1
|
Ettensohn CA. The gene regulatory control of sea urchin gastrulation. Mech Dev 2020; 162:103599. [PMID: 32119908 DOI: 10.1016/j.mod.2020.103599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
The cell behaviors associated with gastrulation in sea urchins have been well described. More recently, considerable progress has been made in elucidating gene regulatory networks (GRNs) that underlie the specification of early embryonic territories in this experimental model. This review integrates information from these two avenues of work. I discuss the principal cell movements that take place during sea urchin gastrulation, with an emphasis on molecular effectors of the movements, and summarize our current understanding of the gene regulatory circuitry upstream of those effectors. A case is made that GRN biology can provide a causal explanation of gastrulation, although additional analysis is needed at several levels of biological organization in order to provide a deeper understanding of this complex morphogenetic process.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Moreno B, DiCorato A, Park A, Mobilia K, Knapp R, Bleher R, Wilke C, Alvares K, Joester D. Culture of and experiments with sea urchin embryo primary mesenchyme cells. Methods Cell Biol 2019; 150:293-330. [PMID: 30777181 PMCID: PMC8273911 DOI: 10.1016/bs.mcb.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletogenesis in the sea urchin embryo gives rise to a pair of intricate endoskeletal spicules. Deposition of these skeletal elements in the early larva is the outcome of a morphogenetic program that begins with maternal inputs in the early zygote and results in the specification of the large micromere-primary mesenchyme cell (PMC) lineage. PMCs are of considerable interest as a model system, not only to dissect the mechanism of specific developmental processes, but also to investigate their evolution and the unrivaled level of control over the formation of a graded, mechanically robust, yet single crystalline biomineral. The ability to study gene regulatory circuits, cellular behavior, signaling pathways, and molecular players involved in biomineralization is significantly boosted by the high level of autonomy of PMCs. In fact, in the presence of horse serum, micromeres differentiate into PMCs and produce spicules in vitro, separated from the embryonic milieu. PMC culture eliminates indirect effects that can complicate the interpretation of experiments in vivo, offers superior spatiotemporal control, enables PMC-specific readouts, and is compatible with most imaging and characterization techniques. In this chapter, we provide an updated protocol, based on the pioneering work by Okazaki and Wilt, for the isolation of micromeres and subsequent culture of PMCs, as well as protocols for fixation and staining for fluorescent microscopy, preparation of cell cultures for electron microscopy, and the isolation of RNA.
Collapse
Affiliation(s)
- Bradley Moreno
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Allessandra DiCorato
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Alexander Park
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Kellen Mobilia
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Regina Knapp
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Charlene Wilke
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Keith Alvares
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
3
|
Shashikant T, Khor JM, Ettensohn CA. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 2018; 56:e23253. [PMID: 30264451 PMCID: PMC6294693 DOI: 10.1002/dvg.23253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
The skeletogenic gene regulatory network (GRN) of sea urchins and other echinoderms is one of the most intensively studied transcriptional networks in any developing organism. As such, it serves as a preeminent model of GRN architecture and evolution. This review summarizes our current understanding of this developmental network. We describe in detail the most comprehensive model of the skeletogenic GRN, one developed for the euechinoid sea urchin Strongylocentrotus purpuratus, including its initial deployment by maternal inputs, its elaboration and stabilization through regulatory gene interactions, and its control of downstream effector genes that directly drive skeletal morphogenesis. We highlight recent comparative studies that have leveraged the euechinoid GRN model to examine the evolution of skeletogenic programs in diverse echinoderms, studies that have revealed both conserved and divergent features of skeletogenesis within the phylum. Last, we summarize the major insights that have emerged from analysis of the structure and evolution of the echinoderm skeletogenic GRN and identify key, unresolved questions as a guide for future work.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Gene Expr Patterns 2014; 16:93-103. [PMID: 25460514 DOI: 10.1016/j.gep.2014.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/23/2022]
Abstract
The endoskeleton of the sea urchin embryo is produced by primary mesenchyme cells (PMCs). Maternal inputs activate a complex gene regulatory network (GRN) in the PMC lineage in a cell-autonomous fashion during early development, initially creating a uniform population of prospective skeleton-forming cells. Previous studies showed that at post-blastula stages of development, several effector genes in the network exhibit non-uniform patterns of expression, suggesting that their regulation becomes subject to local, extrinsic cues. Other studies have identified the VEGF and MAPK pathways as regulators of PMC migration, gene expression, and biomineralization. In this study, we used whole mount in situ hybridization (WMISH) to examine the spatial expression patterns of 39 PMC-specific/enriched mRNAs in Strongylocentrotus purpuratus embryos at the late gastrula, early prism and pluteus stages. We found that all 39 mRNAs (including several regulatory genes) showed non-uniform patterns of expression within the PMC syncytium, revealing a global shift in the regulation of the skeletogenic GRN from a cell-autonomous to a signal-dependent mode. In general, localized regions of elevated gene expression corresponded to sites of rapid biomineral deposition. We used a VEGFR inhibitor (axitinib) and a MEK inhibitor (U0126) to show that VEGF signaling and the MAPK pathway are essential for maintaining high levels of gene expression in PMCs at the tips of rods that extend from the ventral region of the embryo. These inhibitors affected gene expression in the PMCs in similar ways, suggesting that VEGF acts via the MAPK pathway. In contrast, axitinib and U0126 did not affect the localized expression of genes in PMCs at the tips of the body rods, which form on the dorsal side of the embryo. Our results therefore indicate that multiple signaling pathways regulate the skeletogenic GRN during late stages of embryogenesis-VEGF/MAPK signaling on the ventral side and a separate, unidentified pathway on the dorsal side. These two signaling pathways appear to be activated sequentially (ventral followed by dorsal) and many effector genes are subject to regulation by both pathways.
