1
|
Volpedo G, Oljuskin T, Cox B, Mercado Y, Askwith C, Azodi N, Bernier M, Nakhasi HL, Gannavaram S, Satoskar AR. Leishmania mexicana promotes pain-reducing metabolomic reprogramming in cutaneous lesions. iScience 2023; 26:108502. [PMID: 38125023 PMCID: PMC10730346 DOI: 10.1016/j.isci.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Timur Oljuskin
- Animal Parasitic Disease Lab, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Blake Cox
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yulian Mercado
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Matthew Bernier
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Magnesium-Dependent Ecto-ATP Diphosphohydrolase Activity in Leishmania donovani. Curr Microbiol 2016; 73:811-819. [PMID: 27589852 DOI: 10.1007/s00284-016-1130-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
In this work, we have described the expression of ecto-ATPDase on the external surface of Leishmania donovani. This enzyme has the ability to hydrolyze extracellular ATP. There is a low level of ATP hydrolysis in the absence of divalent cation 2.5 ± 0.51 nM Pi 107 cells/h which shows the divalent cation-dependent activity of this enzyme in the intact parasite. However, MgCl2 stimulated the ATP hydrolysis to a greater extent compared with CaCl2 and ZnCl2. This activity was also observed when replaced by MnCl2. The Mg-dependent ecto-ATPase activity was 46.58 ± 6.248 nM Pi 107 cells/h. The apparent K m for ATP was 5.76 mM. Since Leishmania also possesses acid phosphatase activity and to discard the possibility that the observed ATP hydrolysis was due to acid phosphatase, the effect of pH was examined. In the pH range 6.0-9.0, in which the cells were viable, the phosphatase activity decreased while ATPase activity increased. To show that the observed ATP hydrolysis was not due to phosphatase or nucleotidase activity, certain inhibitors for these enzymes were tested. Vandate and NaF inhibited the phosphatase activity; Ammonium molybdate inhibited 5'-nucleotidase activity, but these inhibitors did not inhibit the observed ATP hydrolysis. However, when ADP was used as a substrate, there was no inhibition of ATP hydrolysis showing the possibility of ATP diphosphohydrolase activity. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, 4,4'-diisothiocyanostilbene 2,-2'-disulfonic acid, as well as suramin, an antagonist of P2-purinoceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-dependent ATPase activity in a dose-dependent manner. The presence of L. donovani E-NTPDase activity was demonstrated using antibodies against NTPDase by Western blotting and flow cytometry. The presence of Mg2+-dependent ATP diphosphohydrolase activity on the surface of L. donovani modulates the nucleotide concentration and protects the parasite from the lytic effects of the nucleotides mainly ATP. Ecto-ATPDase from L. donovani may be further characterized as a good antigen and as a target for immunodiagnosis and drug development, respectively.
Collapse
|
3
|
Smith S, Boitz J, Chidambaram ES, Chatterjee A, Ait-Tihyaty M, Ullman B, Jardim A. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels. Mol Microbiol 2016; 100:824-40. [PMID: 26853689 DOI: 10.1111/mmi.13352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2016] [Indexed: 01/24/2023]
Abstract
The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.
Collapse
Affiliation(s)
- Sabrina Smith
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ehzilan Subramanian Chidambaram
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Abhishek Chatterjee
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Maria Ait-Tihyaty
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
4
|
Antiparasitic chemotherapy: tinkering with the purine salvage pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:116-32. [PMID: 18365663 DOI: 10.1007/978-0-387-77570-8_10] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Distinguishable differences between infectine organisms and their respective hosts with respect to metabolism and macromolecular structure provide scopes for detailed characterization of target proteins and/or macromolecules as the focus for the development of selective inhibitors. In order to develop a rational approach to antiparasitic chemotherapy, finding differences in the biochemical pathways of the parasite with respect to the host it infects is therefore of primary importance. Like most parasitic protozoan, the genus Leishmania is an obligate auxotroph of purines and hence for requirement of purine bases depends on its own purine salvage pathways. Among various purine acquisition routes used by the parasite, the pathway involved in assimilation of adenosine nucleotide is unique and differs significantly in the extracellular form of the parasite (promastigotes) from its corresponding intracellular form (amastigotes). Adenosine kinase (AdK) is the gateway enzyme of this pathway and displays stage-specific activity pattern. Therefore, understanding the catalytic mechanism of the enzyme, its structural complexities and mode of its regulation have emerged as one of the major areas of investigation. This review, in general, discusses possible strategies to validate several purine salvage enzymes as targets for chemotherapeutic manipulation with special reference to adenosine kinase of Leishmania donovani. Systemic endotheliosis, commonly known as Kala-azar in India, is caused by the parasitic protozoon Leishmania donovani. The spread of leishmaniases follows the distribution of these vectors in the temperate, tropical and subtropical regions of the world leading to loss of thousands of human lives.' WHO has declared leishmaniasis