1
|
Magoch M, McEwen AG, Napolitano V, Władyka B, Dubin G. Crystal Structure of Staphopain C from Staphylococcus aureus. Molecules 2023; 28:molecules28114407. [PMID: 37298883 DOI: 10.3390/molecules28114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Staphylococcus aureus is a common opportunistic pathogen of humans and livestock that causes a wide variety of infections. The success of S. aureus as a pathogen depends on the production of an array of virulence factors including cysteine proteases (staphopains)-major secreted proteases of certain strains of the bacterium. Here, we report the three-dimensional structure of staphopain C (ScpA2) of S. aureus, which shows the typical papain-like fold and uncovers a detailed molecular description of the active site. Because the protein is involved in the pathogenesis of a chicken disease, our work provides the foundation for inhibitor design and potential antimicrobial strategies against this pathogen.
Collapse
Affiliation(s)
- Malgorzata Magoch
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Alastair G McEwen
- CNRS, INSERM, Université de Strasbourg, IGBMC UMR 7104-UMR-S 1258, F-67400 Illkirch, France
| | - Valeria Napolitano
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Dos Santos AM, Oliveira ARS, da Costa CHS, Kenny PW, Montanari CA, Varela JDJG, Lameira J. Assessment of Reversibility for Covalent Cysteine Protease Inhibitors Using Quantum Mechanics/Molecular Mechanics Free Energy Surfaces. J Chem Inf Model 2022; 62:4083-4094. [PMID: 36044342 DOI: 10.1021/acs.jcim.2c00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials to investigate the reaction mechanism for covalent inhibition of cathepsin K and assess the reversibility of inhibition. The computed free energy profiles suggest that a nucleophilic attack by the catalytic cysteine on the inhibitor warhead and proton transfer from the catalytic histidine occur in a concerted manner. The results indicate that the reaction is more strongly exergonic for the alkyne-based inhibitors, which bind irreversibly to cathepsin K, than for the nitrile-based inhibitor odanacatib, which binds reversibly. Gas-phase energies were also calculated for the addition of methanethiol to structural prototypes for a number of warheads of interest in cysteine protease inhibitor design in order to assess electrophilicity. The approaches presented in this study are particularly applicable to assessment of novel warheads, and computed transition state geometries can be incorporated into molecular models for covalent docking.
Collapse
Affiliation(s)
- Alberto M Dos Santos
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil.,Laboratório de Química Quântica Computacional, Universidade Federal do Maranhão, 65080 401 São Luis, MA, Brazil
| | - Amanda Ruslana Santana Oliveira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil
| | - Clauber H S da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil
| | - Peter W Kenny
- Medicinal and Biological Chemistry Group, Institute of Chemistry of Sao Carlos, University of Sao Paulo, Avenue Trabalhador Sancarlense 400, 13566-590 São Carlos, SP, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, Institute of Chemistry of Sao Carlos, University of Sao Paulo, Avenue Trabalhador Sancarlense 400, 13566-590 São Carlos, SP, Brazil
| | - Jaldyr de Jesus G Varela
- Laboratório de Química Quântica Computacional, Universidade Federal do Maranhão, 65080 401 São Luis, MA, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil
| |
Collapse
|
3
|
Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Commun Biol 2022; 5:272. [PMID: 35347220 PMCID: PMC8960835 DOI: 10.1038/s42003-022-03186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Burkholderiapseudomallei lethal factor 1 (BLF1) exhibits site-specific glutamine deamidase activity against the eukaryotic RNA helicase, eIF4A, thereby blocking mammalian protein synthesis. The structure of a complex between BLF1 C94S and human eIF4A shows that the toxin binds in the cleft between the two RecA-like eIF4A domains forming interactions with residues from both and with the scissile amide of the target glutamine, Gln339, adjacent to the toxin active site. The RecA-like domains adopt a radically twisted orientation compared to other eIF4A structures and the nature and position of conserved residues suggests this may represent a conformation associated with RNA binding. Comparison of the catalytic site of BLF1 with other deamidases and cysteine proteases reveals that they fall into two classes, related by pseudosymmetry, that present either the re or si faces of the target amide/peptide to the nucleophilic sulfur, highlighting constraints in the convergent evolution of their Cys-His active sites. The crystal structure of the toxin from the pathogenic bacterium Burkholderia pseudomallei in complex with its target, human eIF4A, provides insights into substrate specificity and may facilitate the design of inhibitors for the treatment of melioidosis.