Collapse
|
5
|
Adomako-Ankomah A, Ettensohn CA. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo. Genesis 2014; 52:158-72. [PMID: 24515750 DOI: 10.1002/dvg.22746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 01/24/2014] [Accepted: 02/05/2014] [Indexed: 12/16/2022]
Abstract
The early morphogenesis of the mesoderm is critically important in establishing the body plan of the embryo. Recent research has led to a better understanding of the mechanisms that underlie this process, and growth factor signaling pathways have emerged as key regulators of the directional movements of mesoderm cells during gastrulation. In this review, we undertake a comparative analysis of the various essential functions of growth factor signaling pathways in regulating early mesoderm morphogenesis, with an emphasis on recent advances in the sea urchin embryo. We focus on the roles of the vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) pathways in the migration of primary mesenchyme cells and the formation of the embryonic endoskeleton. We compare the functions of VEGF and FGF in sea urchins with the roles that these and other growth factors play in regulating mesoderm migration during gastrulation in Drosophila and vertebrates.
Collapse
|
6
|
Rafiq K, Cheers MS, Ettensohn CA. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Development 2011; 139:579-90. [PMID: 22190640 DOI: 10.1242/dev.073049] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
7
|
Kipryushina YO, Odintsova NA. Effect of exogenous factors on the induction of spicule formation in sea urchin embryonic cell cultures. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411050080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Development 2007; 134:3077-87. [PMID: 17670786 DOI: 10.1242/dev.009092] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell fates in the sea urchin embryo are remarkably labile, despite the fact that maternal polarity and zygotic programs of differential gene expression pattern the embryo from the earliest stages. Recent work has focused on transcriptional gene regulatory networks (GRNs) deployed in specific embryonic territories during early development. The micromere-primary mesenchyme cell(PMC) GRN drives the development of the embryonic skeleton. Although normally deployed only by presumptive PMCs, every lineage of the early embryo has the potential to activate this pathway. Here, we focus on one striking example of regulative activation of the skeletogenic GRN; the transfating of non-skeletogenic mesoderm (NSM) cells to a PMC fate during gastrulation. We show that transfating is accompanied by the de novo expression of terminal,biomineralization-related genes in the PMC GRN, as well as genes encoding two upstream transcription factors, Lvalx1 and Lvtbr. We report that Lvalx1, a key component of the skeletogenic GRN in the PMC lineage, plays an essential role in the regulative pathway both in NSM cells and in animal blastomeres. MAPK signaling is required for the expression of Lvalx1 and downstream skeletogenic genes in NSM cells, mirroring its role in the PMC lineage. We also demonstrate that Lvalx1 regulates the signal from PMCs that normally suppresses NSM transfating. Significantly,misexpression of Lvalx1 in macromeres (the progenitors of NSM cells)is sufficient to activate the skeletogenic GRN. We suggest that NSM cells normally deploy a basal mesodermal pathway and require only an Lvalx1-mediated sub-program to express a PMC fate. Finally, we provide evidence that, in contrast to the normal pathway, activation of the skeletogenic GRN in NSM cells is independent of Lvpmar1. Our studies reveal that, although most features of the micromere-PMC GRN are recapitulated in transfating NSM cells, different inputs activate this GRN during normal and regulative development.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
9
|
Zito F, Costa C, Sciarrino S, Cavalcante C, Poma V, Matranga V. Cell adhesion and communication: a lesson from echinoderm embryos for the exploitation of new therapeutic tools. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 39:7-44. [PMID: 17152692 DOI: 10.1007/3-540-27683-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this chapter, we summarise fundamental findings concerning echinoderms as well as research interests on this phylum for biomedical and evolutionary studies. We discuss how current knowledge of echinoderm biology, in particular of the sea urchin system, can shed light on the understanding of important biological phenomena and in dissecting them at the molecular level. The general principles of sea urchin embryo development are summarised, mainly focusing on cell communication and interactions, with particular attention to the cell-extracellular matrix and cell-cell adhesion molecules and related proteins. Our purpose is not to review all the work done over the years in the field of cellular interaction in echinoderms. On the contrary, we will rather focus on a few arguments in an effort to re-examine some ideas and concepts, with the aim of promoting discussion in this rapidly growing field and opening new routes for research on innovative therapeutic tools.
