1
|
Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN. Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 2023; 6:544. [PMID: 37208439 PMCID: PMC10199026 DOI: 10.1038/s42003-023-04893-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Katie Vo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joshua Moses
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Hannah Thomas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Miranda
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew Chang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Aleena Lukose
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Julius Jang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Sneha Nadella
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Tucker Gillespie
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Trevino
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna L Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Gramatiuk SM, Ivanova YV, Hudyma AA, Sargsyan K, Kryvoruchko IA, Puliaieva IS. Differentiation of neurosphere after transplantation into the damaged spinal cord. J Med Life 2023; 16:689-698. [PMID: 37520471 PMCID: PMC10375341 DOI: 10.25122/jml-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/26/2023] [Indexed: 08/01/2023] Open
Abstract
This study aimed to compare the differentiation and survival of human neural stem/progenitor cells of various origins in vitro and after transplantation into the injured spinal cord of laboratory animals. Rats with simulated spinal cord injury were transplanted with neurosphere cells obtained by directed differentiation of HUES6 cell lines. Fluorescence microscopy was used to visualize the obtained results. HUES6#1 and iPSC#1 neurospheres showed a wide range of markers associated with glial differentiation. The expression of the proliferation marker Ki67 did not exceed 25%, both in the lines of early and late neurospheres. Although neurospheres did not fully differentiate into astrocytes in vitro, they massively approached the GFAP+ astrocyte phenotype when exposed to the transplanted environment. PSC-derived neurospheres transplanted into the site of SM injury without additional growth factors showed only moderate survival, a significant degree of differentiation into astrocytes, and moderate differentiation into neurons. The difference in the survival and differentiation of HUES6#1 and iPSC#1 neurospheres, both in vitro and in vivo, can be explained by the difference in the regulatory behavior of signaling molecules corresponding to the source of origin of PSCs. Derivatives of human PSCs of various origins obtained according to the described differentiation protocol did not mature into astrocytic populations, nor did the glycogenic transition of PSC-derived NSCs occur in vitro. The study demonstrated the impact of the injured spinal cord microenvironment on the differentiation of transplanted HUES6#1 and iPSC#1 into astrocytes. The results showed that HUES6-derived neurospheres generated 90% of GFAP+ astrocytes and 5-10% of early neurons, while iPSC-derived neurospheres generated an average of 74% GFAP+ astrocytes and 5% of early neurons in vivo.
Collapse
Affiliation(s)
- Svetlana Mykolaiivna Gramatiuk
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
- Department of Biotechnology, Louisiana State University, Baton Rouge, Louisiana, USA
- International Biobanking and Education, Medical University of Graz, Graz, Austria
| | - Yulia Viktorovna Ivanova
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
- Department of Surgery No.1, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Arsen Arsenievich Hudyma
- Emergency Medical Care, Ternopil National Medical University named after I. Ya. Gorbachevsky, Ternopil, Ukraine
| | - Karine Sargsyan
- International Biobanking and Education, Medical University of Graz, Graz, Austria
- Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| | | | - Inna Sergeevna Puliaieva
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
| |
Collapse
|
3
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
4
|
Blackmore MG. Molecular control of axon growth: insights from comparative gene profiling and high-throughput screening. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206595 DOI: 10.1016/b978-0-12-398309-1.00004-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration in the mammalian adult central nervous system (CNS) is limited by an intrinsically low capacity for axon growth in many CNS neurons. In contrast, embryonic, peripheral, and many nonmammalian neurons are capable of successful regeneration. Numerous studies have compared mammalian CNS neurons to their counterparts in regenerating systems in an effort to identify candidate genes that control regenerative ability. This review summarizes work using this comparative strategy and examines our current understanding of gene function in axon growth, highlighting the emergence of genome-wide expression profiling and high-throughput screening strategies to identify novel regulators of axon growth.
Collapse
Affiliation(s)
- Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
5
|
Dallimore EJ, Park KK, Pollett MA, Taylor JS, Harvey AR. The life, death and regenerative ability of immature and mature rat retinal ganglion cells are influenced by their birthdate. Exp Neurol 2010; 225:353-65. [DOI: 10.1016/j.expneurol.2010.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/30/2010] [Accepted: 07/12/2010] [Indexed: 11/17/2022]
|
6
|
Abstract
AbstractThe work of Sinden et al. suggests that it may be possible to produce improvement in the “highest” areas of brain function by transplanting brain tissue. What appears to be the limiting factor is not the complexity of the mental process under consideration but the discreteness of the lesion which causes the impairment and the appropriateness and accuracy of placement of the grafted tissue.
Collapse
|
7
|
Abstract
AbstractIn spite of Stein and Glasier's justifiable conclusion that initial optimism concerning the immediate clinical applicability of neural transplantation was premature, there exists much experimental evidence to support the potential for incorporating this procedure into a therapeutic arsenal in the future. To realize this potential will require continued evolution of our knowledge at multiple levels of the clinical and basic neurosciences.
Collapse
|
8
|
Abstract
AbstractThe concept of structure, operation, and functionality, as they may be understood by clinicians or researchers using neural transplantation techniques, are briefly defined. Following Stein & Glasier, we emphasize that the question of whether an intracerebral graft is really functional should be addressed not only in terms of what such a graft does in a given brain structure, but also in terms of what it does at the level of the organism.
Collapse
|
9
|
The NGF superfamily of neurotrophins: Potential treatment for Alzheimer's and Parkinson's disease. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStein & Glasier suggest embryonic neural tissue grafts as a potential treatment strategy for Alzheimer's and Parkinson's disease. As an alternative, we suggest that the family of nerve growth factor-related neurotrophins and their trk (tyrosine kinase) receptors underlie cholinergic basal forebrain (CBF) and dopaminergic substantia nigra neuron degeneration in these diseases, respectively. Therefore, treatment approaches for these disorders could utilize neurotrophins.
Collapse
|
10
|
Some practical and theoretical issues concerning fetal brain tissue grafts as therapy for brain dysfunctions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGrafts of embryonic neural tissue into the brains of adult patients are currently being used to treat Parkinson's disease and are under serious consideration as therapy for a variety of other degenerative and traumatic disorders. This target article evaluates the use of transplants to promote recovery from brain injury and highlights the kinds of questions and problems that must be addressed before this form of therapy is routinely applied. It has been argued that neural transplantation can promote functional recovery through the replacement of damaged nerve cells, the reestablishment of specific nerve pathways lost as a result of injury, the release of specific neurotransmitters, or the production of factors that promote neuronal growth. The latter two mechanisms, which need not rely on anatomical connections to the host brain, are open to examination for nonsurgical, less intrusive therapeutic use. Certain subjective judgments used to select patients who will receive grafts and in assessment of the outcome of graft therapy make it difficult to evaluate the procedure. In addition, little long-term assessment of transplant efficacy and effect has been done in nonhuman primates. Carefully controlled human studies, with multiple testing paradigms, are also needed to establish the efficacy of transplant therapy.
Collapse
|
11
|
Abstract
AbstractThe transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.