Collapse
|
4
|
Oanca G, Asadi M, Saha A, Ramachandran B, Warshel A. Exploring the Catalytic Reaction of Cysteine Proteases. J Phys Chem B 2020; 124:11349-11356. [PMID: 33264018 DOI: 10.1021/acs.jpcb.0c08192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine proteases play a major role in many life processes and are the target of key drugs. The reaction mechanism of these enzymes is a complex process, which involves several steps that are divided into two main groups: acylation and deacylation. In this work, we studied the energy profile for the acylation and a part of the deacylation reaction of three different enzymes, cruzain, papain, and the Q19A-mutated papain with the benzyloxycarbonyl-phenylalanylarginine-4-methylcoumaryl-7-amide (CBZ-FR-AMC) substrate. The calculations were performed using the EVB and PDLD/S-LRA methods. The overall agreement between the calculated and observed results is encouraging and indicates that we captured the correct reaction mechanism. Finally, our finding indicates that the minimum of the reaction profile, between the acylation and deacylation steps, should provide an excellent state for the binding of covalent inhibitors.
Collapse
Affiliation(s)
- Gabriel Oanca
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Balajee Ramachandran
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States.,Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630 004, India
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
5
|
Prejanò M, Romeo I, Russo N, Marino T. On the Catalytic Activity of the Engineered Coiled-Coil Heptamer Mimicking the Hydrolase Enzymes: Insights from a Computational Study. Int J Mol Sci 2020; 21:E4551. [PMID: 32604744 PMCID: PMC7352413 DOI: 10.3390/ijms21124551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/22/2023] Open
Abstract
Recently major advances were gained on the designed proteins aimed to generate biomolecular mimics of proteases. Although such enzyme-like catalysts must still suffer refinements for improving the catalytic activity, at the moment, they represent a good example of artificial enzymes to be tested in different fields. Herein, a de novo designed homo-heptameric peptide assembly (CC-Hept) where the esterase activity towards p-nitro-phenylacetate was obtained for introduction of the catalytic triad (Cys-His-Glu) into the hydrophobic matrix, is the object of the present combined molecular dynamics and quantum mechanics/molecular mechanics investigation. Constant pH Molecular Dynamics simulations on the apoform of CC-Hept suggested that the Cys residues are present in the protonated form. Molecular dynamics (MD) simulations of the enzyme-substrate complex evidenced the attitude of the enzyme-like system to retain water molecules, necessary in the hydrolytic reaction, in correspondence of the active site, represented by the Cys-His-Glu triad on each of the seven chains, without significant structural perturbations. A detailed reaction mechanism of esterase activity of CC-Hept-Cys-His-Glu was investigated on the basis of the quantum mechanics/molecular mechanics calculations employing a large quantum mechanical (QM) region of the active site. The proposed mechanism is consistent with available esterases kinetics and structural data. The roles of the active site residues were also evaluated. The deacylation phase emerged as the rate-determining step, in agreement with esterase activity of other natural proteases.
Collapse
Affiliation(s)
| | | | - Nino Russo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy; (M.P.); (I.R.)
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy; (M.P.); (I.R.)
| |
Collapse
|
6
|
Silva JRA, Cianni L, Araujo D, Batista PHJ, de Vita D, Rosini F, Leitão A, Lameira J, Montanari CA. Assessment of the Cruzain Cysteine Protease Reversible and Irreversible Covalent Inhibition Mechanism. J Chem Inf Model 2020; 60:1666-1677. [PMID: 32126170 DOI: 10.1021/acs.jcim.9b01138] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by K777 and Neq0682. The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to -26.7 and -5.9 kcal mol-1 for K777 and Neq0682 at the MP2/MM level, respectively. These results indicate that the ΔG of the reaction is very negative for the process involving K777, consequently, the covalent adduct cannot revert to a noncovalent protein-ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.