Collapse
Affiliation(s)
- F Zito
- Istituto di Biomedicina e Immunologia Molecolare (IBIM) Alberto Monroy, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Fernandez-Serra M, Consales C, Livigni A, Arnone MI. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Dev Biol 2004; 268:384-402. [PMID: 15063175 DOI: 10.1016/j.ydbio.2003.12.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/12/2003] [Accepted: 12/22/2003] [Indexed: 12/25/2022]
Abstract
Mesoderm and mesodermal structures in the sea urchin embryo are entirely generated by two embryologically distinct populations of mesenchyme cells: the primary (PMC) and the secondary (SMC) mesenchyme cells. We have identified the extracellular signal-regulated kinase (ERK) as a key component of the regulatory machinery that controls the formation of both these cell types. ERK is activated in a spatial-temporal manner, which coincides with the epithelial-mesenchyme transition (EMT) of the prospective PMCs and SMCs. Here, we show that ERK controls EMT of both primary and secondary mesenchyme cells. Loss and gain of function experiments demonstrate that ERK signaling is not required for the early specification of either PMCs or SMCs, but controls the maintenance and/or the enhancement of expression levels of regulatory genes which participate in the process of specification of these cell types. In addition, ERK-mediated signaling is essential for the transcription of terminal differentiation genes encoding proteins that define the final structures generated by PMCs and SMCs. Our findings suggest that ERK has a central pan-mesodermal role in coupling EMT and terminal differentiation of all mesenchymal cell types in the sea urchin embryo.
Collapse
|
11
|
Affiliation(s)
- Fred H Wilt
- Department of Molecular Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
12
|
Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V. Expression of univin, a TGF-β growth factor, requires ectoderm–ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 2003; 264:217-27. [PMID: 14623243 DOI: 10.1016/j.ydbio.2003.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pl-nectin is an ECM protein located on the apical surface of ectoderm cells of Paracentrotus lividus sea urchin embryo. Inhibition of ECM-ectoderm cell interaction by the addition of McAb to Pl-nectin to the culture causes a dramatic impairment of skeletogenesis, offering a good model for the study of factor(s) involved in skeleton elongation and patterning. We showed that skeleton deficiency was not due to a reduction in the number of PMCs ingressing the blastocoel, but it was correlated with a reduction in the number of Pl-SM30-expressing PMCs. Here, we provide evidence on the involvement of growth factor(s) in skeleton morphogenesis. Skeleton-defective embryos showed a strong reduction in the levels of expression of Pl-univin, a growth factor of the TGF-beta superfamily, which was correlated with an equivalent strong reduction in the levels of Pl-SM30. In contrast, expression levels of Pl-BMP5-7 remained low and constant in both skeleton-defective and normal embryos. Microinjection of horse serum in the blastocoelic cavity of embryos cultured in the presence of the antibody rescued skeleton development. Finally, we found that misexpression of univin is also sufficient to rescue defects in skeleton elongation and SM30 expression caused by McAb to Pl-nectin, suggesting a key role for univin or closely related factor in sea urchin skeleton morphogenesis.
