Al Sharie
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche, Università Degli Studi di Genova, Genoa, Italy
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Jaddivada S, Gundiah N. Physical biology of cell-substrate interactions under cyclic stretch. Biomech Model Mechanobiol 2024; 23:433-451. [PMID: 38010479 DOI: 10.1007/s10237-023-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023]
Abstract
Mechanosensitive focal adhesion (FA) complexes mediate dynamic interactions between cells and substrates and regulate cellular function. Integrins in FA complexes link substrate ligands to stress fibers (SFs) and aid load transfer and traction generation. We developed a one-dimensional, multi-scale, stochastic finite element model of a fibroblast on a substrate that includes calcium signaling, SF remodeling, and FA dynamics. We linked stochastic dynamics, describing the formation and clustering of integrins to substrate ligands via motor-clutches, to a continuum level SF contractility model at various locations along the cell length. We quantified changes in cellular responses with substrate stiffness, ligand density, and cyclic stretch. Results show that tractions and integrin recruitments varied along the cell length; tractions were maximum at lamellar regions and reduced to zero at the cell center. Optimal substrate stiffness, based on maximum tractions exerted by the cell, shifted toward stiffer substrates at high ligand densities. Mean tractions varied biphasically with substrate stiffness and peaked at the optimal substrate stiffness. Cytosolic calcium increased monotonically with substrate stiffness and accumulated near lamellipodial regions. Cyclic stretch increased the cytosolic calcium, integrin concentrations, and tractions at lamellipodial and intermediate regions on compliant substrates. The optimal substrate stiffness under stretch shifted toward compliant substrates for a given ligand density. Stretch also caused cell deadhesions beyond a critical substrate stiffness. FA's destabilized on stiff substrates under cyclic stretch. An increase in substrate stiffness and cyclic stretch resulted in higher fibroblast contractility. These results show that chemomechanical coupling is essential in mechanosensing responses underlying cell-substrate interactions.
Collapse
Affiliation(s)
- Siddhartha Jaddivada
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
3
|
Eiken MK, Childs CJ, Brastrom LK, Frum T, Plaster EM, Shachaf O, Pfeiffer S, Levine JE, Alysandratos KD, Kotton DN, Spence JR, Loebel C. Nascent matrix deposition supports alveolar organoid formation from aggregates in synthetic hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585720. [PMID: 38562781 PMCID: PMC10983987 DOI: 10.1101/2024.03.19.585720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human induced pluripotent stem cell (iPSC) derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse-sarcoma derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in the synthetic hydrogels. Thus, the synthetic gels described here allow us to de-couple exogenous and nascent ECM in order to interrogate the role of ECM in organoid formation.
Collapse
Affiliation(s)
- Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eleanor M. Plaster
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Orren Shachaf
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Suzanne Pfeiffer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Justin E. Levine
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jason R. Spence
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
5
|
Ghilardi SJ, Aronson MS, Sgro AE. Ventral stress fibers induce plasma membrane deformation in human fibroblasts. Mol Biol Cell 2021; 32:1707-1723. [PMID: 34191528 PMCID: PMC8684729 DOI: 10.1091/mbc.e21-03-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Interactions between the actin cytoskeleton and the plasma membrane are important in many eukaryotic cellular processes. During these processes, actin structures deform the cell membrane outward by applying forces parallel to the fiber's major axis (as in migration) or they deform the membrane inward by applying forces perpendicular to the fiber's major axis (as in the contractile ring during cytokinesis). Here we describe a novel actin-membrane interaction in human dermal myofibroblasts. When labeled with a cytosolic fluorophore, the myofibroblasts displayed prominent fluorescent structures on the ventral side of the cell. These structures are present in the cell membrane and colocalize with ventral actin stress fibers, suggesting that the stress fibers bend the membrane to form a "cytosolic pocket" that the fluorophores diffuse into, creating the observed structures. The existence of this pocket was confirmed by transmission electron microscopy. While dissolving the stress fibers, inhibiting fiber protein binding, or inhibiting myosin II binding of actin removed the observed pockets, modulating cellular contractility did not remove them. Taken together, our results illustrate a novel actin-membrane bending topology where the membrane is deformed outward rather than being pinched inward, resembling the topological inverse of the contractile ring found in cytokinesis.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| | - Mark S. Aronson
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, MA 02215
| |
Collapse
|
6
|
Ahn SH, Kim H, Lee I, Lee JH, Cho S, Choi YS. MicroRNA-139-5p Regulates Fibrotic Potentials via Modulation of Collagen Type 1 and Phosphorylated p38 MAPK in Uterine Leiomyoma. Yonsei Med J 2021; 62:726-733. [PMID: 34296550 PMCID: PMC8298864 DOI: 10.3349/ymj.2021.62.8.726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/16/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE This study aimed to elucidate whether microRNA-139-5p is involved in the pathogenesis of uterine leiomyoma. MATERIALS AND METHODS Human leiomyoma and matched human smooth muscle samples were obtained from 10 women who underwent hysterectomy for uterine leiomyoma. MicroRNA (miRNA) expression was analyzed by quantitative real-time polymerase chain reaction. To assess the effects of miR-139-5p on cultured leiomyoma cells, cell migration, collagen gel contraction, wound healing, and the expression levels of hallmark proteins were evaluated in cells transfected with a miR-139-5p mimic. RESULTS The expression of miR-139-5p was significantly lower in leiomyoma tissues than in matched smooth muscle tissues. Restored miR-139-5p expression in miR-139-5p mimic-transfected human leiomyoma cells resulted in decreased contractility of the ECM and cell migration. In addition, upregulation of miR-139-5p decreased the protein expression of collagen type 1 and phosphorylated p38 MAPK. CONCLUSION Expression of miR-139-5p is downregulated in leiomyoma cells and modulation of miR-139-5p may be involved inthe pathogenesis of leiomyomas through the regulation of collagen type 1 and phosphorylated p38 MAPK. Therefore, miR-139-5p is a potential therapeutic target for leiomyoma.
