1
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
2
|
Hurst MN, Beebout CJ, Hollingsworth A, Guckes KR, Purcell A, Bermudez TA, Williams D, Reasoner SA, Trent MS, Hadjifrangiskou M. The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS. mSphere 2023; 8:e0005923. [PMID: 37676915 PMCID: PMC10597456 DOI: 10.1128/msphere.00059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 09/09/2023] Open
Abstract
The modification of lipopolysaccharide (LPS) in Escherichia coli and Salmonella spp. is primarily controlled by the two-component system PmrAB. LPS modification allows bacteria to avoid killing by positively charged antibiotics like polymyxin B (PMB). We previously demonstrated that in uropathogenic E. coli (UPEC), the sensor histidine kinase PmrB also activates a non-cognate transcription factor, QseB, and this activation somehow augments PMB tolerance in UPEC. Here, we demonstrate-for the first time-that in the absence of the canonical LPS transcriptional regulator, PmrA, QseB can direct some modifications on the LPS. In agreement with this observation, transcriptional profiling analyses demonstrate regulatory overlaps between PmrA and QseB in terms of regulating LPS modification genes. However, both PmrA and QseB must be present for UPEC to mount robust tolerance to PMB. Transcriptional and metabolomic analyses also reveal that QseB transcriptionally regulates the metabolism of glutamate and 2-oxoglutarate, which are consumed and produced during the modification of lipid A. We show that deletion of qseB alters glutamate levels in the bacterial cells. The qseB deletion mutant, which is susceptible to positively charged antibiotics, is rescued by exogenous addition of 2-oxoglutarate. These findings uncover a previously unknown mechanism of metabolic control of antibiotic tolerance that may be contributing to antibiotic treatment failure in the clinic. IMPORTANCE Although antibiotic prescriptions are guided by well-established susceptibility testing methods, antibiotic treatments oftentimes fail. The presented work is significant because it uncovers a mechanism by which bacteria transiently avoid killing by antibiotics. This mechanism involves two closely related transcription factors, PmrA and QseB, which are conserved across Enterobacterales. We demonstrate that PmrA and QseB share regulatory targets in lipid A modification pathway and prove that QseB can orchestrate modifications of lipid A in Escherichia coli in the absence of PmrA. Finally, we show that QseB controls glutamate metabolism during the antibiotic response. These results suggest that rewiring of QseB-mediated metabolic genes could lead to stable antibiotic resistance in subpopulations within the host, thereby contributing to antibiotic treatment failure.
Collapse
Affiliation(s)
- Melanie N. Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor J. Beebout
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexis Hollingsworth
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kirsten R. Guckes
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandria Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Tomas A. Bermudez
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diamond Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
- Center for Personalized Microbiology, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Gaballa A, Wiedmann M, Carroll LM. More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases. Front Cell Infect Microbiol 2023; 13:1060519. [PMID: 37360531 PMCID: PMC10285318 DOI: 10.3389/fcimb.2023.1060519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI's National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to "colistin resistance genes" through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Rhouma M, Madec JY, Laxminarayan R. Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Int J Antimicrob Agents 2023; 61:106713. [PMID: 36640846 DOI: 10.1016/j.ijantimicag.2023.106713] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes - Agence Nationale de Sécurité Sanitaire, Université de Lyon, Lyon, France
| | - Ramanan Laxminarayan
- One Health Trust, Washington, DC 20005, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
5
|
Hurst MN, Beebout CJ, Hollingsworth A, Guckes KR, Purcell A, Bermudez TA, Williams D, Reasoner SA, Trent MS, Hadjifrangiskou M. The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523522. [PMID: 36711705 PMCID: PMC9882033 DOI: 10.1101/2023.01.10.523522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The modification of lipopolysaccharide (LPS) in Escherichia coli and Salmonella spp . is primarily controlled by the two-component system PmrAB. LPS modification allows bacteria to avoid killing by positively charged antibiotics like polymyxin B. We previously demonstrated that in uropathogenic E. coli (UPEC), the sensor histidine kinase PmrB also activates a non-cognate transcription factor, QseB, and this activation somehow augments polymyxin B tolerance in UPEC. Here, we demonstrate - for the first time - that in the absence of the canonical LPS transcriptional regulator, PmrA, QseB can direct some modifications on the LPS. In agreement with this observation, transcriptional profiling analyses demonstrate regulatory overlaps between PmrA and QseB in terms of regulating LPS modification genes. However, both PmrA and QseB must be present for UPEC to mount robust tolerance to polymyxin B. Transcriptional and metabolomic analyses also reveal that QseB transcriptionally regulates the metabolism of glutamate and 2-oxoglutarate, which are consumed and produced during the modification of lipid A. We show that deletion of qseB alters glutamate levels in the bacterial cells. The qseB deletion mutant, which is susceptible to positively charged antibiotics, is rescued by exogenous addition of 2-oxoglutarate. These findings uncover a previously unknown mechanism of metabolic control of antibiotic tolerance that may be contributing to antibiotic treatment failure in the clinic. IMPORTANCE Although antibiotic prescriptions are guided by well-established susceptibility testing methods, antibiotic treatments oftentimes fail. The presented work is significant, because it uncovers a mechanism by which bacteria transiently avoid killing by antibiotics. This mechanism involves two closely related transcription factors, PmrA and QseB, which are conserved across Enterobacteriaceae. We demonstrate that PmrA and QseB share regulatory targets in lipid A modification pathway and prove that QseB can orchestrate modifications of lipid A in E. coli in the absence of PmrA. Finally, we show that QseB controls glutamate metabolism during the antibiotic response. These results suggest that rewiring of QseB-mediated metabolic genes can lead to stable antibiotic resistance in subpopulations within the host, thereby contributing to antibiotic treatment failure.