Collapse
|
12
|
Ishii K, Nakamura M, Dai H, Finn TP, Okano H, Toyama Y, Bregman BS. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J Neurosci Res 2007; 84:1669-81. [PMID: 17044031 DOI: 10.1002/jnr.21079] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplantation of neural stem cells (NSC) into lesioned spinal cord offers the potential to increase regeneration by replacing lost neurons or oligodendrocytes. The majority of transplanted NSC, however, typically differentiate into astrocytes that may exacerbate glial scar formation. Here we show that blocking of ciliary neurotrophic factor (CNTF) with anti-CNTF antibodies after NSC transplant into spinal cord injury (SCI) resulted in a reduction of glial scar formation by 8 weeks. Treated animals had a wider distribution of transplanted NSC compared with the control animals. The NSC around the lesion coexpressed either nestin or markers for neurons, oligodendrocytes, or astrocytes. Approximately 20% fewer glial fibrillary acidic protein-positive/bromodeoxyuridine (BrdU)-positive cells were seen at 2, 4, and 8 weeks postgrafting, compared with the control animals. Furthermore, more CNPase(+)/BrdU(+) cells were detected in the treated group at 4 and 8 weeks. These CNPase(+) or Rip(+) mature oligodendrocytes were seen in close proximity to host corticospinal tract (CST) and 5HT(+) serotonergic axon. We also demonstrate that the number of regenerated CST fibers both at the lesion and at caudal sites in treated animals was significantly greater than that in the control animals at 8 weeks. We suggest that the blocking of CNTF at the beginning of SCI provides a more favorable environment for the differentiation of transplanted NSC and the regeneration of host axons.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Fukunaga S, Sasaki S, Fu T, Yokoyama H, Lee I, Nakagaki I, Hori S, Tateishi H, Maruo S. Experimental study of neural repair of the transected spinal cord using peripheral nerve graft. J Orthop Sci 2005; 9:605-12. [PMID: 16228679 DOI: 10.1007/s00776-004-0833-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
It has been reported that transected spinal cord shows signs of axonal regeneration after peripheral nerve (PN) graft. We studied the membrane excitability and ion distribution in axons from transected rat spinal cord 3 weeks after PN graft using the spinal cord evoked potential, electron probe X-ray microanalysis, and the patch-clamp technique. Axonal structures were also observed using conventional electron microscopy. At the Th11 level, laminectomy was performed (=control) and the left thoracic segments of the spinal cord 2 mm in length were excised (=nongrafted group). PN sections from 8-week-old male Wistar rats were grafted into the spinal cord gap (=PN-grafted group). The spinal cord evoked potential in the PN-grafted group partly recovered in contrast to that in the nongrafted group, which showed no recovery. Higher Na, Cl, and Ca peaks and lower K peaks in the PN-grafted group were demonstrated compared with those in the nongrafted group. In the PN-grafted group, a higher current signal appeared in the axonal membrane of the spinal cord, suggesting a greater membrane activity compared with that in the nongrafted group. Unlike the nongrafted group, in which no myelinated axons were found, demyelinated axons that were myelinated by Schwann cells from the grafted peripheral nerve were observed in the PN-grafted group. These findings suggested that Schwann cells from the transplanted PN contributed to the repair of the transected spinal cord.
Collapse
Affiliation(s)
- Satoru Fukunaga
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakamura M, Okano H, Toyama Y, Dai HN, Finn TP, Bregman BS. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat. J Neurosci Res 2005; 81:457-68. [PMID: 15968644 DOI: 10.1002/jnr.20580] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Great interest exists in using cell replacement strategies to repair the damaged central nervous system. Previous studies have shown that grafting rat fetal spinal cord into neonate or adult animals after spinal cord injury leads to improved anatomic growth/plasticity and functional recovery. It is clear that fetal tissue transplants serve as a scaffold for host axon growth. In addition, embryonic Day 14 (E14) spinal cord tissue transplants are also a rich source of neural-restricted and glial-restricted progenitors. To evaluate the potential of E14 spinal cord progenitor cells, we used in vitro-expanded neurospheres derived from embryonic rat spinal cord and showed that these cells grafted into lesioned neonatal rat spinal cord can survive, migrate, and differentiate into neurons and oligodendrocytes, but rarely into astrocytes. Synapses and partially myelinated axons were detected within the transplant lesion area. Transplanted progenitor cells resulted in increased plasticity or regeneration of corticospinal and brainstem-spinal fibers as determined by anterograde and retrograde labeling. Furthermore, transplantation of these cells promoted functional recovery of locomotion and reflex responses. These data demonstrate that progenitor cells when transplanted into neonates can function in a similar capacity as transplants of solid fetal spinal cord tissue.
Collapse
Affiliation(s)
- M Nakamura
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
15
|
Yoshii S, Oka M, Shima M, Taniguchi A, Taki Y, Akagi M. Restoration of function after spinal cord transection using a collagen bridge. ACTA ACUST UNITED AC 2004; 70:569-75. [PMID: 15307161 DOI: 10.1002/jbm.a.30120] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The restoration of function of transected adult mammalian spinal cord without living tissue has not been reported previously. We report the first success of functional restoration of transected spinal cord without living tissue. We grafted collagen filaments parallel or transverse to the axis of the spinal cord to bridge 5-mm defects of 47 adult rat spinal cords. Twenty-five rats were used as a control. Of the 72 rats, 42 rats survived the experimental period. At 4 weeks postoperatively, regenerated axons crossed the proximal and distal spinal cord-implant interfaces in all 5 rats of the parallel-grafted group. At 12 weeks postoperatively, the rats in the parallel-grafted group (8 rats) could walk, run, and climb with hind-forelimb coordination. The somatosensory-evoked potentials were seen. Results suggest that the collagen filaments support the axonal regeneration of the transected spinal cord and the restoration of function when grafted parallel to the axis of the spinal cord. The functional restoration appeared to be permanent, raising the possibility of therapeutic application in humans.
Collapse
Affiliation(s)
- Satoru Yoshii
- Institute of Biomedical Engineering, Kansai Denryoku Hospital, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
STUDY DESIGN A rat model of spinal cord defect was designed to evaluate the effect of collagen filament implant on nerve regeneration in the spinal cord defect. OBJECTIVES To bridge a spinal cord defect and restore the function in adult mammals. SUMMARY OF BACKGROUND DATA Resection of the spinal cord in mammals is always followed by motor paralysis and loss of voluntary function below the lesion. Partial success in bridging the ends of the spinal cord after complete resection was reported. However, restoration of function has not been reported in adult mammalian. MATERIALS AND METHODS Four thousand collagen filaments 5-mm-long were grafted to bridge a 5-mm defect of rat spinal cord. Controls had their spinal cord defect left ungrafted after resection. At 1-week intervals, animals were evaluated functionally. After 4 and 12 weeks, animals were evaluated histologically. After 12 weeks, animals were evaluated electrophysiologically. RESULTS The severed spinal cord axons regenerated along the collagen filament implant crossing the proximal and distal spinal cord implant interfaces at 4 weeks after surgery. The rats with collagen filament grafts could walk, run, and climb with hind forelimb coordination at 12 weeks after surgery. Sensory-evoked potential waveform was found in the rats with collagen filament at 12 weeks after surgery. CONCLUSIONS The collagen filaments support the axonal regeneration of the transected spinal cord and the restoration of function.