among one of the six major diseases namely leishmaniasis, malaria, amoebiasis, filariasis, Chagas disease and schistosomiasis in its Special Programme for Research and Training in Tropical Diseases. Strategies for better prophylaxis and urgent therapies must be therefore devised to control this menace among poor and under privileged population. However, the possible availability of antiparasitic vaccines appears remote in near future. Therefore, chemotherapy remains the mainstay for the treatment of most parasitic diseases. Selectivity of an antiparasitic compound must depend upon its mode of specific inhibition of parasite replication leaving host processes unaffected. In principle, these agents are expected to exert their selective actions against growth of the invading organisms by having one or both of the following properties: (i) Selective activation of compounds in question by enzyme (s) from the invading organisms, which are not present in the uninfected cells. (ii) Selective inhibition of vital enzyme(s), which are essential for replication of the parasites. In order to design specific compounds with the above characteristics, it is essential to have a thorough knowledge of the properties of the enzyme(s) and/or macromolecules which are unique to the parasite. Phylogenetic studies suggested that trypanosomatid parasites are relatively early-branching eukaryotic cells and indeed their cellular organization differs considerably from their mammalian hosts counterpart. Various enzymes, metabolites or proteins identified in parasites and known to be absent from or strikingly different in the mammalian hosts were considered as ideal drug targets. Among the various metabolic pathways that are presently being studied for their prospects to be exploited as the target for chemotherapeutic manipulation, the most important are (i) purine salvage (ii) polyamine and thiol metabolism (iii) folate biosynthesis (iv) DNA replication (v) glycolytic and (vi) fatty acid biosynthetic pathways etc. A number of excellent reviews, describing the prospects and efficacies of these pathways, already exist in the literature. Our laboratory is engaged in studying the pathways responsible for synthesis and assimilation ofpurine nucleotides in the parasitic protozoon Leishmania donovani. Therefore, we shall, for the constraint of space, try to restrict the discussion mostly with the purine salvage pathways of various Leishmania parasites with particular reference to the unique features of one of the enzymes of the purine salvage pathway viz AdK and its prospects as the chemotherapeutic target. However, contributions of other workers will also be discussed whenever essential and analogy will be drawn in order to make the reading coherent. The Leishmania genus goes through a dimorphic life cycle. It exists as a promastigote (extracellular form) in the sand fly vector but is converted to an amastigote (intracellular form) upon entry into mammalian macrophages. During this transformation process, the activities of a large number of proteins and/or enzymes have been reported to be stage-specifically altered and hence they could be prospective targets for development of chemotherapeutic regimen based on the exploitable differences of the parasitic proteins from their respective host counterpart.
Collapse
|
5
|
Datta R, Das I, Sen B, Chakraborty A, Adak S, Mandal C, Datta A. Homology-model-guided site-specific mutagenesis reveals the mechanisms of substrate binding and product-regulation of adenosine kinase from Leishmania donovani. Biochem J 2006; 394:35-42. [PMID: 16271040 PMCID: PMC1386000 DOI: 10.1042/bj20051513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite designating catalytic roles of Asp299 and Arg131 during the transfer of gamma-phosphate from ATP to Ado (adenosine) [R. Datta, Das, Sen, Chakraborty, Adak, Mandal and A. K. Datta (2005) Biochem. J. 387, 591-600], the mechanisms that determine binding of substrate and cause product inhibition of adenosine kinase from Leishmania donovani remained unclear. In the present study, employing homology-model-guided site-specific protein mutagenesis, we show that Asp16 is indispensable, since its replacement with either valine or arginine resulted in a >200-fold increase in K(m) (Ado) with a 1000-fold decrease in k(cat)/K(m), implying its critical importance in Ado binding. Even glutamate replacement was not tolerated, indicating the essentiality of Asp16 in the maintenance of steric complementarity of the binding pocket. Use of 2'or 3'-deoxygenated Ado as substrates indicated that, although both the hydroxy groups play important roles in the formation of the enzyme-Ado complex, the binding energy (DeltaDeltaG(B)) contribution of the former was greater than the latter, suggesting possible formation of a bidentate hydrogen bond between Asp16 and the adenosyl ribose. Interestingly, AMP-inhibition and AMP-binding studies revealed that, unlike the R131A mutant, which showed abrogated AMP-binding and insensitivity towards AMP inhibition despite its unaltered K(m) (Ado), all the Asp16 mutants bound AMP efficiently and displayed AMP-sensitive catalytic activity, suggesting disparate mechanisms of binding of Ado and AMP. Molecular docking revealed that, although both Ado and AMP apparently occupied the same binding pocket, Ado binds in a manner that is subtly different from AMP binding, which relies heavily on hydrogen-bonding with Arg131 and thus creates an appropriate environment for competition with Ado. Hence, besides its role in catalysis, an additional novel function of the Arg131 residue as an effector of product-mediated enzyme regulation is proposed.