Collapse
Affiliation(s)
- Melanie N. Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Connor J. Beebout
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kirsten R. Guckes
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Tomas A. Bermudez
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diamond Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN, USA
- Center for Personalized Microbiology, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Wilson A, Fegan N, Turner MS. Co-culture with Acinetobacter johnsonii enhances benzalkonium chloride resistance in Salmonella enterica via triggering lipid A modifications. Int J Food Microbiol 2022; 381:109905. [DOI: 10.1016/j.ijfoodmicro.2022.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
|
7
|
Tartor YH, Abd El-Aziz NK, Gharieb RMA, El Damaty HM, Enany S, Soliman EA, Abdellatif SS, Attia ASA, Bahnass MM, El-Shazly YA, Elbediwi M, Ramadan H. Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr- 10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Front Microbiol 2021; 12:770813. [PMID: 34956131 PMCID: PMC8692987 DOI: 10.3389/fmicb.2021.770813] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54–0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan K Abd El-Aziz
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M A Gharieb
- Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hend M El Damaty
- Animal Medicine Department (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Enas A Soliman
- Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Samah S Abdellatif
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S A Attia
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mosa M Bahnass
- Animal Medicine Department (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yousry A El-Shazly
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed Elbediwi
- Animal Health Research Institute, Agriculture Research Center, Cairo, Egypt.,Institute of Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.,Bacterial Epidemiology and Antimicrobial Resistance Research Unit, US National Poultry Research Center, US Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| |
Collapse
|
8
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
9
|
Troudi A, Pagès JM, Brunel JM. Chemical Highlights Supporting the Role of Lipid A in Efficient Biological Adaptation of Gram-Negative Bacteria to External Stresses. J Med Chem 2021; 64:1816-1834. [PMID: 33538159 DOI: 10.1021/acs.jmedchem.0c02185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria provides an efficient barrier against external noxious compounds such as antimicrobial agents. Associated with drug target modification, it contributes to the overall failure of chemotherapy. In the complex OM architecture, Lipid A plays an essential role by anchoring the lipopolysaccharide in the membrane and ensuring the spatial organization between lipids, proteins, and sugars. Currently, the targets of almost all antibiotics are intracellularly located and require translocation across membranes. We report herein an integrated view of Lipid A synthesis, membrane assembly, a structure comparison at the molecular structure level of numerous Gram-negative bacterial species, as well as its recent use as a target for original antibacterial molecules. This review paves the way for a new vision of a key membrane component that acts during bacterial adaptation to environmental stresses and for the development of new weapons against microbial resistance to usual antibiotics.
Collapse
Affiliation(s)
- Azza Troudi
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France.,Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1008, Tunisia
| | - Jean Marie Pagès
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| | - Jean Michel Brunel
- UMR-MD1, U1261, Aix Marseille Université, INSERM, SSA, MCT, 13385 Marseille, France
| |
Collapse
|
10
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
11
|
Adak T, Morales DL, Cook AJ, Grigg JC, Murphy MEP, Tanner ME. ArnD is a deformylase involved in polymyxin resistance. Chem Commun (Camb) 2020; 56:6830-6833. [PMID: 32432293 DOI: 10.1039/d0cc02241a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The modification of lipid A with cationic 4-amino-4-deoxy-l-arabinose residues serves to confer resistance against cationic peptide antibiotics in Gram-negative bacteria. In this work, the enzyme ArnD is shown to act as a metal-dependent deformylase in the biosynthesis of this carbohydrate.
Collapse
Affiliation(s)
- Taniya Adak
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Ligowska-Marzęta M, Hancock V, Ingmer H, M Aarestrup F. Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Antibiotics (Basel) 2019; 8:antibiotics8040167. [PMID: 31569631 PMCID: PMC6963283 DOI: 10.3390/antibiotics8040167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023] Open
Abstract
Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen’s drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials.
Collapse
Affiliation(s)
- Małgorzata Ligowska-Marzęta
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark.
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Viktoria Hancock
- Renal Research & Innovation, Baxter International Inc., SE-220 10 Lund, Sweden.
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Abstract
Polymyxins are important lipopeptide antibiotics that serve as the last-line defense against multidrug-resistant (MDR) Gram-negative bacterial infections. Worryingly, the clinical utility of polymyxins is currently facing a serious threat with the global dissemination of mcr, plasmid-mediated polymyxin resistance. The first plasmid-mediated polymyxin resistance gene, termed as mcr-1 was identified in China in November 2015. Following its discovery, isolates carrying mcr, mainly mcr-1 and less commonly mcr-2 to -7, have been reported across Asia, Africa, Europe, North America, South America and Oceania. This review covers the epidemiological, microbiological and genomics aspects of this emerging threat to global human health. The mcr has been identified in various species of Gram-negative bacteria including Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Salmonella enterica, Cronobacter sakazakii, Kluyvera ascorbata, Shigella sonnei, Citrobacter freundii, Citrobacter braakii, Raoultella ornithinolytica, Proteus mirabilis, Aeromonas, Moraxella and Enterobacter species from animal, meat, food product, environment and human sources. More alarmingly is the detection of mcr in extended-spectrum-β-lactamases- and carbapenemases-producing bacteria. The mcr can be carried by different plasmids, demonstrating the high diversity of mcr plasmid reservoirs. Our review analyses the current knowledge on the emergence of mcr-mediated polymyxin resistance.
Collapse
Affiliation(s)
- Sue C Nang
- a Department of Microbiology, Monash Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Jian Li
- a Department of Microbiology, Monash Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Tony Velkov
- b Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , Australia
| |
Collapse
|
14
|
Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 2019; 24:molecules24020249. [PMID: 30641878 PMCID: PMC6359160 DOI: 10.3390/molecules24020249] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 01/11/2023] Open
Abstract
Polymyxins (polymyxin B (PMB) and polymyxin E (colistin)) are cyclic lipodecapeptide antibiotics, highly basic due to five free amino groups, and rapidly bactericidal against Gram-negative bacteria, such as the majority of Enterobacteriaceae as well as Acinetobacter baumannii and Pseudomonas aeruginosa. Their clinical use was abandoned in the 1960s because of nephrotoxicity and because better-tolerated drugs belonging to other antibiotic classes were introduced. Now, due to the global dissemination of extremely-drug resistant Gram-negative bacterial strains, polymyxins have resurged as the last-line drugs against those strains. Novel derivatives that are less toxic and/or more effective at tolerable doses are currently under preclinical development and their properties have recently been described in several extensive reviews. Other derivatives lack any direct bactericidal activity but damage the outermost permeability barrier, the outer membrane, of the target bacteria and make it more permeable to many other antibiotics. This review describes the properties of three thus far best-characterized “permeabilizer” derivatives, i.e., the classic permeabilizer polymyxin B nonapeptide (PMBN), NAB7061, and SPR741/NAB741, a compound that recently successfully passed the clinical phase 1. Also, a few other permeabilizer compounds are brought up.