Collapse
Affiliation(s)
- Satoru Yoshii
- Institute of Biomedical Engineering, Kansai Denryoku Hospital, Osaka, Japan.
| | | | | | | | | |
Collapse
|
17
|
Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2002; 137:257-73. [PMID: 12440372 DOI: 10.1016/s0079-6123(02)37020-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Earlier studies suggested that while after spinal cord lesions and transplants at birth, the transplants serve both as a bridge and as a relay to restore supraspinal input caudal to the injury (Bregman, 1994), after injury in the adult the spinal cord transplants serve as a relay, but not as a bridge. We show here, that after complete spinal cord transection in adult rats, delayed spinal cord transplants and exogenous neurotrophic factors, the transplants can also serve as a bridge to restore supraspinal input (Fig. 9). We demonstrate here that when the delivery of transplants and neurotrophins are delayed until 2 weeks after spinal cord transection, the amount of axonal growth and the amount of recovery of function are dramatically increased. Under these conditions, both supraspinal and propriospinal projections to the host spinal cord caudal to the transection are reestablished. The growth of supraspinal axons across the transplant and back into the host spinal cord caudal to the lesion was dependent upon the presence of exogenous neurotrophic support. Without the neurotrophins, only propriospinal axons were able to re-establish connections across the transplant. Studies using peripheral nerve or Schwann cell grafts have shown that some anatomical connectivity can be restored across the injury site, particularly under the influence of neurotrophins (Xu et al., 1995a,b; Cheng et al., 1996; Ye and Houle, 1997). Without neurotrophin treatment, brainstem axons do not enter [figure: see text] the graft (Xu et al., 1995a,b; Cheng et al., 1996; Ye and Houle, 1997). Similarly, cells genetically modified to secrete neurotrophins and transplanted into the spinal cord influence the axonal growth of specific populations of spinally projecting neurons (Tuszynski et al., 1996, 1997; Grill et al., 1997; Blesch and Tuszynski, 1997). Taken together, these studies support a role for neurotrophic factors in the repair of the mature CNS. The regrowth of supraspinal and propriospinal input across the transection site was associated with consistent improvements in hindlimb locomotor function. Animals performed alternating and reciprocal hindlimb stepping with plantar foot contact to the treadmill or stair during ascension. Furthermore, they acquired hindlimb weight support and demonstrated appropriate postural control for balance and equilibrium of all four limbs. After spinal cord injury in the adult, the circuitry underlying rhythmic alternating stepping movements is still present within the spinal cord caudal to the lesion, but is now devoid of supraspinal control. We show here that restoring even relatively small amounts of input allows supraspinal neurons to access the spinal cord circuitry. Removing the re-established supraspinal input after recovery (by retransection rostral to the transplant) abolished the recovery and abolished the serotonergic fibers within the transplant and spinal cord caudal to the transplant. This suggests that at least some of the recovery observed is due to re-establishing supraspinal input across the transplant, rather than a diffuse influence of the transplant on motor recovery. It is unlikely, however, that the greater recovery of function in animals that received delayed transplant and neurotrophins is due solely to the restoration of supraspinal input. Recent work by Ribotta et al. (2000) suggests that segmental plasticity within the spinal cord contributes to weight support and bilateral foot placement after spinal cord transection. This recovery of function occurs after transplants of fetal raphe cells into the adult spinal cord transected at T11. Recovery of function appears to require innervation of the L1-L2 segments with serotonergic fibers, and importantly, animals require external stimulation (tail pinch) to elicit the behavior. In the current study, animals with transection only did not develop stepping overground or on the treadmill without tail pinch, although the transplant and neurotrophin-treated groups did so without external stimuli. Therefore both reorganization of the segmental circuitry and partial restoration of supraspinal input presumably interact to yield the improvements in motor function observed. It is unlikely that the recovery of skilled forelimb movement observed can be mediated solely by reorganization of segmental spinal cord circuitry. We suggest that the restoration of supraspinal input contributes to the recovery observed. It is likely that after CNS injury, reorganization occurs both within the spinal cord and at supraspinal levels, and together contribute to the recovery of automatic and skilled forelimb function and of locomotion. In summary, the therapeutic intervention of tissue transplantation and exogenous neurotrophin support leads to improvements in supraspinal and propriospinal input across the transplant into the host caudal cord and a concomitant improvement in locomotor function. Paradoxically, delaying these interventions for several weeks after a spinal cord transection leads to dramatic improvements in recovery of function and a concomitant restoration of supraspinal input into the host caudal spinal cord. These findings suggest that opportunity for intervention after spinal cord injury may be far greater than originally envisioned, and that CNS neurons with long-standing injuries may be able to re-initiate growth leading to improvement in motor function.
Collapse
Affiliation(s)
- Barbara S Bregman
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Dallimore EJ, Cui Q, Beazley LD, Harvey AR. Postnatal innervation of the rat superior colliculus by axons of late-born retinal ganglion cells. Eur J Neurosci 2002; 16:1295-304. [PMID: 12405990 DOI: 10.1046/j.1460-9568.2002.02178.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rat retinal ganglion cells (RGCs) are generated between embryonic day (E) 13 and E19. Retinal axons first reach the superior colliculus at E16/16.5 but the time of arrival of axons from late-born RGCs is unknown. This study examined (i) whether there is a correlation between RGC genesis and the timing of retinotectal innervation and (ii) when axons of late-born RGCs reach the superior colliculus. Pregnant Wistar rats were injected intraperitoneally with bromodeoxyuridine (BrdU) on E16, E18 or E19. Pups from these litters received unilateral superior colliculus injections of fluorogold (FG) at ages between postnatal (P) day P0 and P6, and were perfused 1-2 days later. RGCs in 3 rats from each BrdU litter were labelled in adulthood by placing FG onto transected optic nerve. Retinas were cryosectioned and the number of FG, BrdU and double-labelled (FG+/BrdU+) RGCs quantified. In the E16 group, the proportion of FG-labelled RGCs that were BrdU+ did not vary with age, indicating that axons from these cells had reached the superior colliculus by P0/P1. In contrast, for the smaller cohorts of RGCs born on E18 or E19, the proportion of BrdU+ cells that were FG+ increased significantly after birth; axons from most RGCs born on E19 were not retrogradely FG-labelled until P4/P5. Thus there is a correlation between birthdate and innervation in rat retinotectal pathways. Furthermore, compared to the earliest born RGCs, axons from late-born RGCs take about three times longer to reach the superior colliculus. Later-arriving axons presumably encounter comparatively different growth terrains en route and eventually innervate more differentiated target structures.
Collapse
Affiliation(s)
- Elizabeth J Dallimore
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | | | | | | |
Collapse
|
19
|
Petit A, Quenneville N, Vallée A, Pierret P, Doucet G. Differences in host serotonin innervation of intrastriatal grafts are not determined by a glial scar or chondroitin sulfate proteoglycans. Exp Neurol 2002; 177:61-74. [PMID: 12429211 DOI: 10.1006/exnr.2002.7954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serotoninergic (5-HT) neurons of adult recipients provide a much denser innervation of striatal than ventral mesencephalic grafts implanted into the neostriatum of the rat. Moreover, grafts from both brain regions are more innervated by host 5-HT axons after implantation in neonatal than adult hosts. To test the hypothesis that differences in glial scarring or expression of the growth inhibitory molecules, chondroitin sulfate proteoglycans (CSPG), be responsible for these differences in 5-HT innervation of neural grafts, we examined the 5-HT innervation, the astroglial reaction and the expression of CSPG in ventral mesencephalic grafts implanted into newborn (1-5 days old), juvenile (15 days old), or adult rats and in striatal grafts implanted in adult rats, using immunohistochemistry against 5-HT, glial fibrillary acidic protein (GFAP) and CSPG. Immunostaining for GFAP showed a stronger initial gliosis (1-10 days after grafting) in neonatal than adult recipients of mesencephalic grafts, but this gliosis subsided gradually at later time points. Nevertheless, a glial scar formed at the graft-host interface in both neonatal and adult recipients, 5-10 days after transplantation, although it decreased over a longer time course--up to 60 days--in adults. Immunostained astrocytes appeared first in the host brain tissue around the graft and then immunoreactive processes and perikarya gradually invaded the graft. Immunoreactivity for CSPG was similar in neonatal and adult hosts: it was strongly expressed inside the graft early after transplantation, and almost completely down-regulated at 60 days. The reaction of adult hosts to striatal and mesencephalic grafts was similar, although GFAP was more heterogeneously distributed and CSPG immunoreactivity remained in patches inside striatal grafts, even after 60 days. The 5-HT innervation of mesencephalic grafts was much denser after implantation in newborns than in adults. It was also stronger in striatal than in mesencephalic grafts implanted in adults. Thus, the presence of a glial scar or the expression of CSPG cannot totally account for the different degrees of 5-HT innervation in the various types of neural grafts.