Collapse
Affiliation(s)
- Rupak Datta
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Ishita Das
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Banibrata Sen
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anutosh Chakraborty
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subrata Adak
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chhabinath Mandal
- †Division of Drug Design, Development and Molecular Modeling, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Alok K. Datta
- *Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
6
|
Genestra M, Echevarria A, Cysne-Finkelstein L, Vignólio-Alves L, Leon LL. Effect of amidine derivatives on nitric oxide production by Leishmania amazonensis promastigotes and axenic amastigotes. Nitric Oxide 2003; 8:1-6. [PMID: 12586535 DOI: 10.1016/s1089-8603(02)00129-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of pentamidine isethionate (reference drug) and N,N'-diphenyl-4-methoxy-benzamidine (test compound) on NO. production by Leishmania amazonensis promastigotes and axenic amastigotes were investigated by measuring nitrite, a by-product of nitric oxide released into culture supernatants. The NO. production by infective promastigotes was inhibited by OCH(3)-amidine in about 23.53% and by pentamidine in only 3.78%. In axenic amastigotes, the inhibition of NO. production by OCH(3)-amidine was significantly higher (52.94%; p=0.01) than that by pentamidine, which inhibited this radical production nonsignificantly (25.29%; p=0.1). The mechanism of amidine derivatives, as an antimicrobial agent, is unknown. However, other amidines, such as a diamidine (pentamidine), contain chemical structures shared by the guanidino group of the nitric oxide synthase substrate L-arginine, suggesting the possibility of an interaction with this enzyme or electronic factors (substituent constant) that alter physical and chemical properties significant for biological activity.
Collapse
Affiliation(s)
- Marcelo Genestra
- Department of Immunology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil, 4365-CEP 926, Rio de Janeiro 21045-900, Brazil
| | | | | | | | | |
Collapse
|
7
|
Ribeiro JMC, Valenzuela JG. The salivary purine nucleosidase of the mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:13-22. [PMID: 12459196 DOI: 10.1016/s0965-1748(02)00078-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cDNA clone originating from adult female Aedes aegypti mosquitoes was found with substantial similarity to nucleosidases of the EC 3.2.2.1 enzyme class. Although this type of enzyme is unusual in animals, abundant enzyme activity was found in salivary homogenates of this mosquito, but not in salivary homogenates of the mosquitoes Anopheles gambiae and Culex quinquefasciatus, or the sand fly Lutzomyia longipalpis. Aedes salivary homogenate hydrolyses inosine and guanosine to hypoxanthine and xanthine plus the ribose moiety, but does not hydrolyse the pyrimidines uridine and cytidine, thus characterizing the presence of a purine nucleosidase activity. The enzyme is present in oil-induced saliva, indicating that it is secreted. Male Ae. aegypti salivary gland homogenates (SGH) have very low purine nucleosidase activity, suggesting that the enzyme plays a role in mosquito blood feeding. A novel isocratic HPLC method to separate nucleosides and their bases is described.
Collapse
Affiliation(s)
- José M C Ribeiro
- Section of Medical Entomology, Laboratory of Parasitic Diseases, Building 4, Room 126, 4 Center Drive, MSC 0425, NIH, MD 20892-0425, Bethesda, USA.
| | | |
Collapse
|
8
|
Sereno D, Guilvard E, Maquaire S, Cavaleyra M, Holzmuller P, Ouaissi A, Lemesre JL. Experimental studies on the evolution of antimony-resistant phenotype during the in vitro life cycle of Leishmania infantum: implications for the spread of chemoresistance in endemic areas. Acta Trop 2001; 80:195-205. [PMID: 11700176 DOI: 10.1016/s0001-706x(01)00154-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pentavalent antimonial unresponsiveness is an emerging problem in endemic areas and information on factors which could modulate the transmission of drug-resistant phenotypes and parasites during life cycle are warranted. Using axenic amastigotes resistant to potassium antimonyl tartrate (Sb(III)) we investigated the modulation of antimonyl resistance during the in vitro life cycle. We assessed: (i) the stability of the drug-resistant phenotype during the in vitro life cycle; (ii) the transmission of drug-resistant clones when mixed with a wild-type clone at different susceptible/chemoresistant ratios (50/50,90/10,10/90) after one or two in vitro life cycles. We demonstrate that: (i) mutants which were 12,28,35 and 44 fold more resistant to Sb(III)-antimonial than their parental wild-type, were Glucantime Sb(V)-resistant when growing in THP-1 cells; (ii) the drug-resistant phenotype was partially retained during long-term in vitro culture (3 months) in drug free medium; (iii) the antimonyl-resistant phenotype was retained after one or more in vitro life cycles. However, when drug-resistant parasites were mixed with susceptible, mutants could not be detected in the resulting population, after one or two in vitro life cycles, whatever the initial wild-type/chemoresistant ratio. These results could be explained by the lower capacity of drug-resistant amastigotes to undergo the amastigote-promastigote differentiation process, leading probably to their sequential elimination during life cycle. Taken together, these observations demonstrate that different factors could modulate the transmission of Leishmania drug resistance during the parasite's life cycle.