Collapse
|
15
|
Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as Putative Gastrointestinal Pathogens. Clin Microbiol Rev 2018; 31:e00085-17. [PMID: 29899011 PMCID: PMC6056842 DOI: 10.1128/cmr.00085-17] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteus species, members of the Enterobacteriaceae family, are usually considered commensals in the gut and are most commonly recognized clinically as a cause of urinary tract infections. However, the recent identification of Proteus spp. as potential pathogens in Crohn's disease recurrence after intestinal resection serves as a stimulus to examine their potential role as gut pathogens. Proteus species possess many virulence factors potentially relevant to gastrointestinal pathogenicity, including motility; adherence; the production of urease, hemolysins, and IgA proteases; and the ability to acquire antibiotic resistance. Gastrointestinal conditions that have been linked to Proteus include gastroenteritis (spontaneous and foodborne), nosocomial infections, appendicitis, colonization of devices such as nasogastric tubes, and Crohn's disease. The association of Proteus species with Crohn's disease was particularly strong. Proteus species are low-abundance commensals of the human gut that harbor significant pathogenic potential; further investigation is needed.
Collapse
Affiliation(s)
- Amy L Hamilton
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
16
|
Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol 2018; 16:457-470. [DOI: 10.1038/s41579-018-0036-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Aikawa S, Inokuma K, Wakai S, Sasaki K, Ogino C, Chang JS, Hasunuma T, Kondo A. Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl 2 addition. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:50. [PMID: 29492105 PMCID: PMC5828149 DOI: 10.1186/s13068-018-1050-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The cyanobacterium Arthrospira platensis shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in A. platensis can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast Saccharomyces cerevisiae. Thus, in the presence of lysozyme, a recombinant yeast expressing α-amylase and glucoamylase can convert A. platensis directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports. RESULTS To increase the ethanol titer, a high concentration of A. platensis biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of CaCl2 increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of A. platensis. In the presence of lysozyme and CaCl2, ethanol titer, yield, and productivity improved to 48 g L-1, 93% of theoretical yield, and 1.0 g L-1 h-1 from A. platensis, corresponding to 90 g L-1 of glycogen. CONCLUSIONS We developed an ethanol conversion process using a recombinant amylase-expressing yeast from A. platensis with a high titer, yield, and productivity by adding both lysozyme and CaCl2. The direct and highly productive conversion process from A. platensis via yeast fermentation could be applied to multiple industrial bulk chemicals.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
- Present Address: Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Chiaki Ogino
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 701 Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, 230-0045 Japan
| |
Collapse
|
18
|
Vaara M. New polymyxin derivatives that display improved efficacy in animal infection models as compared to polymyxin B and colistin. Med Res Rev 2018; 38:1661-1673. [PMID: 29485690 DOI: 10.1002/med.21494] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023]
Abstract
Polymyxin B and colistin (polymyxin E) are bactericidal pentacationic lipopeptides that act specifically on Gram-negative bacteria, first by disrupting their outermost permeability barrier, the outer membrane (OM), and then damaging the cytoplasmic membrane. The discovery of both polymyxin B and colistin was published independently by three laboratories as early as in 1947. They were subsequently used in intravenous therapy. Unfortunately, they also exhibit significant and dose-limiting nephrotoxicity. Therefore, polymyxins were reserved as agents of last-line defense. The emergence of extremely multiresistant strains has now forced clinicians to reinstate polymyxins in the therapy of severe infections. However, the current dosage regimens lead to insufficient drug concentrations in serum and clinicians have been advised to use larger doses, which further increases the risk of nephrotoxicity. Very recently, the interest in developing better tolerated and more effective polymyxins has grown. This review focuses on describing four development programs that have yielded novel derivatives that are more effective than the old polymyxins in animal infection models. Compounds from three programs are superior to the old polymyxins in the rodent lung infection model with Acinetobacter baumannii and/or Pseudomonas aeruginosa. One of them is also more effective than polymyxin B in A. baumannii mouse thigh infection. The fourth program includes compounds that are approximately tenfold more effective in Escherichia coli murine pyelonephritis than polymyxin B.
Collapse
Affiliation(s)
- Martti Vaara
- Northern Antibiotics Ltd., Espoo, Finland.,Department of Bacteriology and Immunology, Helsinki University Medical School, Helsinki, Finland
| |
Collapse
|
19
|
Rabanal F, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep 2017. [PMID: 28628170 DOI: 10.1039/c7np00023e] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1947-early 2017, particularly from 2005-early 2017The rise of bacterial pathogens with acquired resistance to almost all available antibiotics is becoming a serious public health issue. Polymyxins, antibiotics that were mostly abandoned a few decades ago because of toxicity concerns, are ultimately considered as a last-line therapy to treat infections caused by multi-drug resistant Gram-negative bacteria. This review surveys the progress in understanding polymyxin structure, and their chemistry, mechanisms of antibacterial activity and nephrotoxicity, biomarkers, synergy and combination with other antimicrobial agents and antibiofilm properties. An update of recent efforts in the design and development of a new generation of polymyxin drugs is also discussed. A novel approach considering the modification of the scaffold of polymyxins to integrate metabolism and detoxification issues into the drug design process is a promising new line to potentially prevent accumulation in the kidneys and reduce nephrotoxicity.
