1
|
DeRamus ML, Jasien JV, Eppstein JM, Koala P, Kraft TW. Retinal Responses to Visual Stimuli in Interphotoreceptor Retinoid Binding-Protein Knock-Out Mice. Int J Mol Sci 2023; 24:10655. [PMID: 37445836 PMCID: PMC10341985 DOI: 10.3390/ijms241310655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.
Collapse
Affiliation(s)
| | | | | | | | - Timothy W. Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.V.J.); (J.M.E.); (P.K.)
| |
Collapse
|
2
|
Sharma R, Schwarz C, Hunter JJ, Palczewska G, Palczewski K, Williams DR. Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy. Invest Ophthalmol Vis Sci 2017; 58:604-613. [PMID: 28129424 PMCID: PMC5283085 DOI: 10.1167/iovs.16-20061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Two-photon excited fluorescence (TPEF) imaging has potential as a functional tool for tracking visual pigment regeneration in the living eye. Previous studies have shown that all-trans-retinol is likely the chief source of time-varying TPEF from photoreceptors. Endogenous TPEF from retinol could provide the specificity desired for tracking the visual cycle. However, in vivo characterization of native retinol kinetics is complicated by visual stimulation from the imaging beam. We have developed an imaging scheme for overcoming these challenges and monitored the formation and clearance of retinol. Methods Three macaques were imaged by using an in vivo two-photon ophthalmoscope. Endogenous TPEF was excited at 730 nm and recorded through the eye's pupil for more than 90 seconds. Two-photon excited fluorescence increased with onset of light and plateaued within 40 seconds, at which point, brief incremental stimuli were delivered at 561 nm. The responses of rods to stimulation were analyzed by using first-order kinetics. Results Two-photon excited fluorescence resulting from retinol production corresponded to the fraction of rhodopsin bleached. The photosensitivity of rhodopsin was estimated to be 6.88 ± 5.50 log scotopic troland. The rate of retinol clearance depended on intensity of incremental stimulation. Clearance was faster for stronger stimuli and time constants ranged from 50 to 300 seconds. Conclusions This study demonstrates a method for rapidly measuring the rate of clearance of retinol in vivo. Moreover, TPEF generated due to retinol can be used as a measure of rhodopsin depletion, similar to densitometry. This enhances the utility of two-photon ophthalmoscopy as a technique for evaluating the visual cycle in the living eye.
Collapse
Affiliation(s)
- Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 3Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 6The Institute of Optics, University of Rochester, Rochester, New York, United States
| |
Collapse
|
3
|
Lee M, Li S, Sato K, Jin M. Interphotoreceptor Retinoid-Binding Protein Mitigates Cellular Oxidative Stress and Mitochondrial Dysfunction Induced by All-trans-Retinal. Invest Ophthalmol Vis Sci 2016; 57:1553-62. [PMID: 27046120 PMCID: PMC4824376 DOI: 10.1167/iovs.15-18551] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Point and null mutations in interphotoreceptor retinoid-binding protein (IRBP) cause retinal dystrophy in affected patients and IRBP-deficient mice with unknown mechanism. This study investigated whether IRBP protects cells from damages induced by all-trans-retinal (atRAL), which was increased in the Irbp−/− retina. Methods Wild-type and Irbp−/− mice retinal explants in buffer with or without purified IBRP were exposed to 800 lux light for different times and subjected to retinoid analysis by high-performance liquid chromatography. Purity of IRBP was determined by Coomassie Brilliant Blue staining and immunoblot analysis. Cellular damages induced by atRAL in the presence or absence of IRBP were evaluated in the mouse photoreceptor-derived 661W cells. Cell viability and death were measured by 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and TUNEL assays. Expression and modification levels of retinal proteins were determined by immunoblot analysis. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) were detected with fluorogenic dyes and confocal microscopy. Mitochondrial membrane potential was analyzed by using JC-1 fluorescent probe and a flow cytometer. Results Content of atRAL in Irbp−/− retinal explants exposed to light for 40 minutes was significantly higher than that in wild-type retinas under the same light conditions. All-trans-retinal caused increase in cell death, tumor necrosis factor activation, and Adam17 upregulation in 661W cells. NADPH oxidase-1 (NOX1) upregulation, ROS generation, NO-mediated protein S-nitrosylation, and mitochondrial dysfunction were also observed in 661W cells treated with atRAL. These cytotoxic effects were significantly attenuated in the presence of IRBP. Conclusions Interphotoreceptor retinoid-binding protein is required for preventing accumulation of retinal atRAL, which causes inflammation, oxidative stress, and mitochondrial dysfunction of the cells.
Collapse
|
4
|
McKeown AS, Pitale PM, Kraft TW. Signalling beyond photon absorption: extracellular retinoids and growth factors modulate rod photoreceptor sensitivity. J Physiol 2016; 594:1841-54. [PMID: 26691896 DOI: 10.1113/jp271650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/18/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We propose that the end product of chromophore bleaching in rod photoreceptors, all-trans retinol, is part of a feedback loop that increases the sensitivity of the phototransduction cascade in rods. A previously described light-induced hypersensitivity in rods, termed adaptive potentiation, is reduced by exogenously applied all-trans retinol but not all-trans retinal. This potentiation is produced by insulin-like growth factor-1, whose binding proteins are located in the extracellular matrix, even in our isolated retina preparation after removal of the retinal pigmented epithelium. Simple modelling suggests that the light stimuli used in the present study will produce sufficient all-trans retinol within the interphotoreceptor matrix to explain the potentiation effect. ABSTRACT Photoreceptors translate the absorption of photons into electrical signals for propagation through the visual system. Mammalian photoreceptor signalling has largely been studied in isolated cells, and such studies have necessarily avoided the complex environment of supportive proteins that surround the photoreceptors. The interphotoreceptor matrix (IPM) contains an array of proteins that aid in both structural maintenance and cellular homeostasis, including chromophore turnover. In signalling photon absorption, the chromophore 11-cis retinal is first isomerized to all-trans retinal, followed by conversion to all-trans retinol (ROL) for removal from the photoreceptor. Interphotoreceptor retinoid-binding protein (IRBP) is the most abundant protein in the IPM, and it promotes the removal of bleached chromophores and recycling in the nearby retinal pigment epithelium. By studying the light responses of isolated mouse retinas, we demonstrate that ROL can act as a feedback signal onto photoreceptors that influences the sensitivity of phototransduction. In addition to IRBP, the IPM also contains insulin-like growth factor-1 (IGF-1) and its associated binding proteins, although their functions have not yet been described. We demonstrate that extracellular application of physiological concentrations of IGF-1 can increase rod photoreceptor sensitivity in mammalian retinas. We also determine that chromophores and growth factors can limit the range of a newly described form of photoreceptor light adaptation. Finally, fluorescent antibodies demonstrate the presence of IRBP and IGFBP-3 in isolated retinas. A simple model of the formation and release of ROL into the extracellular space quantitatively describes this novel feedback loop.