Collapse
Affiliation(s)
- So Hyun Ahn
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Heeyon Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hoon Lee
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - SiHyun Cho
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Massett MP, Bywaters BC, Gibbs HC, Trzeciakowski JP, Padgham S, Chen J, Rivera G, Yeh AT, Milewicz DM, Trache A. Loss of smooth muscle α-actin effects on mechanosensing and cell-matrix adhesions. Exp Biol Med (Maywood) 2020; 245:374-384. [PMID: 32064918 PMCID: PMC7370591 DOI: 10.1177/1535370220903012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in ACTA2 , encoding smooth muscle α-actin, are a frequent cause of heritable thoracic aortic aneurysm and dissections. These mutations are associated with impaired vascular smooth muscle cell function, which leads to decreased ability of the cell to sense matrix-mediated mechanical stimuli. This study investigates how loss of smooth muscle α-actin affects cytoskeletal tension development and cell adhesion using smooth muscle cells explanted from aorta of mice lacking smooth muscle α-actin. We tested the hypothesis that reduced vascular smooth muscle contractility due to a loss of smooth muscle α-actin decreases cellular mechanosensing by dysregulating cell adhesion to the matrix. Assessment of functional mechanical properties of the aorta by stress relaxation measurements in thoracic aortic rings suggested two functional regimes for Acta2 −/− mice. Lower stress relaxation was recorded in aortic rings from Acta2 −/− mice at tensions below 10 mN compared with wild type, likely driven by cytoskeletal-dependent contractility. However, no differences were recorded between the two groups above the 10 mN threshold, since at higher tension the matrix-dependent contractility may be predominant. In addition, our results showed that at any given level of stretch, transmural pressure is lower in aortic rings from Acta2 −/− mice than wild type mice. In addition, a three-dimensional collagen matrix contractility assay showed that collagen pellets containing Acta2 −/− smooth muscle cells contracted less than the pellets containing the wild type cells. Moreover, second harmonic generation non-linear microscopy revealed that Acta2 −/− cells locally remodeled the collagen matrix fibers to a lesser extent than wild type cells. Quantification of protein fluorescence measurements in cells also showed that in absence of smooth muscle α-actin, there is a compensatory increase in smooth muscle γ-actin. Moreover, specific integrin recruitment at cell–matrix adhesions was reduced in Acta2 −/− cells. Thus, our findings suggest that Acta2 −/− cells are unable to generate external forces to remodel the matrix due to reduced contractility and interaction with the matrix.
Collapse
Affiliation(s)
- MP Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - BC Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - HC Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - JP Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - S Padgham
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - J Chen
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - G Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - AT Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - DM Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - A Trache
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
8
|
Vaughan MB, Xu G, Morris TL, Kshetri P, Herwig JX. Predictable fibroblast tension generation by measuring compaction of anchored collagen matrices using microscopy and optical coherence tomography. Cell Adh Migr 2019; 13:303-314. [PMID: 31331232 PMCID: PMC6650198 DOI: 10.1080/19336918.2019.1644855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anchored fibroblast-populated collagen matrix (aFPCM) is an appropriate model to study fibrocontractive disease mechanisms. Our goal was to determine if aFPCM height reduction (compaction) during development is sufficient to predict tension generation. Compaction was quantified daily by both traditional light microscopy and an optical coherence tomography (OCT) system. Contraction in aFPCM was revealed by releasing them from anchorage. We found that aFPCM contraction increase was correlated to the compaction increase. Cytochalasin D treatment reversibly inhibited compaction. Therefore, we demonstrated that aFPCM height reduction efficiently measures compaction, contraction, and relative maturity of the collagen matrix during development or treatment. In addition, we showed that OCT is suitable for effectively imaging the cross-sectional morphology of the aFPCM in culture. This study will pave the way for more efficient studies on the mechanisms of (and treatments that target) migration and contraction in wound healing and Dupuytren’s contracture in a tissue environment.
Collapse
Affiliation(s)
- Melville B Vaughan
- a Department of Biology, University of Central Oklahoma , Edmond , OK , USA.,b Center for Interdisciplinary Biomedical Education and Research (CIBER), University of Central Oklahoma, 100 N. University Drive , Edmond , OK
| | - Gang Xu
- b Center for Interdisciplinary Biomedical Education and Research (CIBER), University of Central Oklahoma, 100 N. University Drive , Edmond , OK.,c Department of Engineering and Physics, University of Central Oklahoma , Edmond , OK , USA
| | - Tracy L Morris
- b Center for Interdisciplinary Biomedical Education and Research (CIBER), University of Central Oklahoma, 100 N. University Drive , Edmond , OK.,d Department of Mathematics and Statistics, University of Central Oklahoma , Edmond , OK , USA
| | - Pratiksha Kshetri
- a Department of Biology, University of Central Oklahoma , Edmond , OK , USA
| | - Jing X Herwig
- a Department of Biology, University of Central Oklahoma , Edmond , OK , USA
| |
Collapse
|
9
|
Lee JH, Choi YS, Park JH, Kim H, Lee I, Won YB, Yun BH, Park JH, Seo SK, Lee BS, Cho S. MiR-150-5p May Contribute to Pathogenesis of Human Leiomyoma via Regulation of the Akt/p27 Kip1 Pathway In Vitro. Int J Mol Sci 2019; 20:ijms20112684. [PMID: 31159158 PMCID: PMC6601023 DOI: 10.3390/ijms20112684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Uterine leiomyoma is found in ~50–80% of women of a reproductive age and is the most common reason for hysterectomy. Recently, posttranscriptional gene silencing by microRNAs (miRs) has been reported as a mechanism for regulating gene expression stability in the pathogenesis of uterine leiomyomas. In this study, miR microarray analysis of leiomyomas and paired myometrial tissue revealed numerous aberrantly expressed miRs, including miR-150. In functional assays, transfection with miR-150 mimic resulted in decreased migration and fibrosis, implying an inhibition of leiomyoma growth. To identify the target genes of miR-150 in leiomyoma, gene set analysis and network analysis were performed. To overcome the limitations of in silico analysis, changes in expression levels of hallmark genes in leiomyoma after transfection with a miR-150 mimic were also evaluated using qRT-PCR. As a result, the Akt/p27Kip1 pathway was presumed to be one of the target pathways of miR-150. After transfecting cultured leiomyoma cells with the miR-150 mimic, expression levels of its target gene Akt decreased, whereas those of p27Kip1 increased significantly. Our results suggest that miR-150 affects the cell cycle regulation in uterine leiomyoma through the Akt/p27Kip1 pathway.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Ji Hyun Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| | - Heeyon Kim
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| | - Inha Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Young Bin Won
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - SiHyun Cho
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea.