Collapse
Affiliation(s)
- D Sereno
- UR 008 "Pathogénie des Trypanosomatidae" Centre Institut de Recherche pour le Devéloppement (IRD), 911 Ave. Agropolis, BP 5045, 34032 Montpellier cédex 1, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Sereno D, Holzmuller P, Lemesre JL. Efficacy of second line drugs on antimonyl-resistant amastigotes of Leishmania infantum. Acta Trop 2000; 74:25-31. [PMID: 10643904 DOI: 10.1016/s0001-706x(99)00048-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a previous paper we have demonstrated that the induction, by direct drug pressure, of a resistance to Sb(III) antimony at physiological concentration in the amastigote stage of the parasite, led to a high cross-resistance to Sb(V) species in the form of Glucantime. In this paper, further chemoresistant clones were characterized. Axenic amastigotes of Leishmania infantum were adapted to survive in culture medium containing 4, 20, 30 and 120 microg/ml of potassium antimonyl tartrate Sb(II). These mutants were 12, 28, 35 and 44-fold more resistant to Sb(III) than the parental wild-type clone. They were able to resist at concentrations of Glucantime Sb(V) as high as 160 microg/ml when growing in THP-1 cells. We have investigated the efficacy of second line drugs in clinical use (pentamidine and amphotericin B) on the antimony-resistant mutants. Amphotericin B was toxic for both wild-type and chemoresistant mutants at concentrations ranging from 0.05 to 0.15 microM. Pentamidine which is extensively used when the first course of antimonial pentavalent compounds is unsuccessful, was more toxic for all the chemoresistant organisms than for the wild-type clone. In the same way, chemoresistant amastigotes growing within THP-1 cells were more susceptible to pentamidine than the wild-type clone. Our results showed that the resistance of the mutants was restricted to the antimony containing drugs and did not led to a cross-resistance against the other clinically relevant drugs. These results confirmed that these two drugs (pentamidine and amphotericin B) are good candidates to treat pentavalent antimonial unresponsiveness.
Collapse
Affiliation(s)
- D Sereno
- Laboratoire de Biologie Parasitaire, Institut de Recherche pour le Développement, Montpellier, France
| | | | | |
Collapse
|
10
|
Jardim A, Bergeson SE, Shih S, Carter N, Lucas RW, Merlin G, Myler PJ, Stuart K, Ullman B. Xanthine phosphoribosyltransferase from Leishmania donovani. Molecular cloning, biochemical characterization, and genetic analysis. J Biol Chem 1999; 274:34403-10. [PMID: 10567419 DOI: 10.1074/jbc.274.48.34403] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xanthine phosphoribosyltransferase (XPRT) from Leishmania donovani is a unique enzyme that lacks a mammalian counterpart and is, therefore, a potential target for antiparasitic therapy. To investigate the enzyme at the molecular and biochemical level, a cDNA encoding the L. donovani XPRT was isolated by functional complementation of a purine auxotroph of Escherichia coli that also harbors deficiencies in the prokaryotic phosphoribosyltransferase (PRT) activities. The cDNA was then used to isolate the XPRT genomic clone. XPRT encodes a 241-amino acid protein exhibiting approximately 33% amino acid identity with the L. donovani hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and significant homology with other HGPRT family members. Southern blot analysis revealed that XPRT was a single copy gene that co-localized with HGPRT within a 4.3-kilobase pair (kb) EcoRI fragment, implying that the two genes arose as a result of an ancestral duplication event. Sequencing of this EcoRI fragment confirmed that HGPRT and XPRT were organized in a head-to-tail arrangement separated by an approximately 2.2-kb intergenic region. Both the 3.2-kb XPRT mRNA and XPRT enzyme were significantly up-regulated in Deltahgprt and Deltahgprt/Deltaaprt L. donovani mutants. Genetic obliteration of the XPRT locus by targeted gene replacement indicated that XPRT was not an essential gene under most conditions and that the Deltaxprt null strain was competent of salvaging all purines except xanthine. XPRT was overexpressed in E. coli and the recombinant protein purified to homogeneity. Kinetic analysis revealed that the XPRT preferentially phosphoribosylated xanthine but could also recognize hypoxanthine and guanine. K(m) values of 7.1, 448.0, and >100 microM and k(cat) values of 3.5, 2.6, and approximately 0.003 s(-1) were calculated for xanthine, hypoxanthine, and guanine, respectively. The XPRT gene and XPRT protein provide the requisite molecular and biochemical reagents for subsequent studies to validate XPRT as a potential therapeutic target.
Collapse
Affiliation(s)
- A Jardim
- Department of Biochemistry, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sereno D, Cavaleyra M, Zemzoumi K, Maquaire S, Ouaissi A, Lemesre JL. Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 1998; 42:3097-102. [PMID: 9835497 PMCID: PMC106005 DOI: 10.1128/aac.42.12.3097] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism(s) of activity of pentavalent antimony [Sb(V)] is poorly understood. In a recent study, we have shown that potassium antimonyl tartrate, a trivalent antimonial [Sb(III)], was substantially more potent than Sb(V) against both promastigotes and axenically grown amastigotes of three Leishmania species, supporting the idea of an in vivo metabolic conversion of Sb(V) into Sb(III). We report that amastigotes of Leishmania infantum cultured under axenic conditions were poorly susceptible to meglumine [Glucantime; an Sb(V)], unlike those growing inside THP-1 cells (50% inhibitory concentrations [IC50s], about 1.8 mg/ml and 22 microg/ml, respectively). In order to define more precisely the mode of action of Sb(V) agents in vivo, we first induced in vitro Sb(III) resistance by direct drug pressure on axenically grown amastigotes of L. infantum. Then we determined the susceptibilities of both extracellular and intracellular chemoresistant amastigotes to the Sb(V)-containing drugs meglumine and sodium stibogluconate plus m-chlorocresol (Pentostam). The chemoresistant amastigotes LdiR2, LdiR10, and LdiR20 were 14, 26, and 32 times more resistant to Sb(III), respectively, than the wild-type one (LdiWT). In accordance with the hypothesis described above, we found that intracellular chemoresistant amastigotes were resistant to meglumine [Sb(V)] in proportion to the initial level of Sb(III)-induced resistance. By contrast, Sb(III)-resistant cells were very susceptible to sodium stibogluconate. This lack of cross-resistance is probably due to the presence in this reagent of m-chlorocresol, which we found to be more toxic than Sb(III) to L. infantum amastigotes (IC50s, of 0.54 and 1.32 microg/ml, respectively). Collectively, these results were consistent with the hypothesis of an intramacrophagic metabolic conversion of Sb(V) into trivalent compounds, which in turn became readily toxic to the Leishmania amastigote stage.