Collapse
Affiliation(s)
| | | | - Timothy W Kraft
- Department of Vision Sciences.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Vachali PP, Besch BM, Gonzalez-Fernandez F, Bernstein PS. Carotenoids as possible interphotoreceptor retinoid-binding protein (IRBP) ligands: a surface plasmon resonance (SPR) based study. Arch Biochem Biophys 2013; 539:181-6. [PMID: 23876239 DOI: 10.1016/j.abb.2013.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 12/11/2022]
Abstract
Uptake, transport and stabilization of xanthophylls in the human retina are important components of a complex multistep process that culminates in a non-uniform distribution of these important nutrients in the retina. The process is far from understood; here, we consider the potential role of interphotoreceptor retinoid-binding protein (IRBP) in this process. IRBP is thought to facilitate the exchange of 11-cis-retinal, 11-cis-retinol and all-trans-retinol between the retinal pigment epithelium (RPE), photoreceptors and Müller cells in the visual cycle. Structural and biochemical studies suggest that IRBP has a variety of nonequivalent ligand binding sites that function in this process. IRBP is multifunctional, being able to bind a variety of physiologically significant molecules including fatty acids in the subretinal space. This wide range of binding activities is of particular interest because it is unknown whether the lutein and zeaxanthin found in the macula originate from the choroidal or retinal circulations. If from the choroidal circulation, then IRBP is a likely mediator for their transport across the interphotoreceptor matrix. In this report, we explore the binding interactions of retinoids, fatty acids, and carotenoids with IRBP using surface plasmon resonance (SPR)-based biosensors. IRBP showed similar affinity toward retinoids and carotenoids (1-2 μM), while fatty acids had approximately 10 times less affinity. These results suggest that further studies should be carried out to evaluate whether IRBP has a physiologically relevant role in binding lutein and zeaxanthin in the interphotoreceptor matrix.
Collapse
Affiliation(s)
- Preejith P Vachali
- Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, United States
| | | | | | | |
Collapse
|
6
|
The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein. J Neurosci 2011; 31:7900-9. [PMID: 21613504 DOI: 10.1523/jneurosci.0438-11.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rapid regeneration of the visual pigment following its photoactivation is critical for the function of cone photoreceptors throughout the day. Though the reactions of the visual cycle in the retinal pigment epithelium (RPE) that recycle chromophore for rod pigment regeneration are well characterized, the corresponding mechanisms that enable rapid regeneration of cone pigment are poorly understood. A key remaining question is the relative contribution of the recently discovered cone-specific retina visual cycle and the classic RPE-dependent visual cycle to mammalian cone pigment regeneration. In addition, it is not clear what role, if any, the abundant interphotoreceptor retinoid-binding protein (IRBP) presumed to facilitate the traffic of chromophore, plays in accelerating mammalian cone pigment regeneration. To address these issues, we used transretinal recordings to evaluate M/L-cone pigment regeneration in isolated retinas and eyecups from control and IRBP-deficient mice. Remarkably, the mouse retina promoted M/L-cone dark adaptation eightfold faster than the RPE. However, complete cone recovery required both visual cycles. We conclude that the retina visual cycle is critical for the initial rapid regeneration of mouse M/L-cone pigment during dark adaptation, whereas the slower RPE visual cycle is required to complete the process. While the deletion of IRBP reduced the amplitude and slowed the kinetics of mouse M/L-cone photoresponses, cone adaptation in bright, steady light and the kinetics of cone dark adaptation were not affected in isolated retina or in intact eyecup. Thus, IRBP does not accelerate cone pigment regeneration and is not critical for the function of mouse M/L-cones in bright light.
Collapse
|
7
|
Wisard J, Faulkner A, Chrenek MA, Waxweiler T, Waxweiler W, Donmoyer C, Liou GI, Craft CM, Schmid GF, Boatright JH, Pardue MT, Nickerson JM. Exaggerated eye growth in IRBP-deficient mice in early development. Invest Ophthalmol Vis Sci 2011; 52:5804-11. [PMID: 21642628 DOI: 10.1167/iovs.10-7129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Because interphotoreceptor retinoid-binding protein (IRBP) is expressed before being needed in its presumptive role in the visual cycle, we tested whether it controls eye growth during development. METHODS The eyes of congenic IRBP knockout (KO) and C57BL/6J wild-type (WT) mice ranging in age from postnatal day (P)2 to P440 were compared by histology, laser micrometry, cycloplegic photorefractions, and partial coherence interferometry. RESULTS The size and weight of IRBP KO mouse eyes were greater than those of the WT mouse, even before eye-opening. Excessive ocular enlargement started between P7 and P10, with KO retinal arc lengths becoming greater compared with WT from P10 through P30 (18%; P < 0.01). The outer nuclear layer (ONL) of KO retinas became 20% thinner between P12 to P25, and progressed to 38% thinner at P30. At P30, there were 30% fewer cones per vertical section in KO than in WT retinas. Bromodeoxyuridine (BrdU) labeling indicated the same number of retinal cells were born in KO and WT mice. A spike in apoptosis was observed in KO outer nuclear layer at P25. These changes in size were accompanied by a large decrease in hyperopic refractive error, which reached -4.56 ± 0.70 diopters (D) versus +9.98 ± 0.993 D (mean ± SD) in WT, by postnatal day 60 (P60). CONCLUSIONS; In addition to its role in the visual cycle, IRBP is needed for normal eye development. How IRBP mediates ocular development is unknown.