Collapse
Affiliation(s)
- Francesc Rabanal
- Organic Chemistry Section, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Spain.
| | | |
Collapse
|
20
|
Jochumsen N, Marvig RL, Damkiær S, Jensen RL, Paulander W, Molin S, Jelsbak L, Folkesson A. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat Commun 2016; 7:13002. [PMID: 27694971 PMCID: PMC5494192 DOI: 10.1038/ncomms13002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole-genome sequencing of colistin-resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients to reconstruct the molecular evolutionary pathways open for high-level colistin resistance. We show that the evolution of resistance is a complex, multistep process that requires mutation in at least five independent loci that synergistically create the phenotype. Strong intergenic epistasis limits the number of possible evolutionary pathways to resistance. Mutations in transcriptional regulators are essential for resistance evolution and function as nodes that potentiate further evolution towards higher resistance by functionalizing and increasing the effect of the other mutations. These results add to our understanding of clinical antimicrobial peptide resistance and the prediction of resistance evolution. Colistin is an antibiotic used in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis patients. Here, Jochumsen et al. reconstruct the pathways for the molecular evolution of colistin resistance in P. aeruginosa and show that the number of pathways is highly constrained by interactions among genes.
Collapse
Affiliation(s)
- Nicholas Jochumsen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus L Marvig
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark.,Center for Genomic Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Søren Damkiær
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rune Lyngklip Jensen
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Wilhelm Paulander
- Department of Veterinary Disease Biology, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Søren Molin
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anders Folkesson
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| |
Collapse
|
21
|
Seltmann G, Lindner B, Holst O. Resistance of Serratia marcescens to polymyxin B: a comparative investigation of two S-form lipopolysaccharides obtained from a sensitive and a resistant variant of strain 111. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600300608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide (LPS) of the polymyxin B (PmB)-sensitive variant of Serratia marcescens smooth-type strain 111 (senLPS) binds significantly more PmB than that of the resistant variant (resLPS), following mild acid hydrolysis this difference is abolished. The main compositional differences between these strains are: (i) the amount of 4-amino-4-deoxy-arabinose (Ara4N); and (ii) the substitution patterns of the phosphate groups. ResLPS contains three times more Ara4N than senLPS, mainly phosphodiesters, whereas senLPS contains mainly (di)-phosphomonoesters. Thus, the senLPS, and the bacterial surface, contain a higher negative charge density. Mild acid hydrolysis decreases the PmB-binding capacity of senLPS and increases that of resLPS. The resulting change in LPS composition was a reduction in the amount of phosphate (about 40%) and a loss of nearly all the Ara4N residues, from both LPS. Mild alkaline hydrolysis removes Ara4N from both LPS, and the hydrolysate contains Ara4N-phosphate, but no Ara4N-(1 →8)-Kdo was detected. The results suggest that the 4'-phosphate of lipid A mediates the binding of PmB, whereas its substitution by Ara4N prevents it.
Collapse
Affiliation(s)
- G. Seltmann
- Robert-Koch-Institut, Bundesinstitut für Infektionskrankheiten und nicht übertragbare Krankheiten, Bereich Wernigerode, Germany
| | - B. Lindner
- Divisions of Biophysics and of Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - O. Holst
- Divisions of Biophysics and of Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
22
|
Frirdich E, Whitfield C. Review: Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the Enterobacteriaceae, the outer membrane is primarily comprised of lipopolysaccharides. The lipopolysaccharide molecule is important in mediating interactions between the bacterium and its environment and those regions of the molecule extending further away from the cell surface show a higher amount of structural diversity. The hydrophobic lipid A is highly conserved, due to its important role in the structural integrity of the outer membrane. Attached to the lipid A region is the core oligosaccharide. The inner core oligosaccharide (lipid A proximal) backbone is also well conserved. However, non-stoichiometric substitutions of the basic inner core structure lead to structural variation and microheterogeneity. These include the addition of negatively charged groups (phosphate or galacturonic acid), ethanolamine derivatives, and glycose residues (Kdo, rhamnose, galactose, glucosamine, N-acetylglucosamine, heptose, Ko). The genetics and biosynthesis of these substitutions is beginning to be elucidated. Modification of heptose residues with negatively charged molecules (such as phosphate in Escherichia coli and Salmonella and galacturonic acid in Klebsiella pneumoniae ) has been shown to be involved in maintaining membrane stability. However, the biological role(s) of the remaining substitutions is unknown.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| |
Collapse
|
23
|
Wiese A, Gutsmann T, Seydel U. Review: Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharides (LPSs) play a dual role as inflammation-inducing and as membrane-forming molecules. The former role attracts significantly more attention from scientists, possibly because it is more closely related to sepsis and septic shock. This review aims to focus the reader's attention to the other role, the function of LPS as the major constituent of the outer layer of the outer membrane of Gram-negative bacteria, in particular those of enterobacterial strains. In this function, LPS is a necessary component of the cell envelope and guarantees survival of the bacterial organism. At the same time, it represents the first target for attacking molecules which may either be synthesized by the host's innate or adaptive immune system or administered to the human body. The interaction of these molecules with the outer membrane may not only directly cause the death of the bacterial organism, but may also lead to the release of LPS into the circulation. Here, we review membrane model systems and their application for the study of molecular mechanisms of interaction of peptides such as those of the human complement system, the bactericidal/permeability-increasing protein (BPI), cationic antibacterial peptide 18 kDa (CAP18) as an example of cathelicidins, defensins, and polymyxin B (PMB). Emphasis is on electrical measurements with a reconstitution system of the lipid matrix of the outer membrane which was established in the authors' laboratory as a planar asymmetric bilayer with one leaflet being composed solely of LPS and the other of the natural phospholipid mixture. The main conclusion, which can be drawn from these investigations, is that LPS and in general its negative charges are the dominant determinants for specific peptide—membrane interactions. However, the detailed mechanisms of interaction, which finally lead to bacterial killing, may involve further steps and differ for different antibacterial peptides.
Collapse
Affiliation(s)
- Andre Wiese
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Ulrich Seydel
- Division of Biophysics, Research Center Borstel, Borstel, Germany,
| |
Collapse
|
24
|
Gronow S, Brade H. Invited review: Lipopolysaccharide biosynthesis: which steps do bacteria need to survive? ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070010301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A detailed knowledge of LPS biosynthesis is of the utmost importance in understanding the function of the outer membrane of Gram-negative bacteria. The regulation of LPS biosynthesis affects many more compartments of the bacterial cell than the outer membrane and thus contributes to the understanding of the physiology of Gram-negative bacteria in general, on the basis of which only mechanisms of virulence and antibiotic resistance can be studied to find new targets for antibacterial treatment. The study of LPS biosynthesis is also an excellent example to demonstrate the limitations of `genomics' and `proteomics', since secondary gene products can be studied only by the combined tools of molecular genetics, enzymology and analytical structural biochemistry. Thus, the door to the field of `glycomics' is opened.