Collapse
Affiliation(s)
- D Sereno
- Laboratoire de Biologie Parasitaire, Centre ORSTOM, 34 032 Montpellier Cedex 1, France
| | | | | | | | | | | |
Collapse
|
12
|
Sereno D, Lemesre JL. In vitro life cycle of pentamidine-resistant amastigotes: stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrob Agents Chemother 1997; 41:1898-903. [PMID: 9303381 PMCID: PMC164032 DOI: 10.1128/aac.41.9.1898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using a continuous drug pressure protocol, we induced pentamidine resistance in an active and dividing population of amastigote forms of Leishmania mexicana. We selected in vitro two clones with different levels of resistance to pentamidine, with clone LmPENT5 being resistant to 5 microM pentamidine, while clone LmPENT20 was resistant to 20 microM pentamidine. Resistance indexes (50% inhibitory concentration [IC50] after drug presure/IC50 before drug pressure) of 2 (LmPENT5) and 6 (LmPENT20) were determined after drug selection. Both resistant clones expressed significant cross-resistance to diminazene aceturate and primaquine. Pentamidine resistance was not reversed by verapamil, a calcium channel blocker known to reverse multidrug resistance (A. J. Bitonti, et al., Science 242:1301-1303, 1988; A. R. C. Safa et al., J. Biol. Chem. 262:7884-7888, 1987). No difference in the in vitro infectivity for resident mouse macrophages was observed between the wild-type clone (clone LmWT) and pentamidine-resistant clones. During in vitro infectivity experiments, when the life cycle was performed starting from the intramacrophagic amastigote stage, the drug resistance of the resulting LmPENT20 amastigotes was preserved even if the intermediate promastigote stage could not be considered resistant to 20 microM pentamidine. In the same way, when a complete developmental sequence of L. mexicana was achieved axenically by manipulation of appropriate culture conditions, the resulting axenically grown LmPENT20 amastigotes remained pentamidine resistant, whereas LmPENT5 amastigotes lost their ability to resist pentamidine, with IC50s and index of resistance values close to those for the LmWT clone. These results strongly indicate that the level of pentamidine tolerated by resistant amastigotes after the life cycle was dependent on the induced level of resistance. This fact could be significant in the in vivo transmission of drug-resistant parasites by Phlebotominae. Particular attention should be given to the finding that the emergence of parasite resistance is a potential risk of the use of inadequate doses as therapy in humans.
Collapse
Affiliation(s)
- D Sereno
- Laboratoire d'Epidémiologie des Maladies à Vecteur, Unité de Biologie Parasitaire, ORSTOM, Montpellier, France
| | | |
Collapse
|
13
|
Alleman MM, Gottlieb M. Enhanced acquisition of purine nucleosides and nucleobases by purine-starved Crithidia luciliae. Mol Biochem Parasitol 1996; 76:279-87. [PMID: 8920013 DOI: 10.1016/0166-6851(96)02566-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of purine starvation on the ability of the trypanosomatid Crithidia luciliae to accumulate purines were determined. Kinetic studies showed that the uptake of the nucleoside adenosine by purine-starved organisms was approximately 7-fold faster than by nutrient-replete cells. Further, these studies demonstrated that purine-starved organisms accumulated the nucleobases hypoxanthine and adenine at a rate > 100-fold faster than organisms cultivated under replete conditions. Activities of several intracellular purine-salvage enzymes were measured in organisms from both culture conditions. Of those measured, the activities of adenine deaminase and hypoxanthine phosphoribosyltransferase were elevated approximately 4-fold and approximately 11-fold, respectively, in purine-starved organisms. Competitive substrate specificity studies suggested that these elevated enzyme activities were not responsible for the increased rates of uptake by purine-starved cells. The results are consistent with the induction of novel surface membrane purine transporters expressed in response to purine starvation. These studies using C. luciliae may provide insights into the mechanisms of trypanosomatid adaptation to altered environments encountered during the course of the life cycle.