Collapse
Affiliation(s)
- Jeffrey Wisard
- Department of Ophthalmology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Interphotoreceptor retinoid-binding protein as the physiologically relevant carrier of 11-cis-retinol in the cone visual cycle. J Neurosci 2011; 31:4714-9. [PMID: 21430170 DOI: 10.1523/jneurosci.3722-10.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cones function in constant light and are responsible for mediating daytime human vision. Like rods, cones use the photosensitive molecule 11-cis-retinal to detect light, and in constant illumination, a continuous supply of 11-cis-retinal is needed. A retina visual cycle is thought to provide a privileged supply of 11-cis-retinal to cones by using 11-cis-retinol generated in Müller cells. In the cycle, 11-cis-retinol is transported from Müller cells to cone inner segments, where it is oxidized to 11-cis-retinal. This oxidation step is only performed in cones, thus rendering the cycle cone-specific. Interphotoreceptor retinoid-binding protein (IRBP) is a retinoid-binding protein in the subretinal space that binds 11-cis-retinol endogenously. Cones in Irbp(-/-) mice are retinoid-deficient under photopic conditions, and it is possible that 11-cis-retinol supplies are disrupted in the absence of IRBP. We tested the hypothesis that IRBP facilitates the delivery of 11-cis-retinol to cones by preserving the isomeric state of 11-cis-retinol in light. With electrophysiology, we show that the cone-like photoreceptors of Nrl(-/-) mice use the cone visual cycle similarly to wild-type cones. Then, using oxidation assays in isolated Nrl(-/-)Rpe65(-/-) retinas, we show that IRBP delivers 11-cis-retinol for oxidation in cones and improves the efficiency of the oxidation reaction. Finally, we show that IRBP protects the isomeric state of 11-cis-retinol in the presence of light. Together, these findings suggest that IRBP plays an important role in the delivery of 11-cis-retinol to cones and can facilitate cone function in the presence of light.
Collapse
|
9
|
Parker RO, Crouch RK. The interphotoreceptor retinoid binding (IRBP) is essential for normal retinoid processing in cone photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:141-9. [PMID: 20238012 DOI: 10.1007/978-1-4419-1399-9_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
11-cis Retinal is the light-sensitive component in rod and cone photoreceptors, and its isomerization to all-trans retinal in the presence of light initiates the visual response. For photoreceptors to function normally, all-trans retinal must be converted back into 11-cis retinal through the visual cycle. While rods are primarily responsible for dim light vision, the ability of cones to function in constant light is essential to human vision and may be facilitated by cone-specific visual cycle pathways. The interphotoreceptor retinoid-binding protein (IRBP) is a proposed retinoid transporter in the visual cycle, but rods in Irbp ( -/- ) mice have a normal visual cycle. However, there is evidence that IRBP has cone-specific functions. Cone electroretinogram (ERG) responses are reduced, despite having cone densities and opsin levels similar to C57Bl/6 (WT) mice. Treatment with 9-cis retinal rescues the cone response in Irbp ( -/- ) mice and shows that retinoid deficiency underlies cone dysfunction. These data indicate that IRBP is essential to normal cone function and demonstrate that differences exist in the visual cycle of rods and cones.
Collapse
Affiliation(s)
- Ryan O Parker
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| | | |
Collapse
|
10
|
Gonzalez-Fernandez F, Bevilacqua T, Lee KI, Chandrashekar R, Hsu L, Garlipp MA, Griswold JB, Crouch RK, Ghosh D. Retinol-binding site in interphotoreceptor retinoid-binding protein (IRBP): a novel hydrophobic cavity. Invest Ophthalmol Vis Sci 2009; 50:5577-86. [PMID: 19608538 DOI: 10.1167/iovs.08-1857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein (IRBP) appears to target and protect retinoids during the visual cycle. X-ray crystallographic studies had noted a betabetaalpha-spiral fold shared with crotonases and C-terminal protein transferases. The shallow cleft formed by the fold was assumed to represent the retinol-binding site. However, a second hydrophobic site consisting of a highly restricted cavity was more recently appreciated during in silico ligand-docking studies. In this study, the ligand-binding environment within the second module of Xenopus IRBP (X2IRBP) is defined. METHODS Pristine recombinant polypeptide corresponding to X2IRBP was expressed in a soluble form and purified to homogeneity without its fusion tag. Phenylalanine was substituted for tryptophan at each of the putative retinol-binding domains (W450F, hydrophobic cavity; W587F, shallow cleft). Binding of 11-cis and all-trans retinol were observed in titrations monitoring retinol fluorescence enhancement, quenching of tryptophan fluorescence, and energy transfer. The effect of oleic acid on retinol binding was also examined. RESULTS A ligand-binding stoichiometry of approximately 1:1 was observed for 11-cis and all-trans with K(d) in the tens of nanomolar range. The substitution mutants showed little effect on retinol binding in titrations after fluorescence enhancement. However, the W450F and not the W587F mutant showed a markedly reduced capacity for fluorescence quenching for both 11-cis and all-trans retinol. Oleic acid inhibited the binding of 11-cis and all-trans retinol in an apparent noncompetitive manner. CONCLUSIONS The binding site for 11-cis and all-trans retinol is a novel hydrophobic cavity that is highly restrictive and probably distinct from the long chain fatty acid-binding site.
Collapse
|
11
|
Abstract
11-cis-retinal is the light-sensitive component in rod and cone photoreceptors, and its isomerization to all-trans retinal in the presence of light initiates the visual response. For photoreceptors to function normally, all-trans retinal must be converted back into 11-cis-retinal through a series of enzymatic steps known as the visual cycle. The interphotoreceptor retinoid-binding protein (IRBP) is a proposed retinoid transporter in the visual cycle, but rods in Irbp(-/-) mice have a normal visual cycle. While rods are primarily responsible for dim light vision, the ability of cones to function in constant light is essential to human vision and may be facilitated by cone-specific visual cycle pathways. We analyzed the cones in Irbp(-/-) mice to determine whether IRBP has a cone-specific visual cycle function. Cone electroretinogram (ERG) responses were reduced in Irbp(-/-) mice, but similar responses from Irbp(-/-) mice at all ages suggest that degeneration does not underlie cone dysfunction. Furthermore, cone densities and opsin levels in Irbp(-/-) mice were similar to C57BL/6 (wild-type) mice, and both cone opsins were properly localized to the cone outer segments. To test for retinoid deficiency in Irbp(-/-) mice, ERGs were analyzed before and after intraperitoneal injections of 9-cis-retinal. Treatment with 9-cis-retinal produced a significant recovery of the cone response in Irbp(-/-) mice and shows that retinoid deficiency underlies cone dysfunction. These data indicate that IRBP is essential to normal cone function and demonstrate that differences exist in the visual cycle of rods and cones.