| |
Collapse
|
10
|
Yeo M, Kim G. Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration. ACS Biomater Sci Eng 2018; 4:728-738. [DOI: 10.1021/acsbiomaterials.7b00983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miji Yeo
- Department of Biomechatronic Engineering,
College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering,
College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
11
|
Kim MK, Lee SK, Park JH, Lee JH, Yun BH, Park JH, Seo SK, Cho S, Choi YS. Ginsenoside Rg3 Decreases Fibrotic and Invasive Nature of Endometriosis by Modulating miRNA-27b: In Vitro and In Vivo Studies. Sci Rep 2017; 7:17670. [PMID: 29247225 PMCID: PMC5732249 DOI: 10.1038/s41598-017-17956-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023] Open
Abstract
This research aimed to evaluate the potential therapeutic effects of Rg3 on endometriosis and identify target miRNAs. We designed an in vitro study using human endometrial stromal cells (HESCs) obtained from patients with endometriosis and an in vivo study using mouse models. HESCs were treated with Rg3-enhanced red ginseng extract (Rg3E); real-time PCR and microarray profiling, transfection, and western blot were performed. Mouse endometriosis models were developed and supplemented with Rg3E for 8 weeks. Gross lesion size and fibrotic character were analyzed in the mouse models. RNA levels of Ki-67, col-1, CTGF, fibronectin, TGF-β1, MMP2 and MMP9 significantly decreased in HESCs after Rg3E treatment. Microarray analysis revealed downregulation of miR-27b-3p, which is related to fibrosis modulation. Expression of miR-27b-3p was significantly higher in HESCs from patients with endometriosis than that of controls, and Rg3E treatment significantly decreased its expression; the contraction and migration assay revealed significant reductions in both fibrosis and migration potential in Rg3E-treated HESCs from endometriosis patients. A decrease in size and fibrotic character of endometrial lesions from the Rg3E groups was observed in vivo. In conclusion, Rg3 effectively altered fibrotic properties of HESCs from patients with endometriosis, which is likely associated with miR-27b-3p modulation.
Collapse
Affiliation(s)
- Min Kyoung Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, 06125, Republic of Korea
| | - Seung Kyun Lee
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Ji Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - SiHyun Cho
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
12
|
Owen LM, Adhikari AS, Patel M, Grimmer P, Leijnse N, Kim MC, Notbohm J, Franck C, Dunn AR. A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Mol Biol Cell 2017; 28:1959-1974. [PMID: 28592635 PMCID: PMC5541846 DOI: 10.1091/mbc.e17-02-0102] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023] Open
Abstract
The ability of cells to impart forces and deformations on their surroundings underlies cell migration and extracellular matrix (ECM) remodeling and is thus an essential aspect of complex, metazoan life. Previous work has resulted in a refined understanding, commonly termed the molecular clutch model, of how cells adhering to flat surfaces such as a microscope coverslip transmit cytoskeletally generated forces to their surroundings. Comparatively less is known about how cells adhere to and exert forces in soft, three-dimensional (3D), and structurally heterogeneous ECM environments such as occur in vivo. We used time-lapse 3D imaging and quantitative image analysis to determine how the actin cytoskeleton is mechanically coupled to the surrounding matrix for primary dermal fibroblasts embedded in a 3D fibrin matrix. Under these circumstances, the cytoskeletal architecture is dominated by contractile actin bundles attached at their ends to large, stable, integrin-based adhesions. Time-lapse imaging reveals that α-actinin-1 puncta within actomyosin bundles move more quickly than the paxillin-rich adhesion plaques, which in turn move more quickly than the local matrix, an observation reminiscent of the molecular clutch model. However, closer examination did not reveal a continuous rearward flow of the actin cytoskeleton over slower moving adhesions. Instead, we found that a subset of stress fibers continuously elongated at their attachment points to integrin adhesions, providing stable, yet structurally dynamic coupling to the ECM. Analytical modeling and numerical simulation provide a plausible physical explanation for this result and support a picture in which cells respond to the effective stiffness of local matrix attachment points. The resulting dynamic equilibrium can explain how cells maintain stable, contractile connections to discrete points within ECM during cell migration, and provides a plausible means by which fibroblasts contract provisional matrices during wound healing.
Collapse
Affiliation(s)
- Leanna M Owen
- Biophysics, Stanford University, Stanford, CA 94305
- Chemical Engineering, Stanford University, Stanford, CA 94305
| | | | - Mohak Patel
- School of Engineering, Brown University, Providence, RI 02912
| | - Peter Grimmer
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53711
| | | | - Min Cheol Kim
- Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53711
| | | | | |
Collapse
|
13
|
Menon SN, Hall CL, McCue SW, McElwain DLS. A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices. Biomech Model Mechanobiol 2017; 16:1743-1763. [PMID: 28523375 DOI: 10.1007/s10237-017-0917-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/03/2017] [Indexed: 11/26/2022]
Abstract
The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.
Collapse
Affiliation(s)
- Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Cameron L Hall
- Mathematics Applications Consortium with Science and Industry, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Scott W McCue
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - D L Sean McElwain
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
14
|
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. BIOCHEMISTRY (MOSCOW) 2017; 81:1698-1708. [PMID: 28260491 DOI: 10.1134/s0006297916130071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton consists of three distinct types of protein polymer structures - microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation - a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.
Collapse
Affiliation(s)
- N Sandbo
- University of Wisconsin, Department of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
15
|
Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective. Inflamm Res 2016; 66:451-465. [PMID: 28040859 DOI: 10.1007/s00011-016-1019-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Fibrosis is a complex chronic disease characterized by a persistent repair response. Its pathogenesis is poorly understood but it is typically the result of chronic inflammation and maintained with the required activity of transforming growth factor-β (TGFβ) and extracellular matrix (ECM) tension, both of which drive fibroblasts to transition into a myofibroblast phenotype. FINDINGS As the effector cells of repair, myofibroblasts migrate to the site of injury to deposit excessive amounts of matrix proteins and stimulate high levels of contraction. Myofibroblast activity is a decisive factor in whether a tissue is properly repaired by controlled wound healing or rendered fibrotic by deregulated repair. Extensive studies have documented the various contributing factors to an abrogated repair response. Though these fibrotic factors are known, very little is understood about the opposing antifibrotic molecules that assist in a successful repair, such as prostaglandin E2 (PGE2) and ECM retraction. The following review will discuss the general development of fibrosis through the transformation of myofibroblasts, focusing primarily on the prominent profibrotic pathways of TGFβ and ECM tension and antifibrotic pathways of PGE2 and ECM retraction. CONCLUSIONS The idea is to understand the ways in which the cell, after an injury and inflammatory response, normally controls its repair mechanisms through its homeostatic regulators so as to mimic them therapeutically to control abnormal pathways.
Collapse
|
16
|
Yamaba H, Haba M, Kunita M, Sakaida T, Tanaka H, Yashiro Y, Nakata S. Morphological change of skin fibroblasts induced by UV Irradiation is involved in photoaging. Exp Dermatol 2016; 25 Suppl 3:45-51. [DOI: 10.1111/exd.13084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Hiroyuki Yamaba
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Manami Haba
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Mayumi Kunita
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Tsutomu Sakaida
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Hiroshi Tanaka
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Youichi Yashiro
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| | - Satoru Nakata
- Research Laboratories; Nippon Menard Cosmetic Co., Ltd.; Nagoya Japan
| |
Collapse
|
17
|
Amadeu TP, Coulomb B, Desmouliere A, Costa AMA. Cutaneous Wound Healing: Myofibroblastic Differentiation and in Vitro Models. INT J LOW EXTR WOUND 2016; 2:60-8. [PMID: 15866829 DOI: 10.1177/1534734603256155] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Wound healing is an interactive, dynamic 3-phased process. During the formation of granulation tissue, many fibroblastic cells acquire some morphological and biochemical smooth muscle features and are called myofibroblasts. Myofibroblasts participate in both granulation tissue formation and remodeling phases. Excessive scarring, which is a feature of impaired healing, is a serious health problem that may affect the patient's quality of life. The treatment costs of such lesions are high, and often, the results are unsatisfactory. To understand the wound healing process better and to promote improvement in human healing, models are needed that can predict the in vivo situation in humans. In vitro models allow the study of cell behavior in a controlled environment. Such modeling partitions and reduces to small scales behavior perceived in vivo. This article is focused on `fibroblasts.' In vitro models to study wound healing, the role of (myo)fibroblasts, and skin reconstruction in tissue replacement and promotion of wound healing are discussed.