Collapse
Affiliation(s)
- Francesca Zito
- Istituto di Biomedicina e Immunologia Molecolare, Sezione Biologia dello Sviluppo, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The formation of calcareous skeletal elements by various echinoderms, especially sea urchins, offers a splendid opportunity to learn more about some processes involved in the formation of biominerals. The spicules of larvae of euechinoids have been the focus of considerable work, including their developmental origins. The spicules are composed of a single optical crystal of high magnesium calcite and variable amounts of amorphous calcium carbonate. Occluded within the spicule is a proteinaceous matrix, most of which is soluble; this matrix constitutes about 0.1% of the mass. The spicules are also enclosed by an extracellular matrix and are almost completely surrounded by cytoplasmic cords. The spicules are deposited by primary mesenchyme cells (PMCs), which accumulate calcium and secrete calcium carbonate. A number of proteins specific, or highly enriched, in PMCs, have been cloned and studied. Recent work supports the hypothesis that proteins found in the extracellular matrix of the spicule are important for biomineralization.
Collapse
Affiliation(s)
- Fred H Wilt
- Dept of Molecular Cell Biology, University of California, Berkeley 94720-3200, USA.
| |
Collapse
|
14
|
Urry LA, Hamilton PC, Killian CE, Wilt FH. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis. Dev Biol 2000; 225:201-13. [PMID: 10964475 DOI: 10.1006/dbio.2000.9828] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During its embryonic development, the sea urchin embryo forms an endoskeletal calcitic spicule. This instance of biomineralization is experimentally accessible and also offers the advantage of occurring within a developmental context. Here we investigate the time course of appearance and localization of two proteins among the four dozen that constitute the protein matrix of the skeletal spicule. SM50 and SM30 have been studied in some detail, and polyclonal antisera have been prepared against them (C. E. Killian and F. H. Wilt, 1996, J. Biol. Chem. 271, 9150-9159). Using these antibodies we describe here the localization and time course of accumulation of these two proteins in Strongylocentrotus purpuratus, both in the intact embryo and in micromere cultures. We also investigate the disposition of the matrix proteins, SM50, SM30, and PM27, in the three-dimensional spicule by studying changes in protein localization during experimental manipulation of isolated skeletal spicules. We conclude that SM50, PM27, and SM30 probably play different roles in biomineralization, based on their localization and patterns of expression. It is unlikely that these proteins are solely structural elements within the mineral. SM50 and PM27 may play a role in defining the extracellular space in which spicule deposition occurs, while SM30 may play a role in secretion of spicule components. Finally, we report on the effects of serum on expression of some primary mesenchyme-specific proteins in micromere cultures; withholding serum severely depresses accumulation of SM30 but has only modest effects on the accumulation of other proteins.
Collapse
Affiliation(s)
- L A Urry
- Biology Department, Mills College, Oakland, California, 94613, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The endoskeletal spicules of sea urchin larvae are composed of calcite, a surrounding extracellular matrix, and small amounts of occluded matrix proteins. The spicules are formed by primary mesenchyme cells (PMCs) in the blastocoel of the embryo, where they adopt stereotypical locations, thereby specifying where spicules will form. PMCs also fuse to form cytoplasmic cords connecting the cell bodies, and it is within the cords that spicules arise. The mineral phase contains 5% Mg as well as Ca, and about 0.1% of the mass is protein. The matrix and mineral form concentric plies, and the composite has different physical properties than those of pure calcite. The calcite diffracts as a single crystal and is composed of well-ordered, but not perfectly ordered, microdomains. There is evidence for adsorption of matrix proteins to specific crystal faces at domain boundaries, which may help regulate crystal growth and texture. Immature spicules contain considerable precipitated amorphous CaCO3, and PMCs also have vesicles that contain amorphous CaCO3. This suggests the hypothesis that the cellular precursor to the spicules is actually amorphous CaCO3 stabilized in the cell by protein. The spicule s enveloped by the PMC cord, but is topologically exterior to the cell. The PMC plasmalemma is tightly applied to the developing spicules, except perhaps at the elongating tip. The characteristics, localization, and possible function of the four identified matrix proteins are discussed. SM50, SM37, and PM27 all primarily enclose the mineral, though small amounts are occluded. SM30 is found in cellular vesicles and is probably the principal occluded protein of the spicule.