Collapse
|
12
|
Travis GH, Golczak M, Moise AR, Palczewski K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol 2007; 47:469-512. [PMID: 16968212 PMCID: PMC2442882 DOI: 10.1146/annurev.pharmtox.47.120505.105225] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Absorption of a photon by an opsin pigment causes isomerization of the chromophore from 11-cis-retinaldehyde to all-trans-retinaldehyde. Regeneration of visual chromophore following light exposure is dependent on an enzyme pathway called the retinoid or visual cycle. Our understanding of this pathway has been greatly facilitated by the identification of disease-causing mutations in the genes coding for visual cycle enzymes. Defects in nearly every step of this pathway are responsible for human-inherited retinal dystrophies. These retinal dystrophies can be divided into two etiologic groups. One involves the impaired synthesis of visual chromophore. The second involves accumulation of cytotoxic products derived from all-trans-retinaldehyde. Gene therapy has been successfully used in animal models of these diseases to rescue the function of enzymes involved in chromophore regeneration, restoring vision. Dystrophies resulting from impaired chromophore synthesis can also be treated by supplementation with a chromophore analog. Dystrophies resulting from the accumulation of toxic pigments can be treated pharmacologically by inhibiting the visual cycle, or limiting the supply of vitamin A to the eyes. Recent progress in both areas provides hope that multiple inherited retinal diseases will soon be treated by pharmaceutical intervention.
Collapse
Affiliation(s)
- Gabriel H. Travis
- Department of Ophthalmology, UCLA School of Medicine, Los Angeles, California 90095;
| | - Marcin Golczak
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965;
| | - Alexander R. Moise
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965;
| | - Krzysztof Palczewski
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965;
| |
Collapse
|
13
|
Avichezer D, Liou GI, Chan CC, Lewis GM, Wiggert B, Donoso LA, Nickerson JM, Crawford MA, Caspi RR. Interphotoreceptor retinoid-binding protein (IRBP)-deficient C57BL/6 mice have enhanced immunological and immunopathogenic responses to IRBP and an altered recognition of IRBP epitopes. J Autoimmun 2004; 21:185-94. [PMID: 14599843 DOI: 10.1016/j.jaut.2003.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Experimental autoimmune uveitis (EAU) and pinealitis (EAP) can be induced in susceptible mice by immunization with immunologically privileged retinal antigens. In the present study, we analyzed the immunologic and immunopathologic responses of mice deficient in the retinal autoantigen interphotoreceptor retinoid-binding protein (IRBP). The consequences of IRBP deficiency on the T-cell repertoire were also investigated. IRBP+/+, IRBP+/- and IRBP-/- mice on the C57BL/6 background were immunized with IRBP or with a pathogenic epitope, IRBP(1-20) peptide in adjuvant, and were evaluated for disease severity and immunological responses. C57BL/6 IRBP-/- mice were completely resistant to EAU and EAP, and had enhanced immunological responses to IRBP and to its pathogenic peptide 1-20, as compared to their IRBP+/+ counterparts. IRBP-/- mice exhibited an altered IRBP epitope recognition. T cell epitope mapping revealed a response to IRBP peptide 271-290 in IRBP-/- mice, that was absent in the wild type. Primed T cells of IRBP-/- mice transferred an exacerbated form of EAU to nai;ve wild type recipients. A gene-dose effect was evident in that C57BL/6 IRBP+/- mice, exhibited intermediate immunological responses and lower disease scores compared to wild type. We conclude that expression of IRBP in target tissues is a necessary prerequisite for disease induction, excluding other retinoid-binding or vision-related proteins as surrogate targets. Furthermore, endogenous expression of IRBP is directly responsible for lowering the threshold of susceptibility to uveitic disease.
Collapse
Affiliation(s)
- Dody Avichezer
- Laboratory of Immunology, Section of Immunoregulation, National Institutes of Health, 10 Center Drive, 10/10N222, Bethesda, MD 20892-1857, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Besch D, Jägle H, Scholl HPN, Seeliger MW, Zrenner E. Inherited multifocal RPE-diseases: mechanisms for local dysfunction in global retinoid cycle gene defects. Vision Res 2003; 43:3095-108. [PMID: 14611947 DOI: 10.1016/j.visres.2003.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alterations of retinoid cycle genes are known to cause retinal diseases characterized by focal white dot fundus lesions. Fundus appearances reveal circumscribed RPE-changes, although generalized metabolic defects and global functional abnormalities are present. As a possible explanation, topographic inhomogeneities of the human photoreceptor mosaic and the role of a cone specific visual cycle will be discussed. Due to particular characteristics of photoreceptor subtypes as well as different pathways for photopigment regeneration the metabolic demand of individual RPE cells might differ. In "flecked retina diseases" heterogeneity of metabolic demand in individual RPE cells could therefore be responsible for their multifocal appearance.
Collapse
Affiliation(s)
- Dorothea Besch
- University Eye Hospital, Schleichstr. 12-16, D-72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Mata NL, Radu RA, Clemmons RS, Travis GH. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 2002; 36:69-80. [PMID: 12367507 PMCID: PMC2851622 DOI: 10.1016/s0896-6273(02)00912-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The first step toward light perception is 11-cis to all-trans photoisomerization of the retinaldehyde chromophore in a rod or cone opsin-pigment molecule. Light sensitivity of the opsin pigment is restored through a multistep pathway called the visual cycle, which effects all-trans to 11-cis re-isomerization of the retinoid chromophore. The maximum throughput of the known visual cycle, however, is too slow to explain sustained photosensitivity in bright light. Here, we demonstrate three novel enzymatic activities in cone-dominant ground-squirrel and chicken retinas: an all-trans-retinol isomerase, an 11-cis-retinyl-ester synthase, and an 11-cis-retinol dehydrogenase. Together these activities comprise a novel pathway that regenerates opsin photopigments at a rate 20-fold faster than the known visual cycle. We suggest that this pathway is responsible for sustained daylight vision in vertebrates.