Collapse
Affiliation(s)
- Thaís Porto Amadeu
- Histology and Embryology Department, State University of Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
18
|
Elson EL, Genin GM. Tissue constructs: platforms for basic research and drug discovery. Interface Focus 2016; 6:20150095. [PMID: 26855763 DOI: 10.1098/rsfs.2015.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review.
Collapse
Affiliation(s)
- Elliot L Elson
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St Louis, MO 63110 , USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science , Washington University , St Louis, MO 63130 , USA
| |
Collapse
|
19
|
Burridge K, Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp Cell Res 2015; 343:14-20. [PMID: 26519907 PMCID: PMC4891215 DOI: 10.1016/j.yexcr.2015.10.029] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC, USA.
| | - Christophe Guilluy
- Inserm UMR_S1087, CNRS UMR_C6291, L'institut du Thorax, and Université de Nantes, Nantes, France.
| |
Collapse
|
20
|
A thermodynamically motivated model for stress-fiber reorganization. Biomech Model Mechanobiol 2015; 15:761-89. [DOI: 10.1007/s10237-015-0722-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|
21
|
Bachman H, Nicosia J, Dysart M, Barker TH. Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses. Adv Wound Care (New Rochelle) 2015; 4:501-511. [PMID: 26244106 DOI: 10.1089/wound.2014.0621] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/12/2015] [Indexed: 01/11/2023] Open
Abstract
Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin-Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis.
Collapse
Affiliation(s)
- Haylee Bachman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - John Nicosia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Marilyn Dysart
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Thomas H. Barker
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
- The Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
22
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Abstract
Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.
Collapse
Affiliation(s)
- Jiří Kanta
- a Department of Medical Biochemistry; Medical Faculty in Hradec Králové; Charles University ; Prague , Czech Republic
| |
Collapse
|
24
|
Undifferentiated bronchial fibroblasts derived from asthmatic patients display higher elastic modulus than their non-asthmatic counterparts. PLoS One 2015; 10:e0116840. [PMID: 25679502 PMCID: PMC4334506 DOI: 10.1371/journal.pone.0116840] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/15/2014] [Indexed: 12/31/2022] Open
Abstract
During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned ‘ventral’ stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.
Collapse
|
25
|
Siani A, Tirelli N. Myofibroblast differentiation: main features, biomedical relevance, and the role of reactive oxygen species. Antioxid Redox Signal 2014; 21:768-85. [PMID: 24279926 DOI: 10.1089/ars.2013.5724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Myofibroblasts are prototypical fibrotic cells, which are involved in a number of more or less pathological conditions, from foreign body reactions to scarring, from liver, kidney, or lung fibrosis to neoplastic phenomena. The differentiation of precursor cells (not only of fibroblastic nature) is characterized by a complex interplay between soluble factors (growth factors such as transforming growth factor β1, reactive oxygen species [ROS]) and material properties (matrix stiffness). RECENT ADVANCES The last 15 years have seen very significant advances in the identification of appropriate differentiation markers, in the understanding of the differentiation mechanism, and above all, the involvement of ROS as causative and persistence factors. CRITICAL ISSUES The specific mechanisms of action of ROS remain largely unknown, although evidence suggests that both intracellular and extracellular phenomena play a role. FUTURE DIRECTIONS Approaches based on antioxidant (ROS-scavenging) principles and on the potentiation of nitric oxide signaling hold much promise in view of a pharmacological therapy of fibrotic phenomena. However, how to make the active principles available at the target sites is yet a largely neglected issue.
Collapse
Affiliation(s)
- Alessandro Siani
- 1 School of Pharmacy and Pharmaceutical Sciences, University of Manchester , Manchester, United Kingdom
| | | |
Collapse
|
26
|
Smithmyer ME, Sawicki LA, Kloxin AM. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2014; 2:634-650. [PMID: 25379176 PMCID: PMC4217222 DOI: 10.1039/c3bm60319a] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Wound healing results from complex signaling between cells and their environment in response to injury. Fibroblasts residing within the extracellular matrix (ECM) of various connective tissues are critical for matrix synthesis and repair. Upon injury or chronic insult, these cells activate into wound-healing cells, called myofibroblasts, and repair the damaged tissue through enzyme and protein secretion. However, misregulation and persistence of myofibroblasts can lead to uncontrolled accumulation of matrix proteins, tissue stiffening, and ultimately disease. Extracellular cues are important regulators of fibroblast activation and have been implicated in their persistence. Hydrogel-based culture models have emerged as useful tools to examine fibroblast response to ECM cues presented during these complex processes. In this Mini-Review, we will provide an overview of these model systems, which are built upon naturally-derived or synthetic materials, and mimic relevant biophysical and biochemical properties of the native ECM with different levels of control. Additionally, we will discuss the application of these hydrogel-based systems for the examination of fibroblast function and fate, including adhesion, migration, and activation, as well as approaches for mimicking both static and temporal aspects of extracellular environments. Specifically, we will highlight hydrogels that have been used to investigate the effects of matrix rigidity, protein binding, and cytokine signaling on fibroblast activation. Last, we will describe future directions for the design of hydrogels to develop improved synthetic models that mimic the complex extracellular environment.
Collapse
Affiliation(s)
- Megan E. Smithmyer
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - Lisa A. Sawicki
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - April M. Kloxin
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
- Materials Science & Engineering , University of Delaware , Newark , DE 19716 , USA .
| |
Collapse
|
27
|
Joo EE, Yamada KM. MYPT1 regulates contractility and microtubule acetylation to modulate integrin adhesions and matrix assembly. Nat Commun 2014; 5:3510. [PMID: 24667306 DOI: 10.1038/ncomms4510] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/25/2014] [Indexed: 01/16/2023] Open
Abstract
Although much is known about how individual cytoskeletal systems contribute to physiological processes such as cell migration and branching morphogenesis, little is known about how these different systems actively coordinate their functions after polymerization. Here we show that both fibroblasts and developing glands reciprocally coordinate levels of cellular contractility and microtubule acetylation. We find that this balance is achieved by interaction of the myosin phosphatase target subunit of myosin phosphatase with either myosin light chain or HDAC6, a microtubule deacetylase. This balance of contractility and microtubule acetylation controls progression of adhesion maturation by regulating surface density of α5β1 integrin and fibronectin. Thus, we propose that a homeostatic balance between contractility and microtubule acetylation is mediated by myosin phosphatase via controlled activation and deactivation of myosin II and HDAC6. This regulates the surface density of α5β1 integrin to modulate fibronectin matrix assembly and governs rates of cell migration and branching morphogenesis.