Collapse
Affiliation(s)
- José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos. Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa 01, CEP 66075-110, Belém, Pará, Brazil
| | - Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Deborah Araujo
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Pedro Henrique Jatai Batista
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Daniela de Vita
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Fabiana Rosini
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos. Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa 01, CEP 66075-110, Belém, Pará, Brazil
| | - Carlos A Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense 400, 23566-590, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
da Costa CHS, Bonatto V, Dos Santos AM, Lameira J, Leitão A, Montanari CA. Evaluating QM/MM Free Energy Surfaces for Ranking Cysteine Protease Covalent Inhibitors. J Chem Inf Model 2020; 60:880-889. [PMID: 31944110 DOI: 10.1021/acs.jcim.9b00847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One tactic for cysteine protease inhibition is to form a covalent bond between an electrophilic atom of the inhibitor and the thiol of the catalytic cysteine. In this study, we evaluate the reaction free energy obtained from a hybrid quantum mechanical/molecular mechanical (QM/MM) free energy profile as a predictor of affinity for reversible, covalent inhibitors of rhodesain. We demonstrate that the reaction free energy calculated with the PM6/MM potential is in agreement with the experimental data and suggest that the free energy profile for covalent bond formation in a protein environment may be a useful tool for the inhibitor design.
Collapse
Affiliation(s)
- Clauber H S da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos , Universidade Federal do Pará , Rua Augusto Correa S/N , 66075-110 Belém , PA , Brazil
| | - Vinícius Bonatto
- Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| | - Alberto M Dos Santos
- Laboratório de Planejamento e Desenvolvimento de Fármacos , Universidade Federal do Pará , Rua Augusto Correa S/N , 66075-110 Belém , PA , Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos , Universidade Federal do Pará , Rua Augusto Correa S/N , 66075-110 Belém , PA , Brazil.,Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| | - Andrei Leitão
- Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| | - Carlos A Montanari
- Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| |
Collapse
|
8
|
Lameira J, Bonatto V, Cianni L, Dos Reis Rocho F, Leitão A, Montanari CA. Predicting the affinity of halogenated reversible covalent inhibitors through relative binding free energy. Phys Chem Chem Phys 2019; 21:24723-24730. [PMID: 31680132 DOI: 10.1039/c9cp04820k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nitrile reversible covalent inhibitors of human cathepsin L (hCatL) bind covalently to the side chain of the catalytic Cys25 residue in the S1 pocket to form thioimidates. Predicting the binding of reversible covalent inhibitors is essential for their practical application in drug design. In this report, five nitrile-based inhibitors coded Neq0570, Neq0710, Neq0802, Neq0803 and Neq0804 had their hCatL inhibition constants, Ki, determined. These analogs of the prototypical Neq0570 are halogenated reversible covalent inhibitors of hCatL, which bear a halogen atom in the meta position of the P3 benzyl ring that can form a halogen bond with the Gly61 of the hCatL. To describe halogen bonding interaction in an inhibitor-hCatL complex, we applied an extra point (EP) of charge to represent the anisotropic distribution of charge on the iodine, bromine and chlorine atoms. Besides, we have used alchemical free energy calculations for evaluating the overall relative binding free energies of these inhibitors using a two-state binding model: noncovalent and covalent bond states. Our results show that free energy perturbation (FEP) can predict the hCatL binding affinities of halogenated reversible covalent inhibitors in close agreement with experiments.
Collapse
Affiliation(s)
- Jerônimo Lameira
- On leave from Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110, Belém, PA, Brazil.
