1
|
Branched chain amino acids catabolism as a source of new drug targets in pathogenic protists. Exp Parasitol 2023; 249:108499. [PMID: 36898495 DOI: 10.1016/j.exppara.2023.108499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Collapse
|
2
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
3
|
Manchola NC, Silber AM, Nowicki C. The Non-Canonical Substrates of Trypanosoma cruzi Tyrosine and Aspartate Aminotransferases: Branched-Chain Amino Acids. J Eukaryot Microbiol 2017; 65:70-76. [PMID: 28618210 DOI: 10.1111/jeu.12435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/28/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, lacks genes that encode canonical branched-chain aminotransferases. However, early studies showed that when epimastigotes were grown in the presence of 14 C1 -DL-leucine, the label was incorporated into various intermediates. More recently, our studies provided evidence that T. cruzi epimastigotes display a single ATP-dependent and saturable transport system that enables epimastigotes to uptake branched-chain amino acids (BCAAs) from the culture media. To extend our knowledge of the first step of BCAA catabolism, the ability of this parasite's noncanonical broad specificity aminotransferases, such as tyrosine aminotransferase (TAT) and aspartate aminotransferase (ASAT), to transaminate these amino acids was investigated. Indeed, our results show that TAT and ASAT utilize BCAAs as substrates; however, both enzymes differ in their catalytic competence in utilizing these amino donors. For instance, ASAT transaminates isoleucine nearly 10-fold more efficiently than does TAT. This unique characteristic of TAT and ASAT allows to explain how BCAAs can be oxidized in the absence of a BCAA transaminase in T. cruzi.
Collapse
Affiliation(s)
- Nubia Carolina Manchola
- Laboratory of Biochemistry of Tryps - LaBTryps, Instituto de Ciencias Biomédicas, Universidade de Sao Paulo USP, Avenida Professor Lineu Prestes, 1374, Cidade Universitaria, São Paulo, Brasil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Instituto de Ciencias Biomédicas, Universidade de Sao Paulo USP, Avenida Professor Lineu Prestes, 1374, Cidade Universitaria, São Paulo, Brasil
| | - Cristina Nowicki
- IQUIFIB (CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires), Junin 956, Buenos Aires, 1113, Argentina
| |
Collapse
|
4
|
Barisón MJ, Rapado LN, Merino EF, Furusho Pral EM, Mantilla BS, Marchese L, Nowicki C, Silber AM, Cassera MB. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in Trypanosoma cruzi epimastigotes. J Biol Chem 2017; 292:8964-8977. [PMID: 28356355 DOI: 10.1074/jbc.m117.778522] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/20/2017] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, is a protozoan parasite with a complex life cycle involving a triatomine insect and mammals. Throughout its life cycle, the T. cruzi parasite faces several alternating events of cell division and cell differentiation in which exponential and stationary growth phases play key biological roles. It is well accepted that arrest of the cell division in the epimastigote stage, both in the midgut of the triatomine insect and in vitro, is required for metacyclogenesis, and it has been previously shown that the parasites change the expression profile of several proteins when entering this quiescent stage. However, little is known about the metabolic changes that epimastigotes undergo before they develop into the metacyclic trypomastigote stage. We applied targeted metabolomics to measure the metabolic intermediates in the most relevant pathways for energy metabolism and oxidative imbalance in exponentially growing and stationary growth-arrested epimastigote parasites. We show for the first time that T. cruzi epimastigotes transitioning from the exponential to the stationary phase exhibit a finely tuned adaptive metabolic mechanism that enables switching from glucose to amino acid consumption, which is more abundant in the stationary phase. This metabolic plasticity appears to be crucial for survival of the T. cruzi parasite in the myriad different environmental conditions to which it is exposed during its life cycle.
Collapse
Affiliation(s)
- María Julia Barisón
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Ludmila Nakamura Rapado
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Emilio F Merino
- the Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, and
| | - Elizabeth Mieko Furusho Pral
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Brian Suarez Mantilla
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Letícia Marchese
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Cristina Nowicki
- the Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Ariel Mariano Silber
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil,
| | - Maria Belen Cassera
- the Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, and
| |
Collapse
|
5
|
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:66-76. [PMID: 27401496 DOI: 10.1016/j.jinsphys.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triatomines are hematophagous insects that feed on the blood of vertebrates from different taxa, but can occasionally also take fluids from invertebrate hosts, including other insects. During the blood ingestion process, these insects can acquire diverse parasites that can later be transmitted to susceptible vertebrates if they complete their development inside bugs. Trypanosoma cruzi, the etiological agent of Chagas disease, and Trypanosoma rangeli are protozoan parasites transmitted by triatomines, the latter only transmitted by Rhodnius spp. The present work makes an extensive revision of studies evaluating triatomine-trypanosome interaction, with special focus on Rhodnius prolixus interacting with the two parasites. The sequences of events encompassing the development of these trypanosomes inside bugs and the consequent responses of insects to this infection, as well as many pathological effects produced by the parasites are discussed.