Collapse
Affiliation(s)
- Nathan L. Mata
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Roxana A. Radu
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Richard S. Clemmons
- Center for Basic Neuroscience, UT Southwestern Medical Center, Dallas, Texas 75235
| | - Gabriel H. Travis
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095
- Correspondence:
| |
Collapse
|
16
|
Abstract
PURPOSE Diffusion coefficients of various retinoids have not been measured previously. It is important to know the diffusion coefficients of the retinoids because this property might be rate-limiting in dark adaptation. Also, retinoid diffusion is important to explore given that rhodopsin regeneration is not impaired in IRBP knockout mice. METHODS Measurements of lateral diffusion coefficients (D) of 9-cis-retinal, all-trans-retinal, and all-trans-retinol were made by Fourier transform pulsed-gradient spin-echo NMR measurements (FT-PGSE NMR) in several solvents. Also,(3)H-all-trans-retinoic acid was used to measure diffusion from an aqueous agarose matrix and absorption into a toluene based scintillation fluid in a biphase assay. RESULTS In a 1:1 mixture of CD(3)OD:D(2)O the D's of the retinoids were, 2.4 to 3.0 x 10(-6)cm( 2)/s. In the biphase assay,(3)H-all trans-retinoic acid exhibited a diffusion coefficient of 2.3 x 10(-6)cm(2)/s. CONCLUSIONS The lower than expected D for retinoids and our calculations suggest that mechanisms in addition to pure aqueous diffusion may be needed to account for normal rhodopsin regeneration rates in the mammalian retina.
Collapse
|
17
|
Affiliation(s)
- H Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Over the past several years, discoveries from mouse genetics have had direct impact on our understanding of vitamin A metabolism. Although the metabolism of vitamin A in the mouse does have some special features (for example very large stores of liver and pulmonary retinyl esters), the ability to construct knockout and transgenic mouse models has yielded an impressive amount of information directly relevant to understanding the general principles of vitamin A transport, storage and degradation. We discuss below the metabolism of vitamin A through a number of genetically engineered mouse strains with alterations in genes that affect this metabolism. The novelty of this experimental approach is evidenced by the fact that the oldest of these strains was first reported only eight years ago.1)
Collapse
Affiliation(s)
- M E Gottesman
- Institute of Cancer Research and Department of Medicine, Columbia University, College of Physicians and Surgeons, New York 10032, USA.
| | | | | |
Collapse
|
20
|
Abstract
Interphotoreceptor retinoid binding protein (IRBP), the major soluble protein component of the interphotoreceptor matrix, is believed to participate in the visual cycle by transporting retinoids between retinal pigment epithelium and photoreceptor cells in the eye. IRBP can associate with several chemical and isomeric forms of retinoids but displays the highest affinity towards the retinoids that are important in the visual cycle, 11-cis-retinal and all-trans-retinol. It was previously reported that IRBP can associate with 2 mol of all-trans-retinol or 2 mol of 11-cis-retinal per mol of protein. One of the retinoid binding sites, termed 'site 1', was found to display a broad ligand selectivity and to bind either all-trans-retinol or 11-cis-retinal with similar affinities. Here, the retinoid-binding properties of IRBP were further examined. The data demonstrate that IRBP contains three distinct retinoid binding sites. The promiscuous 'site 1', and two additional sites with a stricter selectivity. One of the latter sites appears to be selective towards all-trans-retinol, while the other is specific for 11-cis-retinal.
Collapse
Affiliation(s)
- N S Shaw
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, NY 14853, USA
| | | |
Collapse
|
21
|
Fedorovich IB, Semenova EM, Grant K, Converse CA, Ostrovsky MA. Photosensitized light-induced damage of IRBP (interphotoreceptor retinoid-binding protein): effects on binding properties. Curr Eye Res 2000; 21:975-80. [PMID: 11262622 DOI: 10.1076/ceyr.21.6.975.6984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To determine if IRBP (interphotoreceptor retinoid-binding protein) is damaged following irradiation by visible light in the presence of bound all-trans retinal. METHODS Following irradiation of the IRBP-all-trans retinal complex, the retinal was removed and damage to IRBP measured as loss of titratable thiol groups, loss of tryptophan fluorescence, and changes in retinol-binding-induced fluorescence. RESULTS IRBP irradiated by itself showed only minimal loss of tryptophan fluorescence; this loss was substantially increased by irradiation in the presence of all-trans retinal. Thiol groups and retinol-binding activity were also shown to be reduced. The damage to IRBP seemed to involve photosensitization by the all-trans retinal, which was in turn protected from bleaching by the IRBP. The binding affinity was shown to be reduced ten-fold following irradiation. CONCLUSION In the eye, IRBP can stabilise vitamin A and debatably may be responsible for transport of different forms of vitamin A between the photoreceptor cells and pigment epithelium. If this is the case, it would play a key role in rhodopsin regeneration after bleaching. IRBP also appears to be necessary to sustain photoreceptor cells. Light was shown to cause photosensitized damage to IRBP, and thus might impair the regeneration process and photoreceptor viability.
Collapse
Affiliation(s)
- I B Fedorovich
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
22
|
Adler AJ, Edwards RB. Human interphotoreceptor matrix contains serum albumin and retinol-binding protein. Exp Eye Res 2000; 70:227-34. [PMID: 10655149 DOI: 10.1006/exer.1999.0780] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is usually assumed that IRBP (interphotoreceptor retinoid-binding protein) is the only protein present in the interphotoreceptor matrix (IPM) capable of shuttling visual-cycle retinoids between photoreceptors and the retinal pigment epithelium. However, this laboratory previously presented qualitative evidence (Western blots) that serum albumin is present in human IPM. Furthermore, Ong and coworkers (1994) found that cultured RPE cells synthesize serum retinol-binding protein (RBP) and secrete it, mainly into the apical culture medium, which would correspond to the IPM in intact eyes. As both of these proteins can bind all- trans -retinol and 11- cis -retinal, it was of interest to quantify the amounts of albumin and RBP in human IPM. We used radial immunodiffusion to accomplish this. The average molar ratio of serum albumin to IRBP in these samples was 1.9; that of RBP to IRBP was 0.015. The presence of a high concentration of serum albumin in the IPM in situ was confirmed by the intense immunohistochemical staining seen in sections of fresh human eyes. The human case is not unique; various concentrations of albumin were found in the IPM of all vertebrate species examined (by gel electrophoresis). These results indicate that both serum albumin, because of its very high concentration in the IPM, and RBP, because of its comparatively tight binding to retinoids, need to be considered, along with IRBP, as proteins that may participate in visual-cycle transport. The accompanying paper addresses this concern.