| | | | | | | | | | | |
Collapse
|
9
|
Zhai X, Meek TD. Catalytic Mechanism of Cruzain from Trypanosoma cruzi As Determined from Solvent Kinetic Isotope Effects of Steady-State and Pre-Steady-State Kinetics. Biochemistry 2018; 57:3176-3190. [PMID: 29336553 PMCID: PMC10569748 DOI: 10.1021/acs.biochem.7b01250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cruzain, an important drug target for Chagas disease, is a member of clan CA of the cysteine proteases. Understanding the catalytic mechanism of cruzain is vital to the design of new inhibitors. To this end, we have determined pH-rate profiles for substrates and affinity agents and solvent kinetic isotope effects in pre-steady-state and steady-state modes using three substrates: Cbz-Phe-Arg-AMC, Cbz-Arg-Arg-AMC, and Cbz-Arg-Ala-AMC. The pH-rate profile of kcat/ Km for Cbz-Arg-Arg-AMC indicated p K1 = 6.6 (unprotonated) and p K2 ∼ 9.6 (protonated) groups were required for catalysis. The temperature dependence of the p K = 6.2-6.6 group exhibited a Δ Hion value of 8.4 kcal/mol, typical of histidine. The pH-rate profile of inactivation by iodoacetamide confirmed that the catalytic cysteine possesses a p Ka of 9.8. Normal solvent kinetic isotope effects were observed for both D2O kcat (1.6-2.1) and D2O kcat/ Km (1.1-1.4) for all three substrates. Pre-steady-state kinetics revealed exponential bursts of AMC production for Cbz-Phe-Arg-AMC and Cbz-Arg-Arg-AMC, but not for Cbz-Arg-Ala-AMC. The overall solvent isotope effect on kcat can be attributed to the solvent isotope effect on the deacylation step. Our results suggest that cruzain is unique among papain-like cysteine proteases in that the catalytic cysteine and histidine have neutral charges in the free enzyme. The generation of the active thiolate of the catalytic cysteine is likely preceded (and possibly triggered) by a ligand-induced conformational change, which could bring the catalytic dyad into the proximity to effect proton transfer.
Collapse
Affiliation(s)
| | - Thomas D. Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Fekete A, Komáromi I. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain. Phys Chem Chem Phys 2018; 18:32847-32861. [PMID: 27883128 DOI: 10.1039/c6cp06869c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to be a single elementary step process in all the methods we applied.
Collapse
Affiliation(s)
- Attila Fekete
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary.
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary.
| |
Collapse
|
11
|
Arafet K, Ferrer S, Moliner V. Computational Study of the Catalytic Mechanism of the Cruzain Cysteine Protease. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kemel Arafet
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Silvia Ferrer
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
12
|
Paasche A, Zipper A, Schäfer S, Ziebuhr J, Schirmeister T, Engels B. Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease. Biochemistry 2014; 53:5930-46. [PMID: 25196915 DOI: 10.1021/bi400604t] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The coronavirus main protease (M(pro)) represents an attractive drug target for antiviral therapy of coronavirus (CoV) infections, including severe acute respiratory syndrome (SARS). The SARS-CoV M(pro) and related CoV proteases have several distinct features, such as an uncharged Cys-His catalytic dyad embedded in a chymotrypsin-like protease fold, that clearly separate these enzymes from archetypical cysteine proteases. To further characterize the catalytic system of CoV main proteases and to obtain information about improved inhibitors, we performed comprehensive simulations of the proton-transfer reactions in the SARS-CoV M(pro) active site that lead to the Cys(-)/His(+) zwitterionic state required for efficient proteolytic activity. Our simulations, comprising the free enzyme as well as substrate-enzyme and inhibitor-enzyme complexes, lead us to predict that zwitterion formation is fostered by substrate binding but not inhibitor binding. This indicates that M(pro) employs a substrate-induced catalytic mechanism that further enhances its substrate specificity. Our computational data are in line with available experimental results, such as X-ray geometries, measured pKa values, mutagenesis experiments, and the measured differences between the kinetic parameters of substrates and inhibitors. The data also provide an atomistic picture of the formerly postulated electrostatic trigger involved in SARS-CoV M(pro) activity. Finally, they provide information on how a specific microenvironment may finely tune the activity of M(pro) toward specific viral protein substrates, which is known to be required for efficient viral replication. Our simulations also indicate that the low inhibition potencies of known covalently interacting inhibitors may, at least in part, be attributed to insufficient fostering of the proton-transfer reaction. These findings suggest ways to achieve improved inhibitors.