Collapse
Affiliation(s)
- Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
The active transport of histidine and its role in ATP production in Trypanosoma cruzi. J Bioenerg Biomembr 2016; 48:437-49. [PMID: 27222029 DOI: 10.1007/s10863-016-9665-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas's disease, metabolizes glucose, and after its exhaustion, degrades amino acids as energy source. Here, we investigate histidine uptake and its participation in energy metabolism. No putative genes for the histidine biosynthetic pathway have been identified in genome databases of T. cruzi, suggesting that its uptake from extracellular medium is a requirement for the viability of the parasite. From this assumption, we characterized the uptake of histidine in T. cruzi, showing that this amino acid is incorporated through a single and saturable active system. We also show that histidine can be completely oxidised to CO2. This finding, together with the fact that genes encoding the putative enzymes for the histidine - glutamate degradation pathway were annotated, led us to infer its participation in the energy metabolism of the parasite. Here, we show that His is capable of restoring cell viability after long-term starvation. We confirm that as an energy source, His provides electrons to the electron transport chain, maintaining mitochondrial inner membrane potential and O2 consumption in a very efficient manner. Additionally, ATP biosynthesis from oxidative phosphorylation was found when His was the only oxidisable metabolite present, showing that this amino acid is involved in bioenergetics and parasite persistence within its invertebrate host.
Collapse
|
7
|
Manchola NC, Rapado LN, Barisón MJ, Silber AM. Biochemical Characterization of Branched Chain Amino Acids Uptake in Trypanosoma cruzi. J Eukaryot Microbiol 2015; 63:299-308. [PMID: 26496801 DOI: 10.1111/jeu.12278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/30/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023]
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease. During its life cycle, it alternates among vertebrate and invertebrate hosts. Metabolic flexibility is a main biochemical characteristic of this parasite, which is able to obtain energy by oxidizing a variety of nutrients that can be transported from the extracellular medium. Moreover, several of these metabolites, more specifically amino acids, have a variety of functions beyond being sources of energy. Branched chain amino acids (BCAA), beyond their role in ATP production, are involved in sterol biosynthesis; for example, leucine is involved as a negative regulator of the parasite differentiation process occurring in the insect midgut. BCAA are essential metabolites in most nonphotosynthetic eukaryotes, including trypanosomes. In view of this, the metabolism of BCAA in T. cruzi depends mainly on their transport into the cell. In this work, we kinetically characterized the BCAA transport in T. cruzi epimastigotes. Our data point to BCAA as being transported by a single saturable transport system able to recognize leucine, isoleucine and valine. In view of this, we used leucine to further characterize this system. The transport increased linearly with temperature from 10 to 45 °C, allowing the calculation of an activation energy of 51.30 kJ/mol. Leucine uptake was an active process depending on ATP production and a H(+) gradient, but not on a Na(+) or K(+) gradient at the cytoplasmic membrane level.
Collapse
Affiliation(s)
- Nubia C Manchola
- LaBTryps, Instituto de Ciencias Biomedicas II, Universidade de São Paulo, Av. Lineu Prestes 1374, Cidade Universitária Butanta, São Paulo, CEP 05508-900, Brazil
| | - Ludmila N Rapado
- LaBTryps, Instituto de Ciencias Biomedicas II, Universidade de São Paulo, Av. Lineu Prestes 1374, Cidade Universitária Butanta, São Paulo, CEP 05508-900, Brazil
| | - María J Barisón
- LaBTryps, Instituto de Ciencias Biomedicas II, Universidade de São Paulo, Av. Lineu Prestes 1374, Cidade Universitária Butanta, São Paulo, CEP 05508-900, Brazil
| | - Ariel M Silber
- LaBTryps, Instituto de Ciencias Biomedicas II, Universidade de São Paulo, Av. Lineu Prestes 1374, Cidade Universitária Butanta, São Paulo, CEP 05508-900, Brazil
| |
Collapse
|
8
|
Silber AM, Rojas RLG, Urias U, Colli W, Alves MJM. Biochemical characterization of the glutamate transport in Trypanosoma cruzi. Int J Parasitol 2006; 36:157-63. [PMID: 16373069 DOI: 10.1016/j.ijpara.2005.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/24/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
The role of amino acids in trypanosomatids goes beyond protein synthesis, involving processes such as differentiation, osmoregulation and energy metabolism. The availability of the amino acids involved in those functions depends, among other things, on their transport into the cell. Here we characterize a glutamate transporter from the human protozoan parasite Trypanosoma cruzi. Kinetic data show a single saturable system with a Km of 0.30 mM and a maximum velocity of 98.34 pmoles min(-1) per 2 x 10(7) cells for epimastigotes and 20 pmoles min(-1) per 2 x 10(7) cells for trypomastigotes. Transport was not affected by parasite nutrient starvation for up to 3h. Aspartate, alanine, glutamine, asparagine, methionine, oxaloacetate and alpha-ketoglutarate competed with the substrate in 10-fold excess concentrations. Glutamate uptake was strongly dependent on pH, but not on Na+ or K+ concentrations in the extracellular medium. These data were consistent with the sensitivity of the system to the H+ ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, suggesting that transport is driven by H+ concentration gradient across the cytoplasmic membrane. The glutamate transport increased linearly with temperature in a range from 15 to 40 degrees C, allowing the calculation of an activation energy of 52.38 kJ/mol.