Collapse
Affiliation(s)
- M M Alleman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
14
|
Kerby BR, Detke S. Reduced purine accumulation is encoded on an amplified DNA in Leishmania mexicana amazonensis resistant to toxic nucleosides. Mol Biochem Parasitol 1993; 60:171-85. [PMID: 8232410 DOI: 10.1016/0166-6851(93)90129-l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleoside analogs are potential anti-Leishmania agents. To better understand how these compounds might lose their effectiveness, Leishmania were independently selected for resistance to inosine dialdehyde or tubercidin. Each of the resistant cells exhibited resistance to inosine dialdehyde and tubercidin as well as to formycin B and allopurinol ribonucleoside. Resistant cells had a greatly reduced capability of accumulating exogenous adenosine, guanosine, thymidine and guanine. This decreased ability to accumulate nucleosides and at least one nucleobase appeared to be due to reduced activity of a number of distinct purine transporters, as the differences between purine metabolizing enzymes were not sufficiently different to account for the decreased accumulation capability. The resistance to toxic nucleosides and the decreased ability to accumulate purines were due to the presence in the resistant cells of an extrachromosomal DNA approximately 55 kb in size. The extrachromosomal DNA was not detected in wild-type cells or revertants which have lost resistance to toxic nucleosides. Except for a 1.2-kb difference, the extrachromosomal DNA from both independently selected resistant cells appeared to be identical. The resistant cells contained 2-4 times as much DNA homologous to the extrachromosomal DNA as compared to wild type cells. When cloned into an E. coli/Leishmania shuttle vector, a portion of the amplified DNA had the ability to confer upon wild-type cells resistance to the toxic purine nucleoside analogs tubercidin and inosine dialdehyde. These transformed cells also exhibited a decreased ability to accumulate non-toxic purine nucleosides.
Collapse
Affiliation(s)
- B R Kerby
- University of North Dakota School of Medicine, Department of Biochemistry and Molecular Biology, Grand Forks 58202
| | | |
Collapse
|
15
|
Gbenle GO, Dwyer DM. Purification and properties of 3'-nucleotidase of Leishmania donovani. Biochem J 1992; 285 ( Pt 1):41-6. [PMID: 1322126 PMCID: PMC1132741 DOI: 10.1042/bj2850041] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A surface membrane 3'-nucleotidase from Leishmania donovani promastigotes has been purified to SDS/PAGE homogeneity. The enzyme has apparent subunit molecular mass of 38 kDa, pI 5.8 and a broad pH optimum, 5.5-7.5. EDTA partially inhibited the enzyme activity, which was fully restored by Co2+; Mg2+, Ca2+ or Mn2+ had no effect on the activity. ZnCl2 or dithiothreitol at 1 mM was inhibitory at pH 7.5, but was without effect at pH 5.5, whereas at both pH values 5 mM of either compound inhibited the enzyme. The substrate-specificity of the purified enzyme is restricted to ribonucleoside 3'-phosphates. 3'-AMP and 3'-IMP are the best substrates, whereas ADP, ATP, 2'-deoxyadenosine 3'-phosphate and 5'-AMP are competitive inhibitors of the enzyme. The enzyme showed low latency in intact-cell preparations. The kinetic properties and the surface membrane localization of the enzyme suggest its implication in the formation of nucleosides from 3'-nucleotides of the parasite's host.
Collapse
Affiliation(s)
- G O Gbenle
- Department of Biochemistry, College of Medicine, University of Lagos, Nigeria
| | | |
Collapse
|
16
|
Rainey PM, Spithill TW, McMahon-Pratt D, Pan AA. Biochemical and molecular characterization of Leishmania pifanoi amastigotes in continuous axenic culture. Mol Biochem Parasitol 1991; 49:111-8. [PMID: 1775152 DOI: 10.1016/0166-6851(91)90134-r] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inability to culture the disease-producing amastigote form of Leishmania has greatly hampered its study. We have biochemically characterized an axenically cultured amastigote-like form of Leishmania pifanoi. This form closely resembles amastigotes in proteinase, ribonuclease, adenine deaminase and peroxidase activity. It also exhibits comparable rates of growth, transformation, synthesis of DNA, RNA and protein, and metabolism of glucose and linoleic acid. It is distinct from promastigotes in these characteristics. The expression of the genes for beta-tubulin and the P100/11E reductase is developmentally regulated in this axenic form as in amastigotes. These results, combined with previous demonstrations of amastigote morphology and antigenicity in the culture form, confirm that Leishmania amastigotes have been successfully propagated in axenic media. This strain should serve as an excellent model for the study of amastigote biochemistry, pharmacology and immunology, and the molecular genetics of the transformation between amastigote and promastigote forms.
Collapse
Affiliation(s)
- P M Rainey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | | | | | | |
Collapse
|
17
|
|
18
|
Tang P, Lo HS. Pentatrichomonas hominis: purine salvage pathway. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1988; 90:419-25. [PMID: 3409669 DOI: 10.1016/0305-0491(88)90098-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.