Collapse
Affiliation(s)
- E Emily Joo
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth M Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Chao J, Peña T, Heimann DG, Hansen C, Doyle DA, Yanala UR, Guenther TM, Carlson MA. Expression of green fluorescent protein in human foreskin fibroblasts for use in 2D and 3D culture models. Wound Repair Regen 2014; 22:134-40. [DOI: 10.1111/wrr.12121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/04/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Jie Chao
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Tiffany Peña
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Dean G. Heimann
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Chris Hansen
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - David A. Doyle
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Ujwal R. Yanala
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Timothy M. Guenther
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Mark A. Carlson
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
- VA Nebraska-Western Iowa Health Care System; Omaha Nebraska USA
| |
Collapse
|
29
|
Wang H, Svoronos AA, Boudou T, Sakar MS, Schell JY, Morgan JR, Chen CS, Shenoy VB. Necking and failure of constrained 3D microtissues induced by cellular tension. Proc Natl Acad Sci U S A 2013; 110:20923-8. [PMID: 24324149 PMCID: PMC3876233 DOI: 10.1073/pnas.1313662110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper we report a fundamental morphological instability of constrained 3D microtissues induced by positive chemomechanical feedback between actomyosin-driven contraction and the mechanical stresses arising from the constraints. Using a 3D model for mechanotransduction we find that perturbations in the shape of contractile tissues grow in an unstable manner leading to formation of "necks" that lead to the failure of the tissue by narrowing and subsequent elongation. The magnitude of the instability is shown to be determined by the level of active contractile strain, the stiffness of the extracellular matrix, and the components of the tissue that act in parallel with the active component and the stiffness of the boundaries that constrain the tissue. A phase diagram that demarcates stable and unstable behavior of 3D tissues as a function of these material parameters is derived. The predictions of our model are verified by analyzing the necking and failure of normal human fibroblast tissue constrained in a loop-ended dog-bone geometry and cardiac microtissues constrained between microcantilevers. By analyzing the time evolution of the morphology of the constrained tissues we have quantitatively determined the chemomechanical coupling parameters that characterize the generation of active stresses in these tissues. More generally, the analytical and numerical methods we have developed provide a quantitative framework to study how contractility can influence tissue morphology in complex 3D environments such as morphogenesis and organogenesis.
Collapse
Affiliation(s)
- Hailong Wang
- Department of Materials Science and Engineering and
| | - Alexander A. Svoronos
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912; and
| | - Thomas Boudou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Mahmut Selman Sakar
- Institute of Robotics and Intelligent Systems, Eidgenössische Technische Hochschule Zürich, CH 8092 Zurich, Switzerland
| | - Jacquelyn Youssef Schell
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912; and
| | - Jeffrey R. Morgan
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912; and
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
30
|
Kural MH, Billiar KL. Regulating tension in three-dimensional culture environments. Exp Cell Res 2013; 319:2447-59. [PMID: 23850829 DOI: 10.1016/j.yexcr.2013.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 01/13/2023]
Abstract
The processes of development, repair, and remodeling of virtually all tissues and organs, are dependent upon mechanical signals including external loading, cell-generated tension, and tissue stiffness. Over the past few decades, much has been learned about mechanotransduction pathways in specialized two-dimensional culture systems; however, it has also become clear that cells behave very differently in two- and three-dimensional (3D) environments. Three-dimensional in vitro models bring the ability to simulate the in vivo matrix environment and the complexity of cell-matrix interactions together. In this review, we describe the role of tension in regulating cell behavior in three-dimensional collagen and fibrin matrices with a focus on the effective use of global boundary conditions to modulate the tension generated by populations of cells acting in concert. The ability to control and measure the tension in these 3D culture systems has the potential to increase our understanding of mechanobiology and facilitate development of new ways to treat diseased tissues and to direct cell fate in regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mehmet Hamdi Kural
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | |
Collapse
|
31
|
Jetté ME, Hayer SD, Thibeault SL. Characterization of human vocal fold fibroblasts derived from chronic scar. Laryngoscope 2013; 123:738-45. [PMID: 23444190 DOI: 10.1002/lary.23681] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/10/2012] [Accepted: 07/25/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS In vitro modeling of cell-matrix interactions that occur during human vocal fold scarring is uncommon, as primary human vocal fold scar fibroblast cell lines are difficult to acquire. The purpose of this study was to characterize morphologic features, growth kinetics, contractile properties, α-smooth muscle actin (α-SMA) protein expression and gene expression profile of human vocal fold fibroblasts derived from scar (sVFF) relative to normal vocal fold fibroblasts (nVFF). STUDY DESIGN In vitro. METHODS We successfully cultured human vocal fold fibroblasts from tissue explants of scarred vocal folds from a 56-year-old female and compared these to normal fibroblasts from a 59-year-old female. Growth and proliferation were assessed by daily cell counts, and morphology was compared at 60% confluence for 5 days. Gel contraction assays were evaluated after seeding cells within a collagen matrix. α-SMA was measured using western blotting and immunocytochemistry (ICC). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was used to assess differential extracellular matrix gene expression between the two cell types. RESULTS sVFF were morphologically indistinguishable from nVFF. sVFF maintained significantly lower proliferation rates relative to nVFF on days 3 to 6 (day 3: P = .0138; days 4, 5, and 6: P < .0001). There were no significant differences in contractile properties between the two cell types at any time point (0 hours: P = .70, 24 hours: P = .79, 48 hours: P = .58). ICC and western blot analyses revealed increased expression of α-SMA in sVFF as compared with nVFF at passages 4 and 5, but not at passage 6 (passage 4: P = .006, passage 5: P = .0015, passage 6: P = .8860). Analysis of 84 extracellular matrix genes using qRT-PCR revealed differential expression of 15 genes (P < .01). CONCLUSIONS nVFF and sVFF displayed differences in proliferation rates, α-SMA expression, and gene expression, whereas no differences were observed in contractile properties or morphology. Further investigation with a larger sample size is necessary to confirm these findings.