Collapse
Affiliation(s)
- Audrey Petit
- Centre de recherche en sciences neurologiques, Département de pathologie et biologie cellulaire, Université de Montréal, Case postale 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
20
|
Lu J, Féron F, Mackay-Sim A, Waite PME. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 2002; 125:14-21. [PMID: 11834589 DOI: 10.1093/brain/awf014] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrated recently that transplantation of olfactory ensheathing cells from the nasal olfactory mucosa can promote axonal regeneration after complete transection of the spinal cord in adult rat. Ten weeks after transection and transplantation there was significant recovery of locomotor behaviour and restoration of descending inhibition of spinal cord reflexes, accompanied by growth of axons across the transection site, including serotonergic axons arising from the brainstem raphe nuclei. The present experiment was undertaken to determine whether olfactory ensheathing cells from the olfactory mucosa are capable of promoting regeneration when transplanted into the spinal cord 4 weeks after transection. Under general anaesthesia, thoracic spinal cord at the T10 level was transected completely in adult rats. Four weeks later, the scar tissue and cavities at the transection site were removed to create a 3-4 mm gap. Into this gap, between the cut surfaces of the spinal cord, pieces of olfactory lamina propria were placed. Ten weeks later, the locomotor activity of these animals was significantly improved compared with control animals, which received implants of either pieces of nasal respiratory lamina propria or collagen (Basso, Beattie, Bresnahan Locomotor Rating Scale scores 4.3 + 0.8, n = 6 versus 1.0 + 0.2, n = 10, respectively; P < 0.001). Ten weeks after transplantation the behavioural recovery was still improving. Regrowth of brainstem raphe axons across the transplant site was shown by the presence of serotonergic axons in the spinal cord caudal to the transection site, and by retrograde labelling of cells in the nucleus raphe magnus after injections of fluorogold into the caudal spinal cord. Neither serotonergic axons nor labelled brainstem cells were observed in the control animals. These results indicate that olfactory ensheathing cells from the nasal olfactory lamina propria have the ability to promote spinal cord regeneration when transplanted 4 weeks after complete transection. Olfactory ensheathing cells are accessible and available in the human nose; the present study further supports clinical use of these cells in repairing the human spinal cord via autologous transplantation.
Collapse
Affiliation(s)
- Jike Lu
- Neural Injury Research Unit, School of Anatomy, University of New South Wales, Sydney Australia
| | | | | | | |
Collapse
|
21
|
Friedman RM, Ritz LA, Reier PJ, Vierck CJ. Effects of sacrocaudal spinal cord transection and transplantation of fetal spinal tissue on withdrawal reflexes of the tail. Neurorehabil Neural Repair 2001; 14:331-43. [PMID: 11402883 DOI: 10.1177/154596830001400409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reflex responses to electrocutaneous stimulation of the tail were characterized in awake cats, before and after transection of the spinal cord at sacrocaudal levels S3-Ca1. Consistent with effects of spinal transection at higher levels, postoperative cutaneous reflexes were initially depressed, and the tail was flaccid. Recovery ensued over the course of 70-90 days after sacrocaudal transection. Preoperative and chronic postlesion reflexes elicited by electrocutaneous stimulation were graded in amplitude as a function of stimulus intensity. Chronic postlesion testing of electrocutaneous reflexes revealed greater than normal peak amplitudes, peak latencies, total amplitudes (power), and durations, particularly for higher stimulus intensities. Thus, sacrocaudal transection produced effects representative of the spastic syndrome. In contrast, exaggerated reflex responsivity did not develop for a group of cats that received transplants of fetal spinal cord tissue within sacrocaudal transection cavities at the time of injury, in conjunction with long-term immunosuppression by cyclosporine. We conclude that gray matter replacement and potential neuroprotective actions of the grafts and/or immunosuppression prevent development of the spastic syndrome. This argues that the spastic syndrome does not result entirely from interruption of long spinal pathways.
Collapse
Affiliation(s)
- R M Friedman
- Department of Neuroscience and McNight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
22
|
Shifman MI, Selzer ME. Expression of the netrin receptor UNC-5 in lamprey brain: modulation by spinal cord transection. Neurorehabil Neural Repair 2001; 14:49-58. [PMID: 11228949 DOI: 10.1177/154596830001400106] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sea lamprey recovers from spinal cord transection by a process that involves directionally specific regeneration of axons. The mechanisms underlying this specificity are not known, but they may involve molecular cues similar to those that guide the growth of spinal cord axons during development, such as netrins and semaphorins. To test the role of guidance cues in regeneration, we cloned netrin and its receptor UNC-5 from lamprey central nervous system (CNS) and studied their expression after spinal cord transection. In situ hybridization showed that (1) mRNA for netrin is expressed in the spinal cord, primarily in neurons of the lateral gray matter and in dorsal cells; (2) mRNA for UNC-5 is expressed in lamprey reticulospinal neurons; (3) following spinal cord transection, UNC-5 message was dramatically downregulated at two weeks, during the period of axon dieback; (4) UNC-5 message was upregulated at three weeks, when many axons are beginning to regenerate; and (5) axotomy-induced expression of UNC-5 occurred primarily in neurons whose axons regenerate poorly. Because the UNC-5 receptor is thought to mediate the chemorepellent effects of netrins, netrin signaling may play a role in limiting or channeling the regeneration of certain neurons. These data strengthen the rationale for studying the role of developmental guidance molecules in CNS regeneration.
Collapse
Affiliation(s)
- M I Shifman
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, PA 19104-4283, USA.
| | | |
Collapse
|
23
|
Abstract
Although medical advancements have significantly increased the survival of spinal cord injury patients, restoration of function has not yet been achieved. Neural transplantation has been studied over the past decade in animal models as a repair strategy for spinal cord injury. Although spinal cord neural transplantation has yet to reach the point of clinical application and much work remains to be done, reconstructive strategies offer the greatest hope for the treatment of spinal cord injury in the future. This article presents the scientific basis of neural transplantation as a repair strategy and reviews the current status of neural transplantation in spinal cord injury.
