Lee BY, Ahn MH, Kim HC, Min DY. Toxoplasma gondii: ultrastructural localization of specific antigens and inhibition of intracellular multiplication by monoclonal antibodies.
THE KOREAN JOURNAL OF PARASITOLOGY 2001;
39:67-75. [PMID:
11301592 PMCID:
PMC2721067 DOI:
10.3347/kjp.2001.39.1.67]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This experiment was focused on the characterization of anti-Toxoplasma monoclonal antibodies (mAbs) and the effect of mAbs on the parasite invasion of mouse peritoneal macrophages. Twenty eight mAbs including M110, M556, R7A6 and M621 were characterized by Ab titer, immunoglobulin isotyping and western blot pattern. Antibody titer (optical density) of 4 mAbs, M110, M556, R7A6 and M621, were 0.53, 0.67, 0.45 and 0.39 (normal mouse serum; 0.19) with the same IgG1 isotypes shown by Enzyme-linked immunosorbent assay (ELISA). Western blot analysis showed that M110, M556, R7A6 and M621 reacted with the 33 kDa (p30), 31 kDa (p28), 43 kDa and 36 kDa protein. Immunogold labelling of mAbs M110, M556, R7A6 and M621 reacted with the surface membrane, dense granules and parasitophorous vacuolar membrane (PVM), rhoptries and cytoplasm of tachyzoite, respectively. For in vitro assay, preincubation of tachyzoites with four mAbs, M110, M556, R7A6 and M621 resulted in the decrease of the number of infected macrophages (p < 0.05) and the suppression of parasite multiplication at 18 h post-infection. Four monoclonal antibodies including M110 (SAG1) were found to have an important role in the inhibition of macrophage invasion and T. gondii multiplication in vitro, and these mAbs may be suitable for vaccine candidates, diagnostic kit and for chemotherapy.
Collapse