Collapse
Affiliation(s)
- A J Adler
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 01701, USA
| | | |
Collapse
|
23
|
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) greatly enhances the conversion of all- trans -retinol to 11- cis -retinal by the retinal pigment epithelium (RPE) and facilitates 11- cis -retinal release from the RPE. However, the mechanisms by which IRBP exerts these effects are not clear. Using a model system of purified bovine IRBP and isolated bovine RPE membranes, we investigated the possibility that IRBP may favor the delivery of all- trans -retinol to, or the release of 11- cis -retinal from, RPE membranes. As the interphotoreceptor space contains serum retinol-binding protein (RBP) and serum albumin in addition to IRBP, we similarly examined the exchange of retinoids between RPE membranes and human RBP or bovine serum albumin (BSA). Isolated RPE membranes were loaded with radioactive 11- cis -retinal and incubated with solutions of IRBP, RBP, BSA or with buffer alone. Membranes (pellet) and retinoid-binding protein or buffer (supernatant) were separated by centrifugation and analysed for radioactive 11- cis -retinal. Membranes incubated with buffer alone released only 4-5% of their 11- cis -retinal, while 25 microm IRBP removed 18-35%. More retinal was released as the membrane concentration was reduced. In contrast, RBP and BSA removed little retinal, even though both proteins are capable of binding this retinoid. Similar results were obtained with bovine liver membranes, consistent with the idea that the effects of IRBP do not depend on an RPE surface receptor for IRBP. IRBP was also markedly superior to RBP and BSA in removing all- trans -retinol from RPE membranes. In addition, IRBP efficiently delivered bound all- trans -retinol to membranes; however, in contrast to their differential removal of retinoids, all three binding proteins delivered comparable amounts of retinol to membranes. (This result supports the practice of using BSA as a retinoid carrier in in vitro experimental systems). We conclude that, whereas IRBP shares with other retinoid-binding proteins the ability to deliver retinol to membranes, IRBP is unique in its capacity to remove 11- cis -retinal from membranes. This may be the feature of IRBP that drives the vitamin A cycle to efficiently produce 11- cis -retinal.
Collapse
Affiliation(s)
- R B Edwards
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
Early onset photoreceptor abnormalities induced by targeted disruption of the interphotoreceptor retinoid-binding protein gene. J Neurosci 1998. [PMID: 9614228 DOI: 10.1523/jneurosci.18-12-04511.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vision in all vertebrates is dependent on an exchange of retinoids between the retinal pigment epithelium and the visual photoreceptors. It has been proposed that the interphotoreceptor retinoid-binding protein (IRBP) is essential for this intercellular exchange, and that it serves to prevent the potentially cytotoxic effects of retinoids. Although its precise function in vivo has yet to be defined, the early expression of IRBP suggests that it may also be required for normal photoreceptor development. To further assess the biological role of IRBP, we generated transgenic mice with targeted disruption of the IRBP gene (IRBP-/- mice). Specifically, homologous recombination was used to replace the first exon and promoter region of the IRBP gene with a phosphoglycerate kinase-promoted neomycin-resistant gene. Immunocytochemical and Western blot analyses demonstrated the absence of IRBP expression in the IRBP-/- mice. As early as postnatal day 11, histological examination of the retinas of IRBP-/- mice revealed a loss of photoreceptor nuclei and changes in the structural integrity of the receptor outer segments. At 30 d of age, the photoreceptor abnormalities in IRBP-/- mice were more severe, and electroretinographic recordings revealed a marked loss in photic sensitivity. In contrast, no morphological or electrophysiological changes were detected in age-matched heterozygotes. These observations indicate that normal photoreceptor development and function are highly dependent on the early expression of IRBP, and that in the absence of IRBP there is a slowly progressive degeneration of retinal photoreceptors.
Collapse
|
25
|
Baer CA, Retief JD, Van Niel E, Braiman MS, Gonzalez-Fernandez F. Soluble expression in E. coli of a functional interphotoreceptor retinoid-binding protein module fused to thioredoxin: correlation of vitamin A binding regions with conserved domains of C-terminal processing proteases. Exp Eye Res 1998; 66:249-62. [PMID: 9533851 DOI: 10.1006/exer.1997.0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exchange of all-trans retinol and 11-cis retinal between the photoreceptors and retinal pigmented epithelium is mediated by interphotoreceptor retinoid-binding protein (IRBP). IRBP contains binding sites for retinoids, docosahexaenoic acid and probably cell surface and matrix receptors. IRBP arose through the quadruplication of an ancient protein, represented by its carboxy-terminal module (module 4 in amphibians and mammals). Module 4 has retinol binding activity and is composed of regions coded for by each of IRBP's four exons. Determining the function of the exons has been hampered by insoluble expression of module 4 in Escherichia coli. Here, we found that module 4 of Xenopus IRBP (X4IRBP), as well as its exon segments, can be expressed in a soluble form as thioredoxin fusion proteins. The recombinant proteins were purified by ion exchange and arsenical-based affinity chromatography. Liquid chromatography/mass spectrometry confirmed that the sequence of X4IRBP is correct. All-trans retinol binding was characterized by monitoring enhancement of retinol fluorescence, quenching of intrinsic protein fluorescence, and transfer of energy to the bound retinol. Retinol bound to X4IRBP at 2.20+/-0.29 sites with a KD=1.25+/-0.39. One of the two sites was localized to Exons(2+3) and had a KD=0.26+/-0.13 micron. This site, which supported protein quenching and energy transfer, probably contains at least one of the two conserved tryptophans present in this segment. The second site was localized to Exon 4. This site supported the enhancement of retinol fluorescence but not protein quenching or energy transfer and had a KD=1.94+/-0.20 micron. Exon 1 had no retinol binding activity. The location of the retinol binding regions correlated with the distribution of domains conserved between IRBPs and the newly recognized family of C-terminal processing proteases (CtpAs), proteins which bind and cleave non-polar carboxy termini.
Collapse
Affiliation(s)
- C A Baer
- Department of Ophthalmology, University of Virginia Health Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
26
|
Liou GI, Matragoon S, Chen DM, Gao CL, Zhang L, Fei Y, Katz ML, Stark WS. Visual sensitivity and interphotoreceptor retinoid binding protein in the mouse: regulation by vitamin A. FASEB J 1998; 12:129-38. [PMID: 9438418 DOI: 10.1096/fasebj.12.1.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interphotoreceptor retinoid binding protein (IRBP) is a retinoid and fatty acid binding glycoprotein secreted by rod and cone photoreceptors in all vertebrates. IRBP is believed to serve as a carrier for retinoids in the bleaching and regeneration cycle of rhodopsin. IRBP protein has been found to be decreased in vitamin A-deprived rats; it is rapidly recovered after retinol repletion. To understand the mechanism for this recovery, we determined whether vitamin A affects transcription and translation of the IRBP gene. Wild-type and transgenic mice harboring the IRBP promoter-CAT reporter fusion gene were maintained on a retinol-deficient diet supplemented with retinoic acid (-A) or on a control diet (+A) for up to 60 wk postweaning. Some of the -A mice were given retinol repletion for 7 days (-A+A). Electroretinography analysis revealed alterations in waveform and a 2 log unit decrease in b-wave sensitivity in the -A mice over a broad range of stimulus wavelengths. Retinol repletion effected a full recovery. Immunochemistry showed a significant decrease in the immunogold-labeled IRBP between the retinal pigment epithelium and the outer segments of the -A mice compared with +A and -A+A mice. Northern blots showed no differences in the amounts of IRBP or CAT mRNA between these three treatment groups. These results suggest that the regulation of IRBP by retinol is not transcriptional.