Collapse
Affiliation(s)
- Sabine Gronow
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany,
| | - Helmut Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
25
|
Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:926-35. [PMID: 26751595 DOI: 10.1016/j.bbamem.2015.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
The increase in antibiotic resistant and multi-drug resistant bacterial infections has serious implications for the future of health care. The difficulty in finding both new microbial targets and new drugs against existing targets adds to the concern. The use of combination and adjuvant therapies are potential strategies to counter this threat. Antimicrobial peptides (AMPs) are a promising class of antibiotics (ABs), particularly for topical and surface applications. Efforts have been directed toward a number of strategies, including the use of conventional ABs combined with AMPs, and the use of potentiating agents to increase the performance of AMPs. This review focuses on combination strategies such as adjuvants and the manipulation of environmental variables to improve the efficacy of AMPs as potential therapeutic agents. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
|
26
|
Villarino Romero R, Hasan S, Faé K, Holubova J, Geurtsen J, Schwarzer M, Wiertsema S, Osicka R, Poolman J, Sebo P. Bordetella pertussis filamentous hemagglutinin itself does not trigger anti-inflammatory interleukin-10 production by human dendritic cells. Int J Med Microbiol 2015; 306:38-47. [PMID: 26699834 DOI: 10.1016/j.ijmm.2015.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 01/12/2023] Open
Abstract
Filamentous hemagglutinin (FHA) is an important adhesin of the whooping cough agent Bordetella pertussis and is contained in most acellular pertussis vaccines. Recently, FHA was proposed to exert an immunomodulatory activity through induction of tolerogenic IL-10 secretion from dendritic cells. We have re-evaluated the cytokine-inducing activity of FHA, placing specific emphasis on the role of the residual endotoxin contamination of FHA preparations. We show that endotoxin depletion did not affect the capacity of FHA to bind primary human monocyte-derived dendritic cells, while it abrogated the capacity of FHA to elicit TNF-α and IL-10 secretion and strongly reduced its capacity to trigger IL-6 production. The levels of cytokines induced by the different FHA preparations correlated with their residual contents of B. pertussis endotoxin. Moreover, FHA failed to trigger cytokine secretion in the presence of antibodies that block TLR2 and/or TLR4 signaling. The TLR2 signaling capacity appeared to be linked to the presence of endotoxin-associated components in FHA preparations and not to the FHA protein itself. These results show that the endotoxin-depleted FHA protein does not induce cytokine release from human dendritic cells.
Collapse
Affiliation(s)
- Rodrigo Villarino Romero
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Shakir Hasan
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kellen Faé
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Jeroen Geurtsen
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Martin Schwarzer
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Selma Wiertsema
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Poolman
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
27
|
Matamouros S, Miller SI. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3021-5. [PMID: 25644871 DOI: 10.1016/j.bbamem.2015.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Susana Matamouros
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Samuel I Miller
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA; Departments of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014; 5:643. [PMID: 25505462 PMCID: PMC4244539 DOI: 10.3389/fmicb.2014.00643] [Citation(s) in RCA: 983] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/07/2014] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS-IRD-UM2, CC065, Université Montpellier 2 Montpellier, France
| | - Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| |
Collapse
|
29
|
Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther 2014; 10:917-34. [DOI: 10.1586/eri.12.78] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Santander J, Martin T, Loh A, Pohlenz C, Gatlin DM, Curtiss R. Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and its influence on fish gut inflammation and virulence. MICROBIOLOGY (READING, ENGLAND) 2013; 159:1471-1486. [PMID: 23676433 PMCID: PMC4085987 DOI: 10.1099/mic.0.066639-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022]
Abstract
The genus Edwardsiella comprises a genetically distinct taxon related to other members of the family Enterobacteriaceae. It consists of bacteria differing strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. Intrinsic resistance to cationic antimicrobial peptides (CAMPs) is a specific property of the genus Edwardsiella. In particular, Edwardsiella ictaluri, an important pathogen of the catfish (Ictalurus punctatus) aquaculture and the causative agent of a fatal systemic infection, is highly resistant to CAMPs. E. ictaluri mechanisms of resistance to CAMPs are unknown. We hypothesized that E. ictaluri lipopolysaccharide (LPS) plays a role in both virulence and resistance to CAMPs. The putative genes related to LPS oligo-polysaccharide (O-PS) synthesis were in-frame deleted. Individual deletions of wibT, gne and ugd eliminated synthesis of the O-PS, causing auto-agglutination, rough colonies, biofilm-like formation and motility defects. Deletion of ugd, the gene that encodes the UDP-glucose dehydrogenase enzyme responsible for synthesis of UDP-glucuronic acid, causes sensitivity to CAMPs, indicating that UDP-glucuronic acid and its derivatives are related to CAMP intrinsic resistance. E. ictaluri OP-S mutants showed different levels of attenuation, colonization of lymphoid tissues and immune protection in zebrafish (Danio rerio) and catfish. Orally inoculated catfish with O-PS mutant strains presented different degrees of gut inflammation and colonization of lymphoid tissues. Here we conclude that intrinsic resistance to CAMPs is mediated by Ugd enzyme, which has a pleiotropic effect in E. ictaluri influencing LPS synthesis, motility, agglutination, fish gut inflammation and virulence.