Collapse
Affiliation(s)
- S D Christie
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
24
|
Abstract
Spinal cord injury continues to be a major cause of morbidity, particularly among young people involved in vehicle-related trauma, falls, and sports injuries. Although research advances are still a long way from clinical treatments, recent studies on animals have indicated new possibilities for recovery of function. In this review, these new findings on the use of neurotrophic factors, antibodies to inhibitory molecules, electrical stimulation, and transplantation of peripheral nerves and olfactory glial cells, and their success in achieving functional recovery after adult spinal cord lesions are discussed.
Collapse
Affiliation(s)
- J Lu
- Neural Injury Research Unit, School of Anatomy, University of New South Wales
| | | |
Collapse
|
25
|
Houweling DA, Bär PR, Gispen WH, Joosten EA. Spinal cord injury: bridging the lesion and the role of neurotrophic factors in repair. PROGRESS IN BRAIN RESEARCH 1999; 117:455-71. [PMID: 9932425 DOI: 10.1016/s0079-6123(08)64032-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- D A Houweling
- Department of Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
26
|
Broude E, McAtee M, Kelley MS, Bregman BS. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury. Exp Neurol 1999; 155:65-78. [PMID: 9918706 DOI: 10.1006/exnr.1998.6964] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The responses of the central (CNS) and peripheral (PNS) nervous system to axotomy differ in a number of ways; these differences can be observed in both the cell body responses to injury and in the extent of regeneration that occurs in each system. The cell body responses to injury in the PNS involves the upregulation of genes that are not upregulated following comparable injuries to CNS neurons. The expression of particular genes following injury may be essential for regeneration to occur. In the present study, we have evaluated the hypothesis that expression of the inducible transcription factor c-Jun is associated with regrowth of axotomized CNS neurons. In these experiments, we compared c-Jun expression in axotomized brainstem neurons after thoracic spinal cord hemisection alone (a condition in which no regrowth occurs) and in groups of animals where hemisections were combined with treatments such as transplants of fetal spinal cord tissue and/or application of neurotrophic factors to the lesion site. The latter conditions enhance the capacity of the CNS for regrowth. We have demonstrated that hemisections alone do not upregulate expression of c-Jun, indicating that this particular cell body response is not a direct result of axotomy. However, c-Jun expression is upregulated in animals that received application of transplants and neurotrophins. Because these interventions also promote sprouting and regrowth of CNS axons after spinal cord lesions, we suggest that transplants and exogenous neurotrophic factor application activate a cell body response consistent with a role for c-Jun in axonal growth.
Collapse
Affiliation(s)
- E Broude
- Department of Cell Biology, Division of Neurobiology, Georgetown University School of Medicine, 3900 Reservoir Road N.W., Washington, DC, 20007, USA
| | | | | | | |
Collapse
|
27
|
Asada Y, Kawaguchi S, Hayashi H, Nakamura T. Neural repair of the injured spinal cord by grafting: comparison between peripheral nerve segments and embryonic homologous structures as a conduit of CNS axons. Neurosci Res 1998; 31:241-9. [PMID: 9809670 DOI: 10.1016/s0168-0102(98)00042-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the differences between peripheral nerve (PN) and embryonic homologous CNS structures as a conduit for CNS axons, spinal cord segments in neonatal rats were removed at the mid-thoracic level and PN or embryonic spinal cord (ESC) segments were grafted into the vacancy. Neural connections across the graft were examined by the anterograde and retrograde tracing methods. Anterogradely labeled pyramidal tract fibers entered the PN segment meanderingly and were dispersed; most stopped at the caudal end of the graft. Although a small fraction of fibers re-entered the host spinal cord, they terminated near the graft-host interface without further extension. By contrast, similarly labeled fibers entering the ESC segments crossed the graft and extended further to reach the lumbar segments. The fibers were defasciculated in the graft but became fasciculated and oriented dorsally near the caudal end of the graft, and descended in the normal path. Consistent with these findings, the retrograde tracing study revealed that in animals with ESC segment grafts but not in those with PN segment grafts, many neurons in the upper brain structures were labeled with Fast Blue that was injected into the lumbar enlargement. The difference between the two kinds of graft as a conduit for CNS axons is likely to be due to differences in matching growing axons and their guidance cues through the graft-host interface.
Collapse
Affiliation(s)
- Y Asada
- Department of Integrative Brain Science, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
28
|
Tator CH. Biology of neurological recovery and functional restoration after spinal cord injury. Neurosurgery 1998; 42:696-707; discussion 707-8. [PMID: 9574633 DOI: 10.1097/00006123-199804000-00007] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This article reviews the anatomic and pathophysiological bases for recovery of neurological function after experimental or clinical spinal cord injury (SCI). METHODS Current knowledge regarding the recovery of neurological function after experimental or clinical SCI was reviewed to determine the biological basis of neurological recovery. RESULTS There is a great propensity for recovery after clinical or experimental SCI. An examination of the anatomic basis of recovery indicates that there is a potential for both root and cord recovery, with the latter involving recovery of both gray and white matter of the cord. Resolution of acute injury events, such as hemorrhaging, and resolution of secondary pathophysiological processes, such as ischemia and excitotoxicity, can each account for recovery. The third recovery mechanism involves regrowth or regeneration of nervous tissue, resulting from either inherent or induced processes. CONCLUSION During the Decade of the Brain, there has been a profusion of very promising in vitro and in vivo studies that have shown enhanced neurological recovery after experimental or clinical SCI.
Collapse
Affiliation(s)
- C H Tator
- Division of Neurosurgery, Toronto Hospital and University of Toronto, Ontario, Canada
| |
Collapse
|
29
|
Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury. J Neurosci 1998. [PMID: 9425018 DOI: 10.1523/jneurosci.18-02-00763.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neonatal midthoracic spinal cord injury disrupts the development of postural reflexes and hindlimb locomotion. The recovery of rhythmical alternating movements, such as locomotion, is enhanced in injured animals receiving fetal spinal cord transplants. Neonatal cervical spinal cord injury disrupts not only locomotion but also skilled forelimb movement. The aims of this study were to determine the consequences of cervical spinal cord injury on forelimb motor function and to determine whether transplants of fetal spinal cord support normal development of skilled forelimb use after this injury. Three-day-old rats received a cervical spinal cord lesion at C3, with or without a transplant of fetal cervical spinal cord (embryonic day 14); unoperated pups served as controls. Animals were examined daily during the first month of life using a behavioral protocol that assessed reflexes, postural reactions, and forelimb motor skills. They also were trained and tested as adults to assess performance in goal-directed reaching tasks. The onset of postural reflexes was delayed in the lesion-only group, and goal-directed reaching and associated postural adjustments failed to develop. The transplant group developed reflex responses and skilled forelimb activity that resembled normal movement patterns. Transplant animals developed both target reaching and accompanying postural adjustments. Target reaching requires integration of segmental, intersegmental, and supraspinal input to propriospinal and motor neurons over many spinal cord levels. Transplants may support the reestablishment of input onto these neurons, permitting the development of skilled forelimb activity after neonatal cervical spinal cord injury. The neuroanatomical reorganization of descending and propriospinal input was examined in the companion paper (Diener and Bregman, 1998).