Collapse
Affiliation(s)
- Marie E Jetté
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
32
|
Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. ACTA ACUST UNITED AC 2013; 200:9-19. [PMID: 23295347 PMCID: PMC3542796 DOI: 10.1083/jcb.201210090] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress fibers (SFs) are often the most prominent cytoskeletal structures in cells growing in tissue culture. Composed of actin filaments, myosin II, and many other proteins, SFs are force-generating and tension-bearing structures that respond to the surrounding physical environment. New work is shedding light on the mechanosensitive properties of SFs, including that these structures can respond to mechanical tension by rapid reinforcement and that there are mechanisms to repair strain-induced damage. Although SFs are superficially similar in organization to the sarcomeres of striated muscle, there are intriguing differences in their organization and behavior, indicating that much still needs to be learned about these structures.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
33
|
Wu Y, Wang K, Karapetyan A, Fernando WA, Simkin J, Han M, Rugg EL, Muneoka K. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration. PLoS One 2013; 8:e54764. [PMID: 23349966 PMCID: PMC3548775 DOI: 10.1371/journal.pone.0054764] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue cells that are associated with their regenerative capabilities.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Karen Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Adrine Karapetyan
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
| | | | - Jennifer Simkin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Manjong Han
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Elizabeth L. Rugg
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
| | - Ken Muneoka
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
34
|
Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011; 158:181-96. [PMID: 21925115 PMCID: PMC3324184 DOI: 10.1016/j.trsl.2011.05.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 05/04/2011] [Accepted: 05/24/2011] [Indexed: 01/14/2023]
Abstract
Myofibroblasts are modified fibroblasts characterized by the presence of a well-developed contractile apparatus and the formation of robust actin stress fibers. These mechanically active cells are thought to orchestrate extracellular matrix remodeling during normal wound healing in response to tissue injury; these cells are found also in aberrant tissue remodeling in fibrosing disorders. This review surveys the understanding of the role of actin stress fibers in myofibroblast biology. Actin stress fibers are discussed as a defining ultrastructural and morphologic feature and well-accepted observations demonstrating its participation in contraction, focal adhesion maturation, and extracellular matrix reorganization are presented. Finally, more recent observations are reviewed, demonstrating its role in transducing mechanical force into biochemical signals, transcriptional control of genes involved in locomotion, contraction, and matrix reorganization, as well as the localized regulation of messenger RNA (mRNA) translation. This breadth of functionality of the actin stress fiber serves to reinforce and amplify its mechanical function, via induced expression of proteins that themselves augment contraction, focal adhesion formation, and matrix remodeling. In composite, the functions of the actin cytoskeleton are most often aligned, allowing for the integration and amplification of signals promoting both myofibroblast differentiation and matrix remodeling during fibrogenesis.
Collapse
|
35
|
Culbertson EJ, Xing L, Wen Y, Franz MG. Loss of mechanical strain impairs abdominal wall fibroblast proliferation, orientation, and collagen contraction function. Surgery 2011; 150:410-7. [PMID: 21813145 DOI: 10.1016/j.surg.2011.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/14/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Laparotomy wound load forces are reduced when dehiscence and incisional hernia formation occur. The purpose of this study was to determine the effects of strain loss on abdominal fascial fibroblast proliferation, orientation, and collagen compaction function. METHODS Cultured rat linea alba fibroblasts were subjected to continuous cyclic strain (CS), CS interrupted at 24 or 48 hours followed by culture at rest (IS-24 and IS-48) or were cultured without mechanical strain (NS). Cell number was measured and images analyzed for cell orientation. Fibroblasts from these groups were seeded onto the surface of (FPCL-S) or mixed into (FPCL-M) a collagen gel matrix and gel area was measured over time. RESULTS Continuous strain stimulated proliferation when compared with the nonstrained cells. The loss of strain (IS) delayed proliferation compared with CS throughout (P < .05). CS fibroblasts aligned perpendicular to the direction of strain within 12 hours. Within 12 hours of strain loss, IS-48 fibroblasts became significantly less aligned (P < .0001), and seemed similar to the randomly organized NS fibroblasts 48 hours after strain removal. The CS and IS-24 groups demonstrated faster and greater overall FPCL-M compaction than both the IS-48 and NS groups (P < .0002). The CS group contracted the gel faster than the NS group in FPCL-S (P = .029). CONCLUSION Mechanical strain rapidly induces a proliferative, morphologic, and functional response in abdominal wall fibroblasts that is dependent on the continued presence of the strain signal and quickly lost when the load force is removed. The loss of wound edge tension that occurs during laparotomy wound separation and hernia formation may contribute to impaired wound healing through loss of a key stimulatory mechanical signal with important implications for abdominal wall reconstruction.
Collapse
|
36
|
Foolen J, van Donkelaar CC, Soekhradj-Soechit S, Ito K. European Society of Biomechanics S.M. Perren Award 2010: an adaptation mechanism for fibrous tissue to sustained shortening. J Biomech 2011; 43:3168-76. [PMID: 20817184 DOI: 10.1016/j.jbiomech.2010.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/24/2010] [Indexed: 11/17/2022]
Abstract
The mechanism by which fibrous tissues adapt upon alterations in their mechanical environment remains unresolved. Here, we determine that periosteum in chick embryos resides in an identical mechanical state, irrespective of the developmental stage. This state is characterized by a residual tissue strain that corresponds to the strain in between the pliant and stiffer region of the force-strain curve. We demonstrate that periosteum is able to regain that mechanical equilibrium state in vitro, within three days upon perturbation of that equilibrium state. This adaptation process is not dependent on protein synthesis, because the addition of cycloheximide did not affect the response. However, a functional actin filament network is required, as is illustrated by a lack of adaptation in the presence of cytochalasin D. This led us to hypothesize that cells actively reduce collagen fiber crimp after tissue shortening, i.e. that in time the number of recruited fibers is increased via cell contraction. Support for this mechanism is found by visualization of fiber crimp with multiphoton microscopy before the perturbation and at different time points during the adaptive response.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, WH 4.118, 5600 MB Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
37
|
Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 2011; 194:25-37. [PMID: 21252470 DOI: 10.1159/000322399] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2010] [Indexed: 01/19/2023] Open
Abstract
The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/-) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/- and -/-) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 post-wounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair.
Collapse
Affiliation(s)
- Susan W Volk
- Department of Clinical Studies and Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
38
|
Sander EA, Barocas VH, Tranquillo RT. Initial fiber alignment pattern alters extracellular matrix synthesis in fibroblast-populated fibrin gel cruciforms and correlates with predicted tension. Ann Biomed Eng 2010; 39:714-29. [PMID: 21046467 DOI: 10.1007/s10439-010-0192-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
Abstract
Human dermal fibroblasts entrapped in fibrin gels cast in cross-shaped (cruciform) geometries with 1:1 and 1:0.5 ratios of arm widths were studied to assess whether tension and alignment of the cells and fibrils affected ECM deposition. The cruciforms of contrasting geometry (symmetric vs. asymmetric), which developed different fiber alignment patterns, were harvested at 2, 5, and 10 weeks of culture. Cruciforms were subjected to planar biaxial testing, polarimetric imaging, DNA and biochemical analyses, histological staining, and SEM imaging. As the cruciforms compacted and developed fiber alignment, fibrin was degraded, and elastin and collagen were produced in a geometry-dependent manner. Using a continuum mechanical model that accounts for direction-dependent stress due to cell traction forces and cell contact guidance with aligned fibers that occurs in the cruciforms, the mechanical stress environment was concluded to influence collagen deposition, with deposition being the greatest in the narrow arms of the asymmetric cruciform where stress was predicted to be the largest.