Collapse
Affiliation(s)
- Javier Santander
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | - Taylor Martin
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Amanda Loh
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Camilo Pohlenz
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX 77843, USA
| | - Delbert M. Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX 77843, USA
- Intercollegiate Faculty of Nutrition, Texas A&M University System, College Station, TX 77843, USA
| | - Roy Curtiss
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
31
|
Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol 2013; 67:83-112. [PMID: 23799815 DOI: 10.1146/annurev-micro-092412-155751] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of gram-negative bacteria to resist killing by antimicrobial agents and to avoid detection by host immune systems often entails modification to the lipopolysaccharide (LPS) in their outer membrane. In this review, we examine the biology of the PmrA/PmrB two-component system, the major regulator of LPS modifications in the enteric pathogen Salmonella enterica. We examine the signals that activate the sensor PmrB and the targets controlled by the transcriptional regulator PmrA. We discuss the PmrA/PmrB-dependent chemical decorations of the LPS and their role in resistance to antibacterial agents. We analyze the feedback mechanisms that modulate the activity and thus output of the PmrA/PmrB system, dictating when, where, and to what extent bacteria modify their LPS. Finally, we explore the qualitative and quantitative differences in gene expression outputs resulting from the distinct PmrA/PmrB circuit architectures in closely related bacteria, which may account for their differential survival in various ecological niches.
Collapse
|
32
|
May JF, Groisman EA. Conflicting roles for a cell surface modification in Salmonella. Mol Microbiol 2013; 88:970-83. [PMID: 23646936 DOI: 10.1111/mmi.12236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
Chemical modifications of components of the bacterial cell envelope can enhance resistance to antimicrobial agents. Why then are such modifications produced only under specific conditions? Here, we address this question by examining the role of regulated variations in O-antigen length in the lipopolysaccharide (LPS), a glycolipid that forms most of the outer leaflet of the outer membrane in Gram-negative bacteria. We determined that activation of the PmrA/PmrB two-component system, which is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth of Salmonella in bile. This growth defect required the PmrA-activated gene wzz(st), which encodes the protein that determines long O-antigen chain length and confers resistance to complement-mediated killing. By contrast, this growth defect did not require the wzz(fepE) gene, which controls production of very long O-antigen, or other PmrA-activated genes that mediate modifications of lipid A or core regions of the LPS. Additionally, we establish that long O-antigen inhibits growth in bile only in the presence of enterobacterial common antigen, an outer-membrane glycolipid that contributes to bile resistance. Our results suggest that Salmonella regulates the proportion of long O-antigen in its LPS to respond to the different conditions it faces during infection.
Collapse
Affiliation(s)
- John F May
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
33
|
Abstract
Polymyxin B and colistin (polymyxin E) are bactericidal pentacationic lipopeptides that act specifically on Gram-negative bacteria, first by disrupting their outermost permeability barrier, the outer membrane (OM), and then damaging the cytoplasmic membrane. Both were discovered in the mid-1950s and subsequently used in intravenous therapy, but soon largely abandoned because of nephrotoxicity. The emergence of extremely multiresistant strains has now forced clinicians to reinstate them in the therapy of severe infections caused by such strains. This article reviews recent attempts to develop novel derivatives of polymyxins that exhibit less toxicity and greater potency than the existing drugs. In addition, studies of novel des-fatty acyl-polymyxin derivatives that display activity against Pseudomonas aeruginosa are included. The review also covers recent studies of derivatives that lack potent bactericidal action, but which disrupt the OM, which increases bacterial permeability to other antibiotics, facilitating their entry into the cell.
Collapse
Affiliation(s)
- Martti Vaara
- Division of Clinical Microbiology, Helsinki University Hospital, FI-00029 HUSLAB, Helsinki, Finland.
| |
Collapse
|
34
|
Serrato RV, Balsanelli E, Sassaki GL, Carlson RW, Muszynski A, Monteiro RA, Pedrosa FO, Souza EM, Iacomini M. Structural analysis of Herbaspirillum seropedicae lipid-A and of two mutants defective to colonize maize roots. Int J Biol Macromol 2012; 51:384-91. [DOI: 10.1016/j.ijbiomac.2012.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/16/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
35
|
Farine L, Bütikofer P. The ins and outs of phosphatidylethanolamine synthesis in Trypanosoma brucei. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:533-42. [PMID: 23010476 DOI: 10.1016/j.bbalip.2012.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/23/2022]
Abstract
Phospholipids are not only major building blocks of biological membranes but fulfill a wide range of critical functions that are often widely unrecognized. In this review, we focus on phosphatidylethanolamine, a major glycerophospholipid class in eukaryotes and bacteria, which is involved in many unexpected biological processes. We describe (i) the ins, i.e. the substrate sources and biochemical reactions involved in phosphatidylethanolamine synthesis, and (ii) the outs, i.e. the different roles of phosphatidylethanolamine and its involvement in various cellular events. We discuss how the protozoan parasite, Trypanosoma brucei, has contributed and may contribute in the future as eukaryotic model organism to our understanding of phosphatidylethanolamine homeostasis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Luce Farine
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland.
| | | |
Collapse
|
36
|
Loutet SA, Valvano MA. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front Cell Infect Microbiol 2011; 1:6. [PMID: 22919572 PMCID: PMC3417367 DOI: 10.3389/fcimb.2011.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, Ontario, Canada
| | | |
Collapse
|
37
|
Loutet SA, Valvano MA. Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia. Front Microbiol 2011; 2:159. [PMID: 21811491 PMCID: PMC3143681 DOI: 10.3389/fmicb.2011.00159] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 01/04/2023] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, ON, Canada
| | | |
Collapse
|
38
|
Jochumsen N, Liu Y, Molin S, Folkesson A. A Mig-14-like protein (PA5003) affects antimicrobial peptide recognition in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2011; 157:2647-2657. [PMID: 21700666 DOI: 10.1099/mic.0.049445-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolution of antibiotic resistance in pathogenic bacteria is a growing global health problem which is gradually making the treatment of infectious diseases less efficient. Antimicrobial peptides are small charged molecules found in organisms from the complete phylogenetic spectrum. The peptides are attractive candidates for novel drug development due to their activity against bacteria that are resistant to conventional antibiotics, and reports of peptide resistance are rare in the clinical setting. Paradoxically, many clinically relevant bacteria have mechanisms that can recognize and respond to the presence of cationic antimicrobial peptides (CAMPs) in the environment by changing the properties of the microbial surface thereby increasing the tolerance of the microbes towards the peptides. In Pseudomonas aeruginosa an essential component of this inducible tolerance mechanism is the lipopolysaccharide modification operon arnBCADTEF-PA3559 which encodes enzymes required for LPS alterations leading to increased antimicrobial peptide tolerance. The expression of the operon is induced by the presence of CAMPs in the environment but the molecular mechanisms underlying the cellular recognition of the peptides are poorly elucidated. In this work, we investigate the factors influencing arnB expression by transposon mutagenesis and arnB promoter green fluorescent protein reporters. We have identified a novel gene encoding a Mig-14-like protein that is required for recognition of the CAMPs colistin and Novispirin G10 by P. aeruginosa. Moreover, we show that this gene is also required for the formation of CAMP-tolerant subpopulations in P. aeruginosa hydrodynamic flow chamber biofilms.