Collapse
|
30
|
Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisection in the neonatal rat. J Neurosci 1998. [PMID: 9425019 DOI: 10.1523/jneurosci.18-02-00779.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cervical spinal cord injury at birth permanently disrupts forelimb function in goal-directed reaching. Transplants of fetal spinal cord tissue permit the development of skilled forelimb use and associated postural adjustments (, companion article). The aim of this study was to determine whether transplants of fetal spinal cord tissue support the remodeling of supraspinal and segmental pathways that may underlie recovery of postural reflexes and forelimb movements. Although brainstem-spinal and segmental projections to the cervical spinal cord are present at birth, skilled forelimb reaching has not yet developed. Three-day-old rats received a cervical spinal cord overhemisection with or without transplantation of fetal spinal cord tissue (embryonic day 14); unoperated pups served as normal controls. Neuroanatomical tracing techniques were used to examine the organization of CNS pathways that may influence target-directed reaching. In animals with hemisections only, corticospinal, brainstem-spinal, and dorsal root projections within the spinal cord were decreased in number and extent. In contrast, animals receiving hemisections plus transplants exhibited growth of these projections throughout the transplant and over long distances within the host spinal cord caudal to the transplant. Raphespinal axons were apposed to numerous propriospinal neurons in control and transplant animals; these associations were greatly reduced in the lesion-only animals. These observations suggest that after neonatal cervical spinal cord injury, embryonic transplants support axonal growth of CNS pathways and specifically supraspinal input to propriospinal neurons. We suggest that after neonatal spinal injury in the rat, the transplant-mediated reestablishment of supraspinal input to spinal circuitry is the mechanism underlying the development of target-directed reaching and associated postural adjustments.
Collapse
|
31
|
Bregman BS, Broude E, McAtee M, Kelley MS. Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp Neurol 1998; 149:13-27. [PMID: 9454611 DOI: 10.1006/exnr.1997.6669] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axotomy of mature rubrospinal neurons leads to a substantial atrophy of these neurons within days after surgery. In addition, these neurons do not successfully regenerate following axotomy. The relationship of atrophy to regenerative failure is not clear, and the signals which regulate these events have not been identified. However, it is possible that the atrophy of these neurons plays a role in preventing regeneration. In the present study, we evaluated the hypothesis that interventions which have been shown to promote growth of axotomized CNS neurons are also capable of reversing the axotomy-induced atrophy. To test this hypothesis, adults rats received thoracic spinal cord hemisection alone or in combination with transplants of fetal spinal cord tissue and/or neurotrophic factor support. Our data indicate that application of either transplants or neurotrophic factors partially reverse the axotomy-induced atrophy in rubrospinal neurons, but that both interventions together reverse the atrophy completely. These results suggest that the same pathways that are activated to enhance growth of rubrospinal neurons after axotomy may also be involved in the maintenance of cell morphology.
Collapse
Affiliation(s)
- B S Bregman
- Department of Cell Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
32
|
Bregman BS, McAtee M, Dai HN, Kuhn PL. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997; 148:475-94. [PMID: 9417827 DOI: 10.1006/exnr.1997.6705] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The capacity of CNS neurons for axonal regrowth after injury decreases as the age of the animal at time of injury increases. After spinal cord lesions at birth, there is extensive regenerative growth into and beyond a transplant of fetal spinal cord tissue placed at the injury site. After injury in the adult, however, although host corticospinal and brainstem-spinal axons project into the transplant, their distribution is restricted to within 200 micron of the host/transplant border. The aim of this study was to determine if the administration of neurotrophic factors could increase the capacity of mature CNS neurons for regrowth after injury. Spinal cord hemisection lesions were made at cervical or thoracic levels in adult rats. Transplants of E14 fetal spinal cord tissue were placed into the lesion site. The following neurotrophic factors were administered at the site of injury and transplantation: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), ciliary-derived neurotrophic factor (CNTF), or vehicle alone. After 1-2 months survival, neuroanatomical tracing and immunocytochemical methods were used to examine the growth of host axons within the transplants. The neurotrophin administration led to increases in the extent of serotonergic, noradrenergic, and corticospinal axonal ingrowth within the transplants. The influence of the administration of the neurotrophins on the growth of injured CNS axons was not a generalized effect of growth factors per se, since the administration of CNTF had no effect on the growth of any of the descending CNS axons tested. These results indicate that in addition to influencing the survival of developing CNS and PNS neurons, neurotrophic factors are able to exert a neurotropic influence on injured mature CNS neurons by increasing their axonal growth within a transplant.
Collapse
Affiliation(s)
- B S Bregman
- Department of Cell Biology, Division of Neurobiology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
33
|
Bernstein-Goral H, Diener PS, Bregman BS. Regenerating and sprouting axons differ in their requirements for growth after injury. Exp Neurol 1997; 148:51-72. [PMID: 9398450 DOI: 10.1006/exnr.1997.6632] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
After spinal cord injury at birth, axotomized brainstem-spinal and corticospinal neurons are capable of permanent regenerative axonal growth into and through a fetal spinal cord transplant placed into the site of either a spinal cord hemisection or transection. In contrast, if fetal tissue which is not a normal target of the axotomized neurons (embryonic hippocampus or cortex) is placed into a neonatal spinal cord hemisection, brainstem-spinal serotonergic axons transiently innervate the transplant, but subsequently withdraw. The first set of experiments was designed to test the hypothesis that after spinal cord transection, serotonergic axons would cross the nontarget transplant, reach normal spinal cord targets caudal to the transection, and gain access to requisite target-derived cues, permitting permanent maintenance. Surprisingly, after a complete spinal cord transection, brainstem-spinal axons failed to grow into an inappropriate target even transiently. These observations suggest that the transient axonal ingrowth into nontarget transplants may represent lesion-induced axonal sprouting by contralateral uninjured axons. We have used double-labeling with fluorescent dyes, to test directly whether axonal sprouting of neurons which maintain collaterals to uninjured spinal cord targets (1) provide the transient ingrowth of brainstem-spinal axons into a nontarget transplant and (2) contribute to permanent ingrowth into target-specific transplants. Uninjured red nucleus, raphe nucleus, and locus coeruleus neurons extend axons into the nontarget transplant while maintaining collaterals to the host spinal cord caudal to the transplant. The lesion-induced sprouting by uninjured axons was also observed with a target-specific transplant. Taken together, these studies suggest that sprouting and regenerating axons may differ in their requirements for growth after injury.
Collapse
Affiliation(s)
- H Bernstein-Goral
- Georgetown University School of Medicine, Department of Cell Biology, Washington, DC 20007, USA
| | | | | |
Collapse
|
34
|
Bernstein-Goral H, Bregman BS. Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets. Exp Neurol 1997; 148:13-25. [PMID: 9398446 DOI: 10.1006/exnr.1997.6640] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurons that maintain extensive axon collaterals proximal to the site of axotomy may be better able to survive injury. Early lesions of the rubrospinal tract lead to retrograde cell death of the majority of axotomized immature neurons. Transplants of fetal spinal cord tissue rescue axotomized rubrospinal neurons and promote their axonal regeneration. Rubrospinal neurons develop many of their axon collaterals postnatally. The present study tests the hypothesis that the axotomized rubrospinal neurons that are rescued by transplants and regenerate their axons are those neurons that have established axon collaterals to targets rostral to the lesion. Neonatal rats received a transplant of fetal spinal cord tissue placed into a midthoracic spinal cord hemisection. One month after transplantation, the retrogradely transported fluorescent tracers fast blue (FB) and diamidino yellow (DY) were used to identify rubrospinal neurons with collaterals to particular targets. FB was injected either into the interpositus nucleus of the cerebellum or into the gray matter of the cervical enlargement to identify collaterals to these targets, and DY was injected into the spinal cord approximately 5 mm caudal to the transplant and lesion site to label retrogradely the neurons that regenerated their axons. Double labeling was observed in the axotomized neurons of the red nucleus after tracer injections into the cervical spinal cord but not after injections into the cerebellum. This labeling pattern indicates that axotomized rubrospinal neurons that are rescued and regenerate axons caudal to the transplant maintain axon collaterals at cervical spinal cord levels. Cerebellar collaterals do not appear to play a role in the survival and regrowth of axotomized rubrospinal neurons.