Collapse
Affiliation(s)
- Alexander Paasche
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg , Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Someya Y, Takeda N, Wakita T. Saturation mutagenesis reveals that GLU54 of norovirus 3C-like protease is not essential for the proteolytic activity. J Biochem 2008; 144:771-80. [PMID: 18838436 PMCID: PMC7109903 DOI: 10.1093/jb/mvn130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/22/2008] [Indexed: 11/13/2022] Open
Abstract
The norovirus 3C-like protease is a member of the chymotrypsin-like serine protease superfamily. Previous characterization of its crystal structure has implicated the Glu54-His30-Cys139 triad in the catalysis. In the present study, the Glu54 residue of the protease was subjected to site-saturation mutagenesis, with the result that nearly half of the mutants retained the significant proteolytic activity. It was suggested that a carboxylate at position 54 was not essential for the activity. The in vitro assays of the proteolysis revealed that most of Glu54 mutants retained relatively high proteolytic activity. When the Glu54 mutation was combined with the Ser mutation of the Cys139 residue, a nucleophile, only the Asp54 and Gln54 mutations showed proteolytic activity comparable to that of the Ser139 single mutant, suggesting that a hydrogen bond between Glu54 and His30 was critical in the Ser139 background. These results suggested that the mechanism of the proteolysis by the wild-type norovirus 3C-like protease was different from that of typical chymotrypsin-like serine proteases.
Collapse
Affiliation(s)
- Yuichi Someya
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan.
| | | | | |
Collapse
|
14
|
Schneck JL, Villa JP, McDevitt P, McQueney MS, Thrall SH, Meek TD. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Biochemistry 2008; 47:8697-710. [PMID: 18656960 DOI: 10.1021/bi8007627] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cathepsin C, or dipeptidyl peptidase I, is a lysosomal cysteine protease of the papain family that catalyzes the sequential removal of dipeptides from the free N-termini of proteins and peptides. Using the dipeptide substrate Ser-Tyr-AMC, cathepsin C was characterized in both steady-state and pre-steady-state kinetic modes. The pH(D) rate profiles for both log k cat/ K m and log k cat conformed to bell-shaped curves for which an inverse solvent kinetic isotope effect (sKIE) of 0.71 +/- 0.14 for (D)( k cat/ K a) and a normal sKIE of 2.76 +/- 0.03 for (D) k cat were obtained. Pre-steady-state kinetics exhibited a single-exponential burst of AMC formation in which the maximal acylation rate ( k ac = 397 +/- 5 s (-1)) was found to be nearly 30-fold greater than the rate-limiting deacylation rate ( k dac = 13.95 +/- 0.013 s (-1)) and turnover number ( k cat = 13.92 +/- 0.001 s (-1)). Analysis of pre-steady-state burst kinetics in D 2O allowed abstraction of a normal sKIE for the acylation half-reaction that was not observed in steady-state kinetics. Since normal sKIEs were obtained for all measurable acylation steps in the presteady state [ (D) k ac = 1.31 +/- 0.04, and the transient kinetic isotope effect at time zero (tKIE (0)) = 2.3 +/- 0.2], the kinetic step(s) contributing to the inverse sKIE of (D)( k cat/ K a) must occur more rapidly than the experimental time frame of the transient kinetics. Results are consistent with a chemical mechanism in which acylation occurs via a two-step process: the thiolate form of Cys-234, which is enriched in D 2O and gives rise to the inverse value of (D)( k cat/ K a), attacks the substrate to form a tetrahedral intermediate that proceeds to form an acyl-enzyme intermediate during a proton transfer step expressing a normal sKIE. The subsequent deacylation half-reaction is rate-limiting, with proton transfers exhibiting normal sKIEs. Through derivation of 12 equations describing all kinetic parameters and sKIEs for the proposed cathepsin C mechanism, integration of both steady-state and pre-steady-state kinetics with sKIEs allowed the provision of at least one self-consistent set of values for all 13 rate constants in this cysteine protease's chemical mechanism. Simulation of the resulting kinetic profile showed that at steady state approximately 80% of the enzyme exists in an active-site cysteine-acylated form in the mechanistic pathway. The chemical and kinetic details deduced from this work provide a potential roadmap to help steer drug discovery efforts for this and other disease-relevant cysteine proteases.