Collapse
Affiliation(s)
- Nicholas Jochumsen
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yang Liu
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Søren Molin
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Anders Folkesson
- Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
39
|
Maisch T, Hackbarth S, Regensburger J, Felgenträger A, Bäumler W, Landthaler M, Röder B. Photodynamic inactivation of multi-resistant bacteria (PIB) - a new approach to treat superficial infections in the 21st century. J Dtsch Dermatol Ges 2010; 9:360-6. [PMID: 21114627 DOI: 10.1111/j.1610-0387.2010.07577.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing resistance of bacteria against antibiotics is one of the most important clinical challenges of the 21(st) century. Within the gram-positive bacteria the methicillin-resistant Staphylococcus aureus and Enterococcus faecium represent the major obstacle to successful therapy. Apart from the development of new antibiotics it requires additional differently constituted approaches, like photodynamic inactivation in order to have further effective treatment options against bacteria available. Certain dyes, termed photosensitizers, are able to store the absorbed energy in long-lived electronic states upon light activation with appropriate wavelengths and thus make these states available for chemical activation of the immediate surroundings. The interaction with molecular oxygen, which leads to different, very reactive and thus cytotoxic oxygen species, is highlighted. In this review the application of the photodynamic inactivation of bacteria will be discussed regarding the possible indications in dermatology, like localized skin and wound infections or the reduction of nosocomial colonization with multi-resistant bacteria on the skin. The crucial advantage of the local application of photosensitizers followed by irradiation of the area of interest is the fact that independent of the resistance pattern of a bacterium a direct inactivation takes place similarly as with an antiseptic. In this review the physical-chemical and biological basics of photo-dynamic inactivation of bacteria (PIB) will be discussed as well as the possible dermatological indications.
Collapse
Affiliation(s)
- Tim Maisch
- Department of Dermatology, University of Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immunocompromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.
Collapse
Affiliation(s)
- Slade A. Loutet
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Miguel A. Valvano
- Centre for Human Immunology, Department of Microbiology and Immunology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
41
|
Vaara M. Polymyxins and their novel derivatives. Curr Opin Microbiol 2010; 13:574-81. [PMID: 20869908 DOI: 10.1016/j.mib.2010.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022]
Abstract
The emerging very multiresistant Gram-negative bacteria cause remarkable therapeutic challenges. There are no novel classes of agents in clinical development for the treatment of Gram-negative infections. Polymyxins (polymyxin B and colistin) were abandoned in the seventies but are now back in the therapy as the last resort. Their nephrotoxicity may complicate the therapy or even necessitate its discontinuation. Less toxic polymyxin derivatives would be highly welcome. Novel derivatives lack in strategic positions two of the five cationic charges of polymyxins, differ from polymyxins in their renal handling and affinity to kidney brush-border membrane, and are in preclinical studies. Less characterized other recent derivatives, also reviewed here, have increased the collective knowledge on the structure-function relationships in polymyxins. Acquired resistance to polymyxins has been encountered. However, the resistance mechanism compromises the function of the bacterial outer membrane as a permeability barrier to other noxious agents.
Collapse
Affiliation(s)
- Martti Vaara
- Northern Antibiotics Ltd., Eskolantie 1, POB 72, FI-00720 Helsinki, Finland; Division of Clinical Microbiology, Helsinki University Hospital, Haartmaninkatu 3, POB 30, FI-00029 HUSLAB, Helsinki, Finland.
| |
Collapse
|
42
|
Abstract
Salmonella enterica are Gram-negative enteric pathogens that cause typhoid fever and gastroenteritis in humans. Many bacteria, including Salmonella, use signal transduction cascades such as two-component regulatory systems to detect and respond to stimuli in the local microenvironment. During infection, environmental sensing allows bacteria to regulate gene expression to evade host immune defenses and thrive in vivo. Activation of the Salmonella two-component regulatory systems PhoP-PhoQ and PmrA-PmrB and the RcsC-RcsD-RcsB phosphorylay by specific environmental signals in the intestine and within host cells leads to several lipopolysaccharide modifications that promote bacterial survival, cationic antimicrobial peptide resistance and virulence. Many pathogens encode orthologs to Salmonella two-component regulatory systems and also modify the lipopolysaccharide to escape killing by the host immune response. However, these organisms often regulate their virulence genes, including those responsible for lipopolysaccharide modification, in ways that differ from Salmonella. Further examination of bacterial virulence gene regulation and lipopolysaccharide modifications may lead to improved antimicrobial therapies and vaccines.