Collapse
Affiliation(s)
- H Bernstein-Goral
- Department of Cell Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | |
Collapse
|
35
|
Abstract
The response to injury of ascending collaterals of dorsal root axons within the dorsal column (DC) was studied after neonatal spinal overhemisection (OH) made at different levels of the spinal cord. The transganglionic tracer, cholera toxin conjugated to horseradish peroxidase, and the anterograde tracer, biotinylated dextran amine, were used to label dorsal root ganglion cells with peripheral axons contributing to the sciatic nerve. There was no indication of a regenerative attempt by DC axons at acute survival times (3 days and later) after cervical injury, replicating previous work done at chronic survival periods (Lahr and Stelzner [1990] J. Comp. Neurol. 293:377-398). There was also no evidence of DC regeneration after lumbar OH injury even though immunohistochemical studies using the oligodendrocyte markers Rip and myelin basic protein showed few oligodendrocytes in the gracile fasciculus at lumbar levels at birth. Therefore, the lack of myelin in the dorsal funiculus at lumbar levels does not enhance the growth of neonatally axotomized DC axons. In addition, DC axons did not regenerate when presented with fetal spinal tissue implanted into thoracic OH lesions, even though positive control experiments showed that segmental dorsal root axons containing calcition gene-related peptide and corticospinal axons grew into these implants, replicating previous work of others. When a thoracic OH lesion, with or without a fetal spinal implant, was combined with sciatic nerve injury to attempt to stimulate an intracellular regenerative response of DRG neurons, again, no evidence of DC axonal regeneration was detected. Quantitative studies of the L4 and L5 dorsal root ganglia (DRG) showed that OH injury did not result in DRG neuronal loss. However, sciatic nerve injury did result in significant post-axotomy retrograde cell loss of DRG neurons, even in groups receiving thoracic embryonic spinal implants, and is one explanation for the minimal effect of sciatic nerve injury on DC regeneration. Although fetal tissue did not appear to rescue a significant number of DRG neurons, the quantitative analysis showed an enlargement of the largest class of DRG neuron, the class that contributes to the DC projection, in all groups receiving fetal tissue implants. This apparent trophic effect did not affect DC regeneration or neuronal survival after peripheral axotomy. Further studies are needed to determine why DC axons do not regenerate in a neonatal spinal environment or within fetal tissue implants, especially because previous work by others in both the developing and adult spinal cord shows that dorsal root axons will grow within the same type of fetal spinal implant.
Collapse
Affiliation(s)
- L J Dent
- Department of Anatomy and Cell Biology, State University of New York Health Science Center, Syracuse 13210, USA
| | | | | |
Collapse
|
36
|
Bates CA, Meyer RL. Heterotrimeric G protein activation rapidly inhibits outgrowth of optic axons from adult and embryonic mouse, and goldfish retinal explants. Brain Res 1996; 714:65-75. [PMID: 8861610 DOI: 10.1016/0006-8993(95)01468-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Axons in the adult mammalian CNS normally do not regenerate following axotomy even though they retain the capacity for growth under certain experimental conditions. Although this implies that the regeneration of adult axons is under regulative control, very little is known about the signaling pathways "responsible" for this regulation. This study examines the possibility that a G protein signaling system exists in adult mouse optic fibers and that it functions to regulate axonal outgrowth. To induce the growth of optic fibers, retinas from adult mouse were placed in organotypic culture under serum free conditions and allowed to regenerate onto a laminin substrate. Heterotrimeric G proteins were stimulated by adding mastoparan (MST) to the medium while monitoring growing fibers with time lapse microscopy. Mastoparan treatment produced rapid growth cone collapse and axonal retraction which persisted while MST was present. Prior addition of pertussis toxin (PTX), which irreversibly inactivates the G proteins, G(o) and G (i),completely blocked the effect of MST, confirming that MST was acting through the PTX sensitive G proteins. Selective activation of G proteins in the growth cone by local application of MST with a micropipet was equally effective. For comparison, equivalent experiments were performed on embryonic day 15 retinal explants and on retinal explants from adult goldfish, which normally regenerate in vivo. MST similarly inhibited these axons and this effect was blocked by PTX. However, embryonic fibers were less reliably affected compared to goldfish or adult mouse, suggesting a developmentally regulated sensitivity. The presence of G-proteins in the mouse axons was further tested immunohistochemically using antibodies against G(o)/G(i). Positive staining was detected in the growth cones and shaft of adult and embryonic mouse optic fibers. These findings demonstrate that G protein activation inhibits axonal outgrowth and suggest that there may be a G protein signaling pathway that normally regulates this outgrowth. However, since this pathway appears to exist in both axons that can regenerate and those that normally do not, the presence of PTX-sensitive G proteins alone cannot account for regenerative failure. Regenerative failure may instead be explained as the selective or increased activation of this pathway in the adult mammalian CNS.
Collapse
Affiliation(s)
- C A Bates
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92717, USA
| | | |
Collapse
|
37
|
Meuli M, Meuli-Simmen C, Yingling CD, Hutchins GM, Timmel GB, Harrison MR, Adzick NS. In utero repair of experimental myelomeningocele saves neurological function at birth. J Pediatr Surg 1996; 31:397-402. [PMID: 8708911 DOI: 10.1016/s0022-3468(96)90746-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In a previous series of fetal sheep experiments, the authors demonstrated that midgestational exposure of the normal spinal cord to the amniotic space leads to a myelomeningocele (MMC) at birth that closely resembles human MMC phenotypes in terms of morphology and functional deficit. The present study tested whether delayed in utero repair of such evolving experimental MMC lesions spares neurological function. In 12 sheep fetuses, a spina bifida-type lesion with exposure of the lumbar spinal cord was created at 75 days' gestation (full term, 150 days). Four weeks later, the developing MMC lesions were repaired in utero for seven fetuses (five fetuses died before this time). Of those that had repair, three were delivered near term by cesarean section, and four died in utero or were aborted. All survivors had healed skin wounds and near-normal neurological function. Despite mild paraparesis, they were able to stand, walk, and perform demanding motor tests. Sensory function of the hindlimbs was present clinically and confirmed electrophysiologically. No signs of incontinence were detected. Histologically, the exposed and then covered spinal cord showed significant deformation, but the anatomic hallmarks as well as the cytoarchitecture of the spinal cord essentially were preserved. These findings show that timely in utero repair of developing experimental MMC stops the otherwise ongoing process of spinal cord destruction and "rescues" neurological function by the time of birth. Because there is evidence that a similar secondary damage to the exposed neural tissue also occurs in human MMC, we propose that in utero repair of selected human fetuses might reduce the neurological disaster commonly encountered after birth.