Collapse
Affiliation(s)
- P Tang
- Department of Parasitology and Tropical Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
19
|
|
20
|
Hassan HF, Coombs GH. Phosphomonoesterases of Leishmania mexicana mexicana and other flagellates. Mol Biochem Parasitol 1987; 23:285-96. [PMID: 3037369 DOI: 10.1016/0166-6851(87)90035-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amastigotes and log-phase promastigotes of Leishmania mexicana mexicana contained distinct acid phosphatase, 3'-nucleotidase and 5'-nucleotidase activities, distinguishable by their response to pH and inhibitors. Both tartrate-sensitive and tartrate-resistant acid phosphatase were present in the two forms, amastigotes possessed less tartrate-resistant acid phosphatase than promastigotes. A tartrate-sensitive acid phosphatase was secreted into the medium in large amounts during the growth in vitro of L. m. mexicana promastigotes. The 5'-nucleotidase activity of both parasite forms was inhibited by ammonium molybdate, sodium tartrate and, to less extent, by sodium fluoride whereas 3'-nucleotidase was inhibited by EDTA. All three activities were shown to be present on the external surface of both amastigotes and promastigotes. The three phosphomonoesterase activities were also detected in extracts of L. m. amazonensis, L. donovani, L. tarentolae, Crithidia fasciculata, Herpetomonas muscarum muscarum, H.m. ingenoplastis and Trichomitus batrachorum whereas 5'-nucleotidase was not detected in Trypanosoma brucei brucei extract and 3'-nucleotidase was absent from extracts of Trichomonas vaginalis and Tritrichomonas foetus.
Collapse
|
21
|
Avila JL, Rojas T, Avila A, Polegre MA, Robins RK. Biological activity of analogs of guanine and guanosine against American Trypanosoma and Leishmania spp. Antimicrob Agents Chemother 1987; 31:447-51. [PMID: 3107463 PMCID: PMC174749 DOI: 10.1128/aac.31.3.447] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The growth inhibitory effects of six guanine and guanosine analogs, 3-deazaguanine (compound 1); 3-deazaguanosine (compound 2); 6-aminoallopurinol (compound 3); 9-beta-xylofuranosyl guanine (compound 4); a ribosylated derivative of compound 3, 6-aminopyrazolo(3,4-d)pyrimidin-4-one (compound 5); and 5-aminoformycin B (compound 6), were tested against some pathogenic members of the family of American Trypanosomatidae. Compounds 1 and 2 were highly active against Trypanosoma cruzi, Trypanosoma rangeli, and American Leishmania spp. in in vitro culture forms. Both compounds also showed antiprotozoal activity in T. cruzi-infected mice, with the optimal dose being about 30 mg/kg of body weight per day given as 10 consecutive doses. Compound 3 was the most active compound in vitro, inhibiting all of the American Trypanosomatidae culture forms tested. It was also highly inhibitory in mice that were acutely infected with T. cruzi, with the optimal dose being about 10 mg/kg of body weight per day. Ribosylation of compound 3 resulted in a derivative that showed decreased inhibitory activity on Trypanosomatidae multiplication. Compound 6 was highly inhibitory of in vitro multiplication of American Leishmania and T. rangeli but had no effect on T. cruzi epimastigotes and on mice that were acutely infected with T. cruzi. Compound 4 showed only a slight effect on T. cruzi epimastigotes.
Collapse
|
22
|
Abstract
Extracts of Babesia divergens were examined for the enzymes which catalyse purine salvage. Adenosine deaminase (EC 3.5.4.4), guanine deaminase (EC 3.5.4.3), inosine phosphorylase (EC 2.4.2.1), purine phosphoribosyltransferases (EC 2.4.2.7, EC 2.4.2.8, EC 2.4.2.22) and nucleoside kinases (EC 2.7.1.15, EC 2.7.1.20, EC 2.7.1.73) were all detected at relatively high activities, whereas nucleotide interconverting enzymes were not detected. Coformycin and 4-amino-5-imidazolecarboxamide were found to be potent inhibitors of adenosine deaminase and guanine deaminase, respectively. The results suggest that B. divergens is capable of synthesizing purine nucleotides via two routes, one involving purine phosphoribosyltransferases and the other employing nucleoside kinases.
Collapse
|
23
|
Abstract
The enzymes that catalyse the salvage of purines in Entamoeba histolytica trophozoites have been surveyed. Adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4), guanine deaminase (EC 3.5.4.3), adenine phosphoribosyltransferase (PRTase) (EC 2.4.2.7), xanthine PRTase (EC 2.4.2.22) and hypoxanthine PRTase (EC 2.4.2.8) were all detected in cell homogenates but only at low activities, whereas AMP deaminase (EC 3.5.4.6) and guanine PRTase (EC 2.4.2.8) were not found. Phosphorylases (EC 2.4.2.1) active in both anabolic and catabolic directions were present and all nucleosides tested were phosphorylated by kinases (EC 2.7.1.15, EC 2.7.1.20, EC 2.7.1.73). 3'-Nucleotidase (EC 3.1.3.6) and 5'-nucleotidase (EC 3.1.3.5) were found, the former being mainly particulate. Nucleotide interconversion enzymes (adenylosuccinate lyase, EC 4.3.2.2; adenylosuccinate synthetase, EC 6.3.4.4; IMP dehydrogenase, EC 1.2.1.14; GMP synthetase, EC 6.3.5.2 and GMP reductase, EC 1.6.6.8) were not detected. The results suggest that in E. histolytica the main route of nucleotide synthesis is from the individual bases through the actions of phosphorylases and kinases.