Collapse
Affiliation(s)
- G I Liou
- Medical College of Georgia, Department of Opthalmology, Augusta 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liou GI, Matragoon S, Chen D, Gao C, Zhang L, Fei Y, Katz ML, Stark WS. Visual sensitivity and interphotoreceptor retinoid binding protein in the mouse: regulation by vitamin A. FASEB J 1998. [DOI: 10.1096/fsb2fasebj.12.1.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gregory I. Liou
- Medical College of GeorgiaDepartment of OphthalmologyAugusta Georgia 30912 USA
| | - Suraporn Matragoon
- Medical College of GeorgiaDepartment of OphthalmologyAugusta Georgia 30912 USA
| | - De‐Mao Chen
- Saint Louis UniversityDepartment of BiologySt. Louis Missouri 63103 USA
| | - Chun‐Lan Gao
- University of Missouri School of MedicineMason Eye Institute Columbia Missouri 65212 USA
| | - Lu Zhang
- Medical College of GeorgiaDepartment of Cellular Biology and Anatomy Augusta Georgia 30912 USA
| | - Yijian Fei
- Medical College of GeorgiaDepartment of OphthalmologyAugusta Georgia 30912 USA
| | - Martin L. Katz
- University of Missouri School of MedicineMason Eye Institute Columbia Missouri 65212 USA
| | - William S. Stark
- Saint Louis UniversityDepartment of BiologySt. Louis Missouri 63103 USA
| |
Collapse
|
28
|
Tschanz CL, Noy N. Binding of retinol in both retinoid-binding sites of interphotoreceptor retinoid-binding protein (IRBP) is stabilized mainly by hydrophobic interactions. J Biol Chem 1997; 272:30201-7. [PMID: 9374503 DOI: 10.1074/jbc.272.48.30201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is an ocular protein which is believed to participate in the visual cycle by mediating transport of retinoids between pigment epithelium and photoreceptor cells. The molecular mechanism underlying the ability of IRBP to target particular retinoids to the specific cells that are their sites of action and metabolism is not completely clear, and little information is available regarding the structure of the protein's multiple ligand-binding sites. IRBP possesses two retinoid-binding sites, and it was reported that binding of the visual chromophore, 11-cis-retinal, in one of these sites, but not in the other, is tightly regulated by another IRBP ligand, docosahexaenoic acid (Chen, Y., Houghton, L. A., Brenna, J. T., and Noy, N. (1996) J. Biol. Chem. 271, 20507). The two sites are thus functionally distinct. Here, the thermodynamic parameters governing the interactions of retinol with the IRBP retinoid-binding sites were measured. The data demonstrate that the interactions of retinol with both sites are stabilized mainly by hydrophobic interactions, and that the hydroxyl head group of retinol is not involved in formation of protein-ligand complexes. Nevertheless, the data indicate that the two sites are structurally distinct, and that binding of retinol in them occurs by remarkably different modes of interactions.
Collapse
Affiliation(s)
- C L Tschanz
- Division of Nutritional Sciences, Savage Hall, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
29
|
A membrane receptor for plasma Retinal-binding Protein (RBP) is expressed in the retinal pigment epithelium. Prog Retin Eye Res 1997. [DOI: 10.1016/s1350-9462(96)00020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Chen Y, Houghton LA, Brenna JT, Noy N. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J Biol Chem 1996; 271:20507-15. [PMID: 8702792 DOI: 10.1074/jbc.271.34.20507] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rapid transport of retinoids across the interphotoreceptor matrix is a critical part of the visual cycle, since it serves to replenish bleached rhodopsin with its chromophore 11-cis-retinal. The transport of retinoids in the interphotoreceptor matrix is believed to be mediated by the interphotoreceptor retinoid-binding protein (IRBP), a protein that, in addition to possessing two retinoid-binding sites, associates in vivo with long chain fatty acids. Here, the interrelationships between binding of the two types of ligands to IRBP were studied. The composition of fatty acids associated with IRBP in bovine retina was determined, and it was found that polyunsaturated fatty acids constitute a significant fraction of those. It was further found that docosahexaenoic acid, but not palmitic acid, induced a rapid and specific release of 11-cis-retinal from one of the protein's retinoid-binding sites. Based on these results and on the additional observation that a steep concentration gradient of docosahexaenoic acid exists between photoreceptor and pigment epithelium cells, a model for the mechanism by which IRBP may target 11-cis-retinal to photoreceptor cells is proposed.
Collapse
Affiliation(s)
- Y Chen
- Division of Nutritional Sciences, Savage Hall, Cornell University, Ithaca, New York 14853-6301, USA
| | | | | | | |
Collapse
|
31
|
Hessler RB, Baer CA, Bukelman A, Kittredge KL, Gonzalez-Fernandez F. Interphotoreceptor retinoid-binding protein (IRBP): expression in the adult and developing Xenopus retina. J Comp Neurol 1996; 367:329-41. [PMID: 8698895 DOI: 10.1002/(sici)1096-9861(19960408)367:3<329::aid-cne1>3.0.co;2-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apposition of the neural retina and pigment epithelium is critical to photoreceptor development and function. Interphotoreceptor retinoid-binding protein (IRBP) is a major component of the extracellular matrix separating these epithelia in the African clawed frog Xenopus laevis (Gonzalez-Fernandez et al., [1993], J. Cell Sci. 105:7-21). In the adult retina, IRBP appears to mediate the transport of hydrophobic molecules, particularly retinoids and fatty acids, within the hydrophilic extracellular domain. In this paper, we compare the distribution of IRBP and its mRNA in adult and embryonic Xenopus retina. Xenopus IRBP antisense RNA, labeled with tritium or digoxigenin, was used for in situ hybridizaton studies. For immunohistochemistry, we used an antiserum against Xenopus IRBP expressed in Escherichia coli. In the adult, we found that IRBP is synthesized at similar levels by both rods and cones. The protein is restricted to the interphotoreceptor matrix, with lesser amounts in the pigment epithelial cytoplasm. In the embryo, expression of the mRNA for IRBP is restricted to the central retina, where photoreceptor differentiation has taken place. By contrast, the protein is distributed throughout the embryonic subretinal space. Therefore, the presence of IRBP precedes photoreceptor differentiation. In summary, IRBP is synthesized by both rods and cones and may be internalized by the pigment epithelium. In the embryo, IRBP is synthesized by the central retina and diffuses through the matrix, reaching the undifferentiated peripheral retina. In view of its ligand-binding properties, diffusion of IRBP may provide the peripheral neural retina with a vehicle to transport retinoids and docosahexaenoic acid (molecules critical to normal retinal development) from the pigment epithelium.