Collapse
Affiliation(s)
- F H Wilt
- Molecular Cell Biology Department, University of California at Berkeley, 94720-3200, USA
| |
Collapse
|
16
|
HWANG SHENGPINGL, LIN YUCHUN, SU YIHSIEN, CHEN CHANGPO. Accelerated development of embryonic spicule and micromere-derived primary mesenchyme cell culture of the sea urchin Stomopneustes variolaris(Lamarck). INVERTEBR REPROD DEV 1999. [DOI: 10.1080/07924259.1999.9652372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Wilt FH. Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis. Bioessays 1997; 19:665-8. [PMID: 9264247 DOI: 10.1002/bies.950190805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transparent sea urchin embryo provides a laboratory for study of morphogenesis. The calcareous endoskeleton is formed by a syncytium of mesenchyme cells in the blastocoel. The locations of mesenchyme in the blastocoel, the size of the skeleton, and even the branching pattern of the skeletal rods, are governed by interactions with the blastula wall. Now Guss and Ettensohn show that the rate of deposition of CaCO3 in the skeleton is locally controlled in the mesenchymal syncytium, as is the pattern of expression of three genes involved in skeleton formation. They propose that short range signals emanating from the blastula wall regulate many aspects of the biomineralization process.
Collapse
Affiliation(s)
- F H Wilt
- University of california, Berkeley 94720-3200, USA.
| |
Collapse
|
18
|
Guss KA, Ettensohn CA. Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 1997; 124:1899-908. [PMID: 9169837 DOI: 10.1242/dev.124.10.1899] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The skeleton of the sea urchin embryo is synthesized by the primary mesenchyme cells (PMCs). Previous studies have shown that local interactions between PMCs and the neighboring ectoderm regulate several aspects of skeletal morphogenesis, including PMC distribution in the blastocoel, the size of the skeleton and its branching pattern. In the present study, we have further examined the regulation of skeletogenesis by the ectoderm. We generated a ‘rate map’ of skeletal growth, which revealed stereotypical changes in the rates at which specific skeletal elements elongate during development. We showed that three transcripts encoding PMC-specific gene products known to be involved in the synthesis of the skeleton exhibited dynamic, spatially regulated patterns of expression within the PMC syncytium. All three gene products showed high levels of expression at sites of skeletal rod growth, although the specific patterns varied among the genes. We present direct evidence, based upon cell transplantation experiments, that the expression of one of these genes, SM30, is responsive to local, ectoderm-derived cues. Based upon our studies, we suggest that short-range signals from different ectodermal territories may regulate the expression of PMC-specific gene products that are rate-limiting in skeletal biosynthesis, thereby locally influencing skeletal rod growth.
Collapse
Affiliation(s)
- K A Guss
- Department of Biological Sciences, Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
19
|
Cell Interactions in the Sea Urchin Embryo. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1064-2722(08)60057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Ettensohn CA, Malinda KM. Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo. Development 1993; 119:155-67. [PMID: 8275852 DOI: 10.1242/dev.119.1.155] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the skeleton is a central event in sea urchin morphogenesis. The skeleton serves as a framework for the larval body and is the primary determinant of its shape. Previous studies have shown that the size of the skeleton is invariant despite wide experimentally induced variations in the number of skeleton-forming primary mesenchyme cells (PMCs). In the present study, we have used PMC transplantation, fluorescent cell markers and confocal laser scanning microscopy to analyze cellular aspects of skeletal patterning. Labeling of embryos with 5-bromodeoxyuridine demonstrates that the entire embryonic phase of skeletal morphogenesis occurs in the absence of PMC division. During embryogenesis, skeletal rods elongate by one of two mechanisms; either preceded by a cluster (plug) of PMCs or by extending along an existing PMC filopodial cable. Elongation of skeletal rods occurs exclusively by the addition of new material at the rod tips, although radial growth (increase in rod thickness) occurs along the length of the rods. Photoablation of a distinctive region of ectoderm cells at the arm tip results in an inhibition of skeletal rod elongation, indicating that a local ectoderm-PMC interaction is required for skeletal growth. The regulation of skeletal patterning was also examined in embryos that had been microinjected with additional PMCs and in half-sized larvae derived from blastomeres isolated at the 2-cell stage. Microinjection of 50–100 PMCs into the blastocoel at the mesenchyme blastula stage leads to an increase in the numbers of PMCs along all skeletal rods and a two-fold increase in the number of cells in the plugs, yet no increase in the length of the skeletal rods. The length of the anal rods can, however, be increased by microinjecting developmentally ‘young’ PMCs into the arm tips of late stage embryos. We find that the rate of skeletal rod elongation is independent of both the mode of rod growth (chain or plug) and the number of PMCs in the plug at the growing rod tip. Instead, the rate of elongation appears to be strictly regulated by the quantity of ectodermal tissue present in the embryo. These studies provide new information concerning normal mechanisms of skeletal growth and patterning and lead us to propose a model for the regulation of skeleton size based upon an intrinsic PMC ‘clock’ and an ectoderm-derived signal that regulates the rate of skeletal rod elongation.
Collapse
Affiliation(s)
- C A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|