Collapse
Affiliation(s)
- E A Sander
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
39
|
Fan L, Pellegrin S, Scott A, Mellor H. The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells. J Cell Sci 2010; 123:1247-52. [PMID: 20233848 DOI: 10.1242/jcs.061754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Actin stress fibers are fundamental components of the actin cytoskeleton that produce contractile force in non-muscle cells. The formation of stress fibers is controlled by the small GTPase RhoA and two highly related proteins, RhoB and RhoC. Together, this subgroup of actin-regulatory proteins represents the canonical pathway of stress-fiber formation. Here, we show that the Rif GTPase is an alternative trigger of stress-fiber formation in epithelial cells. Rif is distantly related to RhoA; however, we show that the two proteins share a common downstream partner in stress-fiber formation--the Diaphanous-related formin mDia1. Rif-induced stress fibers also depend on the activity of the ROCK protein kinase. Unlike RhoA, Rif does not raise ROCK activity in cells, instead Rif appears to regulate the localization of myosin light chain phosphorylation. This study establishes Rif as a general regulator of Diaphanous-related formins and shows how non-classical Rho family members can access classical Rho pathways to create new signaling interfaces in cytoskeletal regulation.
Collapse
Affiliation(s)
- Lifei Fan
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
40
|
Berry CC, Shelton JC, Lee DA. Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs. J Tissue Eng Regen Med 2009; 3:43-53. [PMID: 19039798 DOI: 10.1002/term.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate the influence of the endogenous forces generated by fibroblast-mediated contraction, using four individual collagen gel models that differed with respect to the ability of the cells to contract the gel. Human neonatal dermal fibroblasts were seeded in type I collagen and the gels were cast in a racetrack-shaped mould containing a removable central island. Two of the models were mechanically stressed (20 mm and 10 mm), as complete contraction was prevented by the presence of a central island. The central island was removed in the third model (released) and the final model was cast in a Petri dish and detached, allowing full multi-axial contraction (SR). Cell viability was maintained in the 10 mm, released and SR models over a 6 day culture period but localized regions of cell death were evident in the 20 mm model. Cell and collagen alignment was developed in the 20 mm and 10 mm models and to a lesser extent in the released model, but was absent in the SR model. Cell proliferation and collagen synthesis was lower in the 20 mm model compared to the other systems and there was evidence of enhanced matrix metalloproteinase production. The mechanical properties of the 20 mm model system were inferior to the 10 mm and released systems. The 10 mm model system induced a high level of cell and matrix orientation and may, therefore, represent the best option for tissue-engineered ligament repair involving an orientated fibroblast-seeded collagen gel.
Collapse
Affiliation(s)
- Catherine C Berry
- IRC in Biomedical Materials, School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | |
Collapse
|
41
|
Chandran PL, Wolf CB, Mofrad MRK. Band-like Stress Fiber Propagation in a Continuum and Implications for Myosin Contractile Stresses. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0044-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Abstract
Tissue engineering seeks to produce living, three-dimensional cellular constructs that can be used as clinical replacements of damaged tissues and organs as well as research tools to study cell and matrix interactions that occur in higher-order systems. To organize the cells into a three-dimensional structure in vitro, a provisional extracellular matrix support is required. The two main methods to achieve this are (a) to culture the stromal cells on a three-dimensional synthetic meshwork, or else (b) embed the cells within a three-dimensional lattice, for example type I collagen. The contracted collagen lattice can be used for a variety of practical applications including the support of epithelial growth and differentiation to produce a skin replacement (Toxic In vitro 5:591-596, 1991; J. Biomech. Eng. 113:113-119, 1991; Parenteau, 1994, Keratinocyte Methods, 1994, Cambridge University Press, Cambridge, pp.45-55; Dermatol. Surg. 21:839-843, 1995; Biomaterials 17:311-320, 1996). This has been used successfully to treat patients with chronic ulcers. However, this model system can also be exploited for experiments to study cell-matrix interactions such as the influence of tension on cell phenotype (Exp. Cell Res. 193:198-207, 1991).
Collapse
Affiliation(s)
- Paul D Kemp
- Intercytex Ltd, Innovation House, Manchester, UK.
| |
Collapse
|
43
|
Dubash AD, Menold MM, Samson T, Boulter E, García-Mata R, Doughman R, Burridge K. Chapter 1 Focal Adhesions: New Angles on an Old Structure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:1-65. [DOI: 10.1016/s1937-6448(09)77001-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
44
|
Menezes GC, Miron-Mendoza M, Ho CH, Jiang H, Grinnell F. Oncogenic Ras-transformed human fibroblasts exhibit differential changes in contraction and migration in 3D collagen matrices. Exp Cell Res 2008; 314:3081-91. [PMID: 18708049 DOI: 10.1016/j.yexcr.2008.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 02/06/2023]
Abstract
Tractional force exerted by tissue cells in 3D collagen matrices can be utilized for matrix remodeling or cell migration. The interrelationship between these motile processes is not well understood. The current studies were carried out to test the consequences of oncogenic Ras (H-Ras(V12)) transformation on human fibroblast contraction and migration in 3D collagen matrices. Beginning with hTERT-immortalized cells, we prepared fibroblasts stably transformed with E6/E7 and with the combination HPV16 E6/E7 and H-Ras(V12). Oncogenic Ras-transformed cells lost contact inhibition of cell growth, formed colonies in soft agar and were unable to make adherens junctions. We observed no changes in the extent or growth factor dependence of collagen matrix contraction (floating or stress-relaxation) by oncogenic Ras-transformed cells. On the other hand, transformed cells in nested collagen matrices lost not only growth factor selectivity, but also cell-matrix density-dependent inhibition of migration. These findings demonstrate differential regulation of collagen matrix contraction and cell migration in 3D collagen matrices.