Collapse
Affiliation(s)
- Jessica L Schneck
- Department of Biological Reagents and Assay Development and Discovery Technology Group, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mladenovic M, Fink RF, Thiel W, Schirmeister T, Engels B. On the origin of the stabilization of the zwitterionic resting state of cysteine proteases: a theoretical study. J Am Chem Soc 2008; 130:8696-705. [PMID: 18557615 DOI: 10.1021/ja711043x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Papain-like cysteine proteases are ubiquitous proteolytic enzymes. The protonated His199/deprotonated Cys29 ion pair (cathepsin B numbering) in the active site is essential for their proper functioning. The presence of this ion pair stands in contrast to the corresponding intrinsic residue p K a values, indicating a strong influence of the enzyme environment. In the present work we show by molecular dynamics simulations on quantum mechanical/molecular mechanical (QM/MM) potentials that the ion pair is stabilized by a complex hydrogen bond network which comprises several amino acids situated in the active site of the enzyme and 2-4 water molecules. QM/MM reaction path computations for the proton transfer from His199 to the thiolate of the Cys29 moiety indicate that the ion pair is about 32-36 kJ mol (-1) more stable than the neutral form if the whole hydrogen bonding network is active. Without any hydrogen bonding network the ion pair is predicted to be significantly less stable than the neutral form. QM/MM charge deletion analysis and QM model calculations are used to quantify the stabilizing effect of the active-site residues and the L1 helix in favor of the zwitterionic form. The active-site water molecules contribute about 30 kJ mol (-1) to the overall stabilization. Disruption of the hydrogen bonding network upon substrate binding is expected to enhance the nucleophilic reactivity of the thiolate.
Collapse
Affiliation(s)
- Milena Mladenovic
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Beveridge AJ. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases. Protein Sci 1996; 5:1355-65. [PMID: 8819168 PMCID: PMC2143470 DOI: 10.1002/pro.5560050714] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.
Collapse
Affiliation(s)
- A J Beveridge
- Daresbury Laboratory, Warrington, Cheshire, United Kingdom.
| |
Collapse
|
17
|
Pathak D, Ashley G, Ollis D. Thiol protease-like active site found in the enzyme dienelactone hydrolase: localization using biochemical, genetic, and structural tools. Proteins 1991; 9:267-79. [PMID: 1866431 DOI: 10.1002/prot.340090405] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The active site of dienelactone hydrolase (DLH), a microbial enzyme of the beta-ketoadipate pathway, has been conclusively located using a combination of crystallographic, biochemical, and genetic techniques. DLH hydrolyzes a dienelactone to maleylacetate and has esterase activity on p-nitrophenyl acetate and trans-cinnamoyl imidazole. The identification of Cys-123 as containing the essential thiol confirms the localization of the active site as suggested by the crystal structure of DLH, and disproves an earlier hypothesis regarding its location. Two mutant proteins have been engineered in which Cys-123 has been converted to a serine (C123S DLH) and an alanine (C123A DLH), respectively. C123S DLH (Km = 9900 +/- 2300 microM; Vmax = 4.4 +/- 0.8 mumol/min-mg) displays burst kinetics with p-nitrophenyl acetate and is 10% as active as DLH (Km = 170 +/- 7 microM; Vmax = 21.1 +/- 0.4 mumol/min-mg). C123A DLH is inactive. The structures of DLH, C123S DLH, and C123A DLH have been refined at 1.8, 2.2, and 2.0 A, respectively. Comparison of the structures of these proteins demonstrates that the only differences between them are centered at residue 123. The structures of the active sites of DLH, papain, and subtilisin are similar and are suggestive of the three enzymes having evolved convergently to similar active sites with similar enzymic mechanisms.