Collapse
Affiliation(s)
- M Meuli
- Department of Anesthesia, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Saunders NR, Deal A, Knott GW, Varga ZM, Nicholls JG. Repair and recovery following spinal cord injury in a neonatal marsupial (Monodelphis domestica). Clin Exp Pharmacol Physiol 1995; 22:518-26. [PMID: 7586707 DOI: 10.1111/j.1440-1681.1995.tb02060.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Repair and recovery following spinal cord injury (complete spinal cord crush) has been studied in vitro in neonatal opossum (Monodelphis domestica), fetal rat and in vivo in neonatal opossum. 2. Crush injury of the cultured spinal cord of isolated entire central nervous system (CNS) of neonatal opossum (P4-10) or fetal rats (E15-E16) was followed by profuse growth of fibres and recovery of conduction of impulses through the crush. Previous studies of injured immature mammalian spinal cord have described fibre growth occurring only around the lesion, unless implanted with fetal CNS. 3. The period during which successful growth occurred in response to a crush is developmentally regulated. No such growth was obtained after P12 in spinal cords crushed in vitro at the level of C7-8. 4. In vivo, in the neonatal (P4-8) marsupial opossum, growth of fibres through, and restoration of, impulse conduction across the crush was apparent 1-2 weeks after injury. With longer periods of time after crushing a considerable degree of normal locomotor function developed. 5. By the time the operated animals reached adulthood, the morphological structure of the spinal cord, both in the region of the crush and on either side of the site of the lesion, appeared grossly normal. 6. The results are discussed in relation to the eventual longterm possibility of devising effective treatments for patients with spinal cord injuries.
Collapse
Affiliation(s)
- N R Saunders
- Department of Physiology, University of Tasmania, Hobart, Australia
| | | | | | | | | |
Collapse
|
39
|
Meuli M, Meuli-Simmen C, Hutchins GM, Yingling CD, Hoffman KM, Harrison MR, Adzick NS. In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med 1995; 1:342-7. [PMID: 7585064 DOI: 10.1038/nm0495-342] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We hypothesize that the neurologic deficit associated with open spina bifida is not directly caused by the primary defect but rather is due to chronic mechanical and chemical trauma since the unprotected neural tissue is exposed to the intrauterine environment. We report here that exposure of the normal spinal cord to the amniotic cavity in midgestational sheep fetuses leads to a human-like open spina bifida with paraplegia at birth, indicating that the exposed neural tissue is progressively destroyed during pregnancy. When open spina bifida was repaired in utero at an intermediate stage, the animals had near-normal neurologic function. The spinal cord was deformed but largely preserved. These findings suggest that secondary neural tissue destruction during pregnancy is primarily responsible for the functional loss and that timely in utero repair of open spina bifida might rescue neurologic function.
Collapse
Affiliation(s)
- M Meuli
- Fetal Treatment Center, University of California, San Francisco 94143-0570, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
The spinal cord as an alternative model for nerve tissue graft. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe spinal cord provides an alternative model for nerve tissue grafting experiments. Anatomo-functional correlations are easier to make here than in any other region of the CNS because of a direct implication of spinal cord neurons in sensorimotor activities. Lesions can be easily performed to isolate spinal cord neurons from descending inputs. The anatomy of descending monoaminergic systems is well defined and these systems offer a favourable paradigm for lesion-graft experiments.
Collapse
|
41
|
Multiple obstacles to gene therapy in the brain. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003747x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractNeuwelt et al. have proposed gene-transfer experiments utilizing an animal model that offers many important advantages for investigating the feasibility of gene therapy in the human brain. A variety of tissues concerning the viral vector and mode of delivery of the corrective genes need to be resolved, however, before such therapy is scientifically supportable.
Collapse
|
42
|
Principles of brain tissue engineering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIt is often presumed that effects of neural tissue transplants are due to release of neurotransmitter. In many cases, however, effects attributed to transplants may be related to phenomena such as trophic effects mediated by glial cells or even tissue reactions to injury. Any conclusion regarding causation of graft effects must be based on the control groups or other comparisons used. In human clinical studies, for example, comparing the same subject before and after transplantation allows for many interpretations of the causes of clinical changes.
Collapse
|
43
|
Lessons on transplant survival from a successful model system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractStudies on the snailMelampusreveal that connectivity is crucial to the survival of transplanted ganglia. Transplanted CNS ganglia can innervate targets or induce supernumerary structures. Neuron survival is optimized by the neural incorporation that occurs when a transplanted ganglion is substituted for an excised ganglion. Better provision for the trophic requirements of neurons will improve the success of mammalian fetal transplants.
Collapse
|
44
|
Repairing the brain: Trophic factor or transplant? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThree experiments on neural grafting with adult rat hosts are described. Working memory impairments were produced by lesioning the hippocampus or severing its connections with the septum by ablating the fimbria-fornix. The results suggest that the survival and growth of a neural graft, whether an autograft or a xenograft, is not a necessary condition for functional recovery on a task tapping working memory.
Collapse
|
45
|
Will brain tissue grafts become an important therapy to restore visual function in cerebrally blind patients? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGrafting embryonic brain tissue into the brain of patients with visual field loss due to cerebral lesions may become a method to restore visual function. This method is not without risk, however, and will only be considered in cases of complete blindness after bilateral occipital lesions, when other, risk-free neuropsychological methods fail.
Collapse
|
46
|
Difficulties inherent in the restoration of dynamically reactive brain systems. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractThe responses displayed by an injured or diseased nervous system are complex. Some of the responses may effect a functional reorganization of the affected neural circuitry. Strategies aimed at the restoration of function, whether or not these involve transplantation, need to recognize the innate reactive capacity of the nervous system to damage. More successful strategies will probably incorporate, rather than ignore, the adaptive responses of the compromised neural systems.
Collapse
|
47
|
Elegant studies of transplant-derived repair of cognitive performance. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCholinergic-rich grafts have been shown to be effective in restoring maze-learning deficits in rats with lesions of the forebrain cholinergic projection system. However, the relevance of those studies to developing novel therapies for Alzheimer's disease is questioned.
Collapse
|
48
|
Neural transplants are grey matters. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe lesion and transplantation data cited by Sinden et al., when considered in tandem, seem to harbor an internal inconsistency, raising questions of false localization of function. The extrapolation of such data to cognitive impairment and potential treatment strategies in Alzheimer's disease is problematic. Patients with focal basal forebrain lesions (e.g., anterior communicating artery aneurysm rupture) might be a more appropriate target population.
Collapse
|
49
|
Immunobiology of neural transplants and functional incorporation of grafted dopamine neurons. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIn contrast to the views put forth by Stein & Glasier, we support the use of inbred strains of rodents in studies of the immunobiology of neural transplants. Inbred strains demonstrate homology of the major histocompatibility complex (MHC). Virtually all experimental work in transplantation immunology is performed using inbred strains, yet very few published studies of immune rejection in intracerebral grafts have used inbred animals.
Collapse
|
50
|
Local and global gene therapy in the central nervous system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractFor focal neurodegenerative diseases or brain tumors, localized delivery of protein or genetic vectors may be sufficient to alleviate symptoms, halt disease progression, or even cure the disease. One may circumvent the limitation imposed by the blood-brain barrier by transplantation of genetically altered cell grafts or focal inoculation of virus or protein. However, permanent gene replacement therapy for diseases affecting the entire brain will require global delivery of genetic vectors. The neurotoxicity of currently available viral vectors and the transient nature of transgene expression invivomust be overcome before their use in human gene therapy becomes clinically applicable.
Collapse
|