Collapse
Affiliation(s)
- Gustavo C Menezes
- Universidade Federal do Rio de Janeiro, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
45
|
Osteoblastic MG-63 cell differentiation, contraction, and mRNA expression in stress-relaxed 3D collagen I gels. Mol Cell Biochem 2008; 317:21-32. [DOI: 10.1007/s11010-008-9801-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
|
46
|
The extracellular remodeling of free-soft-tissue autografts and allografts for reconstruction of the anterior cruciate ligament: a comparison study in a sheep model. Knee Surg Sports Traumatol Arthrosc 2008; 16:360-9. [PMID: 18183370 DOI: 10.1007/s00167-007-0471-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 11/27/2007] [Indexed: 01/14/2023]
Abstract
Our study was aimed to advance the currently limited knowledge about differences in the biological remodeling of free soft-tissue tendon allografts and autografts for ACL reconstruction. Allogenic and autologous ACL reconstructions were performed in a sheep model using the flexor digitalis superficialis tendon. After 6, 12 and 52 weeks the animals were sacrificed. We analyzed the collagen crimp formation and its relationship to expression of contractile myofibroblasts in both graft types. Additionally, structural properties and ap-laxity were compared during biomechanical testing. At 6 weeks only descriptive differences were found between autografts and allografts with a more organized crimp pattern and myofibroblast distribution in autografts. Significant differences in myofibroblast density and crimp formation were found after 12 weeks. At these early stages, the progress of remodeling in autografts was more advanced toward the central areas than in allografts. At 1 year, grafts in both study groups returned to an ACL-similar structure. Structural properties and ap-laxity did not vary significantly between auto- and allografts at early healing stages. However, at 52 weeks, failure loads, stiffness and ap-drawer test showed superior values for autograft ACL reconstruction. Extracellular remodeling of allografts develops slower than in autografts. Therefore, rehabilitation procedures will have to be adapted according to graft and patient selection. Postoperative treatment regimens from autograft primary ACL reconstruction should not be directly transferred to allograft ACL reconstructions.
Collapse
|
47
|
Jiang H, Rhee S, Ho CH, Grinnell F. Distinguishing fibroblast promigratory and procontractile growth factor environments in 3-D collagen matrices. FASEB J 2008; 22:2151-60. [PMID: 18272655 DOI: 10.1096/fj.07-097014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding growth factor function during wound repair is necessary for the development of therapeutic interventions to improve healing outcomes. In the current study, we compare the effects of serum and purified growth factors on human fibroblast function in three different collagen matrix models: cell migration in nested matrices, floating matrix contraction, and stressed-released matrix contraction. The results of these studies indicate that platelet-derived growth factor (PDGF) is unique in its capacity to promote cell migration. Serum, lysophosphatidic acid, sphingosine-1-phophate (S1P), and endothelin-1 promote stressed-released matrix contraction but not cell migration. In addition, we found that S1P inhibits fibroblast migration and treatment of serum to remove lipid growth factors or treatment of cells to interfere with S1P(2) receptor function increases serum promigratory activity. Our findings suggest that different sets of growth factors generate promigratory and procontractile tissue environments for fibroblasts and that the balance between PDGF and S1P is a key determinant of fibroblast promigratory activity.
Collapse
Affiliation(s)
- Hongmei Jiang
- Department of Cell Biology, University of Texas Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Animal cell movement is effected through a combination of protrusive and contractile events. Non-muscle cells contain stress fibres - bundles of actomyosin that are the major mediators of cell contraction and that can be compared to the highly organised actomyosin arrays of muscle cells. Recent studies have defined regulatory mechanisms that control stress fibre formation, placing the ROCK protein kinase at the centre of a complex signalling network controlling actomyosin contractility and stress fibre assembly. As we uncover the details of stress fibre construction, it is becoming clear that different categories of stress fibres exist. Some of these structures are less suited for cell motility and more suited to static contraction. In keeping with this, many specialised contractile cell types use stress fibres to remodel tissues and extracellular matrix.
Collapse
Affiliation(s)
- Stéphanie Pellegrin
- Department of Biochemistry, School of Medical Sciences, University of Bristol, BS8 1TD, UK.
| | | |
Collapse
|
49
|
Lavagnino M, Arnoczky SP, Kepich E, Caballero O, Haut RC. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading. Biomech Model Mechanobiol 2007; 7:405-16. [PMID: 17901992 DOI: 10.1007/s10237-007-0104-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 08/23/2007] [Indexed: 11/28/2022]
Abstract
The importance of fluid-flow-induced shear stress and matrix-induced cell deformation in transmitting the global tendon load into a cellular mechanotransduction response is yet to be determined. A multiscale computational tendon model composed of both matrix and fluid phases was created to examine how global tendon loading may affect fluid-flow-induced shear stresses and membrane strains at the cellular level. The model was then used to develop a quantitative experiment to help understand the roles of membrane strains and fluid-induced shear stresses on the biological response of individual cells. The model was able to predict the global response of tendon to applied strain (stress, fluid exudation), as well as the associated cellular response of increased fluid-flow-induced shear stress with strain rate and matrix-induced cell deformation with strain amplitude. The model analysis, combined with the experimental results, demonstrated that both strain rate and strain amplitude are able to independently alter rat interstitial collagenase gene expression through increases in fluid-flow-induced shear stress and matrix-induced cell deformation, respectively.
Collapse
Affiliation(s)
- Michael Lavagnino
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
50
|
Dahlmann-Noor AH, Martin-Martin B, Eastwood M, Khaw PT, Bailly M. Dynamic protrusive cell behaviour generates force and drives early matrix contraction by fibroblasts. Exp Cell Res 2007; 313:4158-69. [PMID: 17869245 PMCID: PMC2764386 DOI: 10.1016/j.yexcr.2007.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/19/2007] [Accepted: 07/27/2007] [Indexed: 01/22/2023]
Abstract
We investigated the cellular mechanisms underlying force generation and matrix contraction, using human corneal, Tenon's and scleral fibroblasts in a standard collagen matrix. We used timelapse light and confocal reflection microscopy to analyse concomitantly cell behaviour and matrix remodeling during contraction and devised a novel index to quantify dynamic cell behaviour in 3D. Based on the previously described culture force monitor, a novel simultaneous imaging and micro-culture force monitor system (SIM–CFM) was developed to measure the mechanical strain generated during matrix contraction whilst simultaneously recording cell and matrix behaviour. Ocular fibroblasts show marked differences in macroscopic matrix contraction profiles, with corneal fibroblasts inducing the strongest, and scleral the weakest, contraction. We identified four factors that determine the early matrix contraction profile: 1) cell size, 2) intrinsic cellular force, 3) dynamic cell protrusive activity and 4) net pericellular matrix displacement. Intrinsic cellular force and dynamic activity appear to be independent unique characteristics of each cell type and might serve as predictors of matrix contraction. The identification of these factors raises the fundamental new possibilities of predicting the ability of tissues to contract and scar and of modulating tissue contraction by targeting intracellular pathways linked to protrusive activity and force generation.
Collapse
Affiliation(s)
- Annegret H. Dahlmann-Noor
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Ocular Repair and Regeneration Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Belen Martin-Martin
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mark Eastwood
- School of Biosciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Peng T. Khaw
- Ocular Repair and Regeneration Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Maryse Bailly
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Corresponding author.
| |
Collapse
|