Collapse
Affiliation(s)
- D Pathak
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208
| | | | | |
Collapse
|
18
|
Abstract
The structure of dienelactone hydrolase (DLH) from Pseudomonus sp. B13, after stereochemically restrained least-squares refinement at 1.8 A resolution, is described. The final molecular model of DLH has a conventional R value of 0.150 and includes all but the carboxyl-terminal three residues that are crystallographically disordered. The positions of 279 water molecules are included in the final model. The root-mean-square deviation from ideal bond distances for the model is 0.014 A and the error in atomic co-ordinates is estimated to be 0.15 A. DLH is a monomeric enzyme containing 236 amino acid residues and is a member of the beta-ketoadipate pathway found in bacteria and fungi. DLH is an alpha/beta protein containing seven helices and eight strands of beta-pleated sheet. A single 4-turn 3(10)-helix is seen. The active-site Cys123 residues at the N-terminal end of an alpha-helix that is peculiar in its consisting entirely of hydrophobic residues (except for a C-terminal lysine). The beta-sheet is composed of parallel strands except for strand 2, which gives rise to a short antiparallel region at the N-terminal end of the central beta-sheet. The active-site cysteine residue is part of a triad of residues consisting of Cys123, His202 and Asp171, and is reminiscent of the serine/cysteine proteases. As in papain and actinidin, the active thiol is partially oxidized during X-ray data collection. The positions of both the reduced and the oxidized sulphur are described. The active site geometry suggests that a change in the conformation of the native thiol occurs upon diffusion of substrate into the active site cleft of DLH. This enables nucleophilic attack by the gamma-sulphur to occur on the cyclic ester substrate through a ring-opening reaction.
Collapse
Affiliation(s)
- D Pathak
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208
| | | |
Collapse
|
19
|
Rullmann JA, Bellido MN, van Duijnen PT. The active site of papain. All-atom study of interactions with protein matrix and solvent. J Mol Biol 1989; 206:101-18. [PMID: 2539481 DOI: 10.1016/0022-2836(89)90527-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The proton transfer between the Cys25 and His159 residues in the active centre of the proteolytic enzyme papain is investigated with the Hartree-Fock SCF direct reaction field method. The active centre is treated quantum mechanically, while the environment is represented by interacting partial charges and polarizabilities. All protein atoms around the active site are included explicitly in the calculations. In this way a complete description is given of both the electrostatic and the dielectric properties of the enzyme. The protein matrix stabilizes the zwitterionic form of Cys-His, which is thought to be the catalytically active state much more than the neutral configuration. The most important contribution to the stabilization comes from the alpha-helix to which Cys25 is attached; more than half of its effect is due to the backbone atoms of Cys25 itself. Other important factors are the Asn175 side-chain and the solvent. Solvent effects are estimated by means of Monte Carlo calculations of crystal water molecules that are located near the active site. The total energies of the neutral and zwitterionic structures are similar, confirming the idea that a zwitterion can exist in the active centre of papain. The energy difference, however, is sensitive to the geometry of the active site, suggesting that the two structures are in thermal equilibrium. Classical analogues of the quantum mechanical interaction energy, employing point charge representations of the active site, are found to be quite useful. The dielectric behaviour of the protein is much more complicated than is implicated in dielectric constant models; force fields that do not include an atomic level representation of electronic polarization are inadequate.
Collapse
Affiliation(s)
- J A Rullmann
- Laboratory of Chemical Physics, University of Groningen, The Netherlands
| | | | | |
Collapse
|
20
|
Brocklehurst K, Kowlessur D, Patel G, Templeton W, Quigley K, Thomas EW, Wharton CW, Willenbrock F, Szawelski RJ. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Biochem J 1988; 250:761-72. [PMID: 2839145 PMCID: PMC1148922 DOI: 10.1042/bj2500761] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The pH-dependences of the second-order rate constant (k) for the reactions of papain (EC 3.4.22.2) with 2-(acetamido)ethyl 2'-pyridyl disulphide and with ethyl 2-pyridyl disulphide and of k for the reaction of benzimidazol-2-ylmethanethiol (as a minimal model of cysteine proteinase catalytic sites) with the former disulphide were determined in aqueous buffers at 25 degrees C at I 0.1. 2. Of these three pH-k profiles only that for the reaction of papain with 2-(acetamido)ethyl 2'-pyridyl disulphide has a rate maximum at pH approx. 6; the others each have a rate minimum in this pH region and a rate maximum at pH 4, which is characteristic of reactions of papain with other 2-pyridyl disulphides that do not contain a P1-P2 amide bond in the non-pyridyl part of the molecule. 