Collapse
Affiliation(s)
- Ariel M Silber
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14 No 101, Cidade Universitária, 05508-900 São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- J J Cazzulo
- Instituto de Investigaciones Bioquimicas Luis F. Leloir, Fundación Campomar-CONICET, Falcultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
10
|
Urbina JA, Osorno CE, Rojas A. Inhibition of phosphoenolpyruvate carboxykinase from Trypanosoma (Schizotrypanum) cruzi epimastigotes by 3-mercaptopicolinic acid: in vitro and in vivo studies. Arch Biochem Biophys 1990; 282:91-9. [PMID: 2221921 DOI: 10.1016/0003-9861(90)90091-c] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
3-mercaptopicolinic acid (3MP) was shown to be a powerful and specific inhibitor of the phosphoenolpyruvate carboxykinase (PEP-carboxykinase; ATP:oxyloacetate carboxylyase (transphosphorylating), EC 4.1.1.49) isolated and purified to homogeneity from Trypanosoma (Schizotrypanum) cruzi epimastigotes (Urbina, J. A., 1987, Arch. Biochem. Biophys. 258, 186-195). In the presence of saturating concentrations of the cosubstrates the inhibition was purely noncompetitive toward all substrates in the carboxylation reaction. The inhibition was specific to this enzyme, being nonexistent or moderate toward eight other enzymes tested that are involved in glycolysis, hexose monophosphate shunt, Krebs' cycle, and amino acid metabolism. These facts, together with the kinetic constants of the enzyme and the intracellular concentrations of its substrates, predicted a very potent inhibition of the reaction catalyzed by this enzyme in vivo. In accordance of this prediction 200 microM 3MP inhibited 2.2-fold the production of [2,2'-13C]succinate from D-[1-13C]glucose by intact epimastigotes under anaerobic conditions, as shown by 13C NMR and 1H NMR spectroscopy; correspondingly the overall glucose consumption rate decreased by the same factor, while the relative rate of production (per mole of glucose consumed) of the other main product of glucose catabolism, [3-13C]alanine, was increased 3-fold by the drug. Under aerobic conditions the glucose catabolism was faster (negative Pasteur effect) and the drug at the same concentration again blocked succinate production but had negligible effects on glucose consumption. On the other hand, 200 microM 3MP blocked completely the epimastigotes' catabolism of L-[U-14C]proline through the Kreb's cycle via PEP-carboxykinase, as indicated by the disappearance of 14C label present in alanine, pyruvate, citrate, and isocitrate after 1 h of incubation in the presence of the labeled amino acid, while the amount of radioactivity present in alpha-ketoglutarate and malate doubled. The results support the proposition that PEP-carboxykinase has a central role in the energy metabolism of this organism as it is essential for the catabolism of amino acids.
Collapse
Affiliation(s)
- J A Urbina
- Centro de Biologia Celular, Escuela de Biologia, Universidad Central de Venezuela, Caracas
| | | | | |
Collapse
|
11
|
Cazzulo JJ. Protein and amino acid catabolism in Trypanosoma cruzi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1984; 79:309-20. [PMID: 6150806 DOI: 10.1016/0305-0491(84)90381-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Hampton JR. Arginine transport in the culture form of Trypanosoma cruzi. THE JOURNAL OF PROTOZOOLOGY 1971; 18:701-3. [PMID: 4943764 DOI: 10.1111/j.1550-7408.1971.tb03400.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Hampton JR. Serine metabolism in the culture form of Trypanosoma cruzi: synthesis of other amino acids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1971; 39:999-1003. [PMID: 4943661 DOI: 10.1016/0305-0491(71)90123-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Hampton JR. Serine metabolism in the culture form of Trypanosoma cruzi: distribution of 14C from serine into metabolic fractions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1971; 38:535-40. [PMID: 4396825 DOI: 10.1016/0300-9629(71)90120-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|