Collapse
Affiliation(s)
- R B Hessler
- Department of Pathology (Neuropathology), University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
32
|
Okajima T, Wiggert B, Chader G, Pepperberg D. Retinoid processing in retinal pigment epithelium of toad (Bufo marinus). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31744-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Baer CA, Kittredge KL, Klinger AL, Briercheck DM, Braiman MS, Gonzalez-Fernandez F. Expression and characterization of the fourth repeat of Xenopus interphotoreceptor retinoid-binding protein in E. coli. Curr Eye Res 1994; 13:391-400. [PMID: 7924403 DOI: 10.3109/02713689408999866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is an extracellular glycolipoprotein which in higher vertebrates has a 4-repeat structure and carries endogenous vitamin A and fatty acids. The location of IRBP's 1-2 binding sites for retinol is unknown. To begin to understand which repeat(s) are responsible for ligand-binding, we expressed the fourth repeat of Xenopus IRBP in E. coli to determine if it could by itself bind all-trans retinol. Our expression studies used a polyhistidine fusion domain to purify the recombinant protein directly from inclusion bodies. The fusion protein could be renatured without aggregation if refolded at a sufficiently dilute concentration (< 3 microM). The recombinant fourth repeat of Xenopus IRBP binds [3H]all-trans retinol and the fluorescence of this ligand increases 8-fold upon binding. The binding is saturable with a Kd = 0.4 microM. The expression of recombinant IRBP fragments as fusion proteins in prokaryotes will be useful for defining the structural requirements for ligand binding by this interesting protein.
Collapse
Affiliation(s)
- C A Baer
- Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Biosynthesis of retinoic acid by Müller glial cells: A model for the central nervous system? Prog Retin Eye Res 1994. [DOI: 10.1016/1350-9462(94)90011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Gonzalez-Fernandez F, Kittredge KL, Rayborn ME, Hollyfield JG, Landers RA, Saha M, Grainger RM. Interphotoreceptor retinoid-binding protein (IRBP), a major 124 kDa glycoprotein in the interphotoreceptor matrix of Xenopus laevis. Characterization, molecular cloning and biosynthesis. J Cell Sci 1993; 105 ( Pt 1):7-21. [PMID: 8360278 DOI: 10.1242/jcs.105.1.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that the neural retina of Xenopus laevis secretes into the extracellular matrix surrounding the inner and outer segments of its photoreceptors a glycoprotein containing hydrophobic domains conserved in mammalian interphotoreceptor retinoid-binding proteins (IRBPs). The soluble extract of the interphotoreceptor matrix contains a 124 kDa protein that cross-reacts with anti-bovine IRBP immunoglobulins. In vitro [3H]fucose incorporation studies combined with in vivo light and electron microscopic autoradiographic analysis, showed that the IRBP-like glycoprotein is synthesized by the neural retina and secreted into the interphotoreceptor matrix. A 1.2 kb Xenopus IRBP cDNA was isolated by screening a stage 42 (swimming tadpole) lambda Zap II library with a human IRBP cDNA under low-stringency conditions. The cDNA hybridizes with a 4.2 kb mRNA in adult Xenopus neural retina, tadpole heads as well as a less-abundant mRNA of the same size in brain. During development, IRBP and opsin mRNA expression correlates with photoreceptor differentiation. The translated amino acid sequence of the Xenopus IRBP clone has an overall 70% identity with the fourth repeat of the human protein. Sequence alignment with the four repeats of human IRBP showed three highly conserved regions, rich in hydrophobic residues. This focal conservation predicts domains important to the protein's function, which presumably is to facilitate the exchange of 11-cis retinal and all-trans retinol between the pigment epithelium and photoreceptors, and to the transport of fatty acids through the hydrophilic interphotoreceptor matrix.
Collapse
Affiliation(s)
- F Gonzalez-Fernandez
- Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| | | | | | | | | | | | | |
Collapse
|
37
|
Pepperberg DR, Okajima TL, Wiggert B, Ripps H, Crouch RK, Chader GJ. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 1993; 7:61-85. [PMID: 8318167 DOI: 10.1007/bf02780609] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retina pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.
Collapse
Affiliation(s)
- D R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The bleaching and regeneration of rhodopsin in the skate retina was studied by means of fundus reflectometry, both in the normal eyecup preparation and after the retina had been detached and then replaced on the surface of the pigment epithelium (RPE). After bleaching virtually all the rhodopsin in the retinal test area of the normal eyecup, more than 90% of the photopigment was reformed after about 2 hr in darkness; over most of this time course, rhodopsin density rose linearly at a rate of 0.875% min-1 with a half-time of 55 min. Detaching the retina from its pigment epithelium resulted in a number of abnormalities, both structural and functional. Histological examination of the detached/replaced (D/R) retina showed striking alterations in the structural integrity of the RPE cells at their interface with the neural retina. The cells appeared vacuolated and misshapen, and the apical processes of the RPE, which normally ensheath the receptor outer segments, were shredded and free of their association with the visual cells. These morphological changes, as well as dilution of the IRBP content of the subretinal space caused by separation of the tissues, appear to be the main factors contributing to the functional abnormalities in rhodopsin kinetics. But despite these abnormalities and the persistent detachment, the rate of regeneration and the amount of rhodopsin reformed after bleaching were reduced by less than 50% of their normal values. The fact that a significant fraction of the bleached rhodopsin was regenerated under these conditions indicates that 11-cis retinal formed in the RPE was able to traverse a much greater than normal subretinal space to reach the opsin-bearing photoreceptor membranes.
Collapse
Affiliation(s)
- Y Sun
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, Chicago
| | | |
Collapse
|