3. The marked change in the form of the pH-k profile consequent upon introduction of a P1-P2 amide bond into the probe molecule for the reaction with papain but not for that with the minimal catalytic-site model is interpreted in terms of the induction by binding of the probe in the S1-S2 intersubsite region of the enzyme of a transition-state geometry in which nucleophilic attack by the -S- component of the catalytic site is assisted by association of the imidazolium ion component with the leaving group. 4. The greater definition of the rate maximum in the pH-k profile for the reaction of papain with an analogous 2-pyridyl disulphide reactivity probe containing both a P1-P2 amide bond and a potential occupant for the S2 subsite [2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide [Brocklehurst, Kowlessur, O'Driscoll, Patel, Quenby, Salih, Templeton, Thomas & Willenbrock (1987) Biochem. J. 244, 173-181]) suggests that a P2-S2 interaction substantially increases the population of transition states for the imidazolium ion-assisted reaction. 5. The overall kinetic solvent 2H-isotope effect at pL 6.0 was determined to be: for the reaction of papain with 2,2'-dipyridyl disulphide, 0.96 (i.e. no kinetic isotope effect), for its reaction with the probe containing only the P1-P2 amide bond, 0.75, for its reaction with the probe containing both the P1-P2 amide bond and the occupant for the S2 subsite, 0.61, and for kcat./Km for its catalysis of the hydrolysis of N-methoxycarbonylglycine 4-nitrophenyl ester, 0.67.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Brocklehurst
- Department of Biochemistry, St. Bartholomew's Hospital Medical College, University of London, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brocklehurst K, Willenbrock F, Salih E. Chapter 2 Cysteine proteinases. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0167-7306(09)60016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
22
|
Polgár L, Asbóth B. The basic difference in catalyses by serine and cysteine proteinases resides in charge stabilization in the transition state. J Theor Biol 1986; 121:323-6. [PMID: 3540454 DOI: 10.1016/s0022-5193(86)80111-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Besides the mechanistic similarities, in particular acylenzyme formation, kinetic investigations and X-ray diffraction studies have revealed some differences between the mechanisms of serine and cysteine proteinases: general base-catalysis in acylation, catalytic contribution by oxyanion binding, and a negatively charged catalytic triad in serine proteinases, but not in cysteine proteinases. In this paper we point out that all these differences are related and connected with the mode of stabilization of the zwitterionic species developing in the transition state of the reactions. In the case of serine proteinases this charge separation requires facilitation by the oxyanion binding and the negative charge of the catalytic triad. On the other hand cysteine proteinases do not require such contributions as they are capable of stabilizing the ion-pair even in the ground state of the reaction. Therefore, cysteine proteinases, in contrast to serine proteinases, may be regarded as "activated" enzymes.
Collapse
|
23
|
Migliorini M, Creighton DJ. Active-site ionizations of papain. An evaluation of the potentiometric difference titration method. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 156:189-92. [PMID: 3007141 DOI: 10.1111/j.1432-1033.1986.tb09566.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The underlying assumption of the potentiometric difference titration method, as applied to the evaluation of the sulfhydryl-dependent ionizations in the active site of papain, is that the pKa of His-159 is independent of whether the neighboring sulfhydryl (Cys-25) is protonated or methylthiolated. That this idealized assumption may not strictly apply is indirectly indicated by the larger pKa of His-159 in S-methylpapain versus that in S-methylthiopapain, as determined from fluorometric titrations (delta pKa = 0.32 +/- 0.05, 25 degrees C). On the basis of the Wegscheider principle of the equivalence of protons and methyl groups, the potentiometric difference titration method will underestimate the concentration of thiolate-imidazolium ion pair in the active site versus that of the thiol-imidazole tautomer, provided that there is no significant H-bonding interaction in the latter species.
Collapse
|
24
|
Polgár L, Halász P. Current problems in mechanistic studies of serine and cysteine proteinases. Biochem J 1982; 207:1-10. [PMID: 6758764 PMCID: PMC1153816 DOI: 10.1042/bj2070001] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Dahl KH, McKinley-McKee JS. The reactivity of affinity labels: A kinetic study of the reaction of alkyl halides with thiolate anions—a model reaction for protein alkylation. Bioorg Chem 1981. [DOI: 10.1016/0045-2068(81)90012-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Wandinger A, Creighton DJ. Solvent isotope effects on the rates of alkylation of thiolamine models of papain. FEBS Lett 1980; 116:116-21. [PMID: 7409133 DOI: 10.1016/0014-5793(80)80541-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|