Collapse
|
24
|
Koszalka GW, Krenitsky TA. 5'-Methylthioadenosine (MTA) phosphorylase from promastigotes of Leishmania donovani. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 195 Pt B:559-63. [PMID: 3094329 DOI: 10.1007/978-1-4684-1248-2_87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Hassan H, Coombs G. A comparative study of the purine- and pyrimidine-metabolising enzymes of a range of trypanosomatids. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0305-0491(86)90209-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Mottram JC, Coombs GH. Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Exp Parasitol 1985; 59:265-74. [PMID: 3158538 DOI: 10.1016/0014-4894(85)90081-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycosomes and mitochondrial vesicles from cultured promastigotes of Leishmania mexicana mexicana have been separated using isopycnic centrifugation on linear sucrose gradients. Hexokinase (EC 2.7.1.2), glucose phosphate isomerase (EC 5.3.1.9), phosphofructokinase (EC 2.7.1.11), glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) were recovered largely in association with glycosomes (density; 1.215 g/ml). Phosphoglycerate kinase (EC 2.7.2.3) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) had some small glycosomal activity, but were mostly recovered in the soluble fractions. Malate dehydrogenase (EC 1.1.1.37) showed a broad peak corresponding to that of the mitochondrial marker oligomycin-sensitive ATPase (EC 3.6.1.4) (density; 1.190 g/ml). Glutamate dehydrogenase (EC 1.4.1.3) and alanine aminotransferase (EC 2.6.1.2) both showed small mitochondrial peaks, but most of the activities were recovered elsewhere on the gradient and in the soluble fractions. The subcellular location of enzymes in L.m. mexicana amastigotes was investigated by following the release of soluble enzymes from digitonin-treated amastigotes. This revealed distinct cytosolic, mitochondrial, and glycosomal compartments. The findings give an insight into the organization and control of L.m. mexicana promastigote and amastigote energy metabolism.
Collapse
|
27
|
Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol 1985; 59:151-60. [PMID: 2982638 DOI: 10.1016/0014-4894(85)90067-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A major difference between the metabolism of Leishmania species amastigotes and cultured promastigotes was found in the area of CO2 fixation and phosphoenolpyruvate metabolism. Malate dehydrogenase (EC 1.1.1.37) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) were at much higher activities in amastigotes than promastigotes of both L. m. mexicana and L. donovani, whereas the reverse was true of pyruvate kinase (EC 2.7.1.40). Pyruvate carboxylase (EC 6.4.1.1) and malic enzyme (carboxylating) (EC 1.1.1.40) could not be detected in L. m. mexicana amastigotes. Promastigotes of L. m. mexicana had a high NAD-linked glutamate dehydrogenase activity in comparison to amastigotes, whereas NADP-linked glutamate dehydrogenase activity was detected only in amastigotes. Leishmania m. mexicana culture promastigotes were killed in vitro by the trivalent antimonial Triostam (LD50, 20 micrograms/ml) and the trivalent arsenical melarsen oxide (LD50, 20 micrograms/ml), but they were unaffected by Pentostam. Neither antimonial drug significantly inhibited leishmanial hexokinase (EC 2.7.1.2), phosphofructokinase (EC 2.7.1.11), pyruvate kinase, malate dehydrogenase or phosphoenolpyruvate carboxykinase, whereas melarsen oxide was a potent inhibitor of all the enzymes tested except phosphoenolpyruvate carboxykinase.
Collapse
|
28
|
Hassan HF, Coombs GH. Purine phosphoribosyltransferases of Leishmania mexicana mexicana and other flagellate protozoa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1985; 82:773-9. [PMID: 3937660 DOI: 10.1016/0305-0491(85)90524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amastigotes and cultured promastigotes of Leishmania mexicana mexicana and L. m. amazonensis, cultured promastigotes of L. donovani and L. tarentolae, and the culture forms of Crithidia fasciculata, Herpetomonas muscarum muscarum and H. m. ingenoplastis all possessed four phosphoribosyltransferase (PRTase) activities: adenine PRTase, hypoxanthine PRTase, guanine PRTase and xanthine PRTase. The enzymes of L. m. mexicana required divalent cations for activity; Mn2+ or Co2+ produced maximal activity in most cases. Hypoxanthine PRTase, guanine PRTase and xanthine PRTase from all organisms were sedimentable in part, suggesting that they may occur within glycosomes. The enzymes of L. m. mexicana cultured promastigotes were inhibited by a range of purine analogues.
Collapse
|
29
|
Hassan HF, Mottram JC, Coombs GH. Subcellular localisation of purine-metabolising enzymes in Leishmania mexicana mexicana. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1985; 81:1037-40. [PMID: 4042622 DOI: 10.1016/0305-0491(85)90110-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leishmania mexicana mexicana cultured promastigotes were fractionated by isopycnic centrifugation on linear sucrose gradients. Guanine, hypoxanthine and xanthine phosphoribosyltransferase activities were found to be associated with glycosomes, whereas adenine phosphoribosyltransferase was cytosolic. 3'- and 5'-nucleotidases and IMP dehydrogenase were shown to be particulate, the former two possibly being associated with the plasma membrane, IMP dehydrogenase with the endoplasmic reticulum. Nucleosidases and deaminases were found to be cytosolic. The results demonstrate that intracellular separation of enzymes could play a part in the regulation of the parasite's purine metabolism.
Collapse
|