Collapse
|
43
|
Protecting against antimicrobial effectors in the phagosome allows SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 2010; 192:2140-9. [PMID: 20154132 DOI: 10.1128/jb.00016-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium replicates in macrophages, where it is subjected to antimicrobial substances, including superoxide, antimicrobial peptides, and proteases. The bacterium produces two periplasmic superoxide dismutases, SodCI and SodCII. Although both are expressed during infection, only SodCI contributes to virulence in the mouse by combating phagocytic superoxide. The differential contribution to virulence is at least partially due to inherent differences in the SodCI and SodCII proteins that are independent of enzymatic activity. SodCII is protease sensitive, and like other periplasmic proteins, it is released by osmotic shock. In contrast, SodCI is protease resistant and is retained within the periplasm after osmotic shock, a phenomenon that we term "tethering." We hypothesize that in the macrophage, antimicrobial peptides transiently disrupt the outer membrane. SodCII is released and/or phagocytic proteases gain access to the periplasm, and SodCII is degraded. SodCI is tethered within the periplasm and is protease resistant, thereby remaining to combat superoxide. Here we test aspects of this model. SodCII was released by the antimicrobial peptide polymyxin B or a mouse macrophage antimicrobial peptide (CRAMP), while SodCI remained tethered within the periplasm. A Salmonella pmrA constitutive mutant no longer released SodCII in vitro. Moreover, in the constitutive pmrA background, SodCII could contribute to survival of Salmonella during infection. SodCII also provided a virulence benefit in mice genetically defective in production of CRAMP. Thus, consistent with our model, protecting the outer membrane against antimicrobial peptides allows SodCII to contribute to virulence in vivo. These data also suggest direct in vivo cooperative interactions between macrophage antimicrobial effectors.
Collapse
|
44
|
Stein LH, Redding KM, Lee JJ, Nolan TJ, Schad GA, Lok JB, Abraham D. Eosinophils utilize multiple chemokine receptors for chemotaxis to the parasitic nematode Strongyloides stercoralis. J Innate Immun 2009; 1:618-30. [PMID: 20375616 PMCID: PMC2919510 DOI: 10.1159/000233235] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/12/2009] [Indexed: 02/06/2023] Open
Abstract
Protective innate immunity to the nematode Strongyloides stercoralis requires eosinophils in the parasite killing process. Experiments were performed to determine if an extract of S. stercoralis would trigger eosinophil chemotaxis, and to then compare the chemotactic migration response, including second messenger signals and receptors, to those mechanisms triggered by host chemoattractants. Eosinophils undergo both chemotaxis and chemokinesis to soluble parasite extract in transwell plates. Pretreatment of eosinophils with pertussis toxin, a G protein-coupled receptor inhibitor, inhibited migration of the eosinophils to the parasite extract. Likewise, blocking PI3K, tyrosine kinase, p38 and p44/42 inhibited eosinophil chemotaxis to parasite extract. Furthermore, CCR3, CXCR4 or CXCR2 antagonists significantly inhibited eosinophil chemotaxis to the parasite extract. Molecular weight fractionation of parasite extract revealed that molecules attracting eosinophils were present in several fractions, with molecules greater than 30 kDa being the most potent. Treating the extract with proteinase K or chitinase significantly inhibited its ability to induce chemotaxis, thereby demonstrating that the chemoattractants were both protein and chitin. Therefore, chemoattractants derived from parasites and host species stimulate similar receptors and second messenger signals to induce eosinophil chemotaxis. Parasite extract stimulates multiple receptors on the eosinophil surface, which ensures a robust innate immune response to the parasite.
Collapse
Affiliation(s)
- Louis H. Stein
- Department of Microbiology and Immunology, Thomas Jefferson University, Scottsdale, Ariz., USA
| | - Kevin M. Redding
- Department of Microbiology and Immunology, Thomas Jefferson University, Scottsdale, Ariz., USA
| | - James J. Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Ariz., USA
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pa., USA
| | - Gerhard A. Schad
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pa., USA
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pa., USA
| | - David Abraham
- Department of Microbiology and Immunology, Thomas Jefferson University, Scottsdale, Ariz., USA
| |
Collapse
|
45
|
Contributions of two UDP-glucose dehydrogenases to viability and polymyxin B resistance of Burkholderia cenocepacia. Microbiology (Reading) 2009; 155:2029-2039. [DOI: 10.1099/mic.0.027607-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cenocepacia is highly resistant to antimicrobial peptides and we hypothesized that the conversion of UDP-glucose to UDP-glucuronic acid, a reaction catalysed by the enzyme UDP-glucose dehydrogenase (Ugd) would be important for this resistance. The genome of B. cenocepacia contains three predicted ugd genes: ugdBCAL2946
, ugdBCAM0855
and ugdBCAM2034
, all of which were individually inactivated. Only inactivation of ugdBCAL2946
resulted in increased sensitivity to polymyxin B and this sensitivity could be overcome when either ugdBCAL2946
or ugdBCAM0855
but not ugdBCAM2034
was expressed from plasmids. The growth of a conditional ugdBCAL2946
mutant, created in the ΔugdBCAM0855
background, was significantly impaired under non-permissive conditions. Growth could be rescued by either ugdBCAL2946
or ugdBCAM0855
expressed in trans, but not by ugdBCAM2034
. Biochemical analysis of the purified, recombinant forms of UgdBCAL2946 and UgdBCAM0855 revealed that they are soluble homodimers with similar in vitro Ugd activity and comparable kinetic constants for their substrates UDP-glucose and NAD+. Purified UgdBCAM2034 showed no in vitro Ugd activity. Real-time PCR analysis showed that the expression of ugdBCAL2946
was 5.4- and 135-fold greater than that of ugdBCAM0855
and ugdBCAM2034
, respectively. Together, these data indicate that the combined activity of UgdBCAL2946 and UgdBCAM0855 is essential for the survival of B. cenocepacia but only the most highly expressed ugd gene, ugdBCAL2946
, is required for polymyxin B resistance.
Collapse
|
46
|
Nasnas R, Saliba G, Hallak P. The revival of colistin: An old antibiotic for the 21st century. ACTA ACUST UNITED AC 2009; 57:229-35. [DOI: 10.1016/j.patbio.2007.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
|
47
|
|
48
|
Outer membrane permeability and antibiotic resistance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:808-16. [PMID: 19100346 DOI: 10.1016/j.bbapap.2008.11.005] [Citation(s) in RCA: 1048] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 01/19/2023]
Abstract
To date most antibiotics are targeted at intracellular processes, and must be able to penetrate the bacterial cell envelope. In particular, the outer membrane of gram-negative bacteria provides a formidable barrier that must be overcome. There are essentially two pathways that antibiotics can take through the outer membrane: a lipid-mediated pathway for hydrophobic antibiotics, and general diffusion porins for hydrophilic antibiotics. The lipid and protein compositions of the outer membrane have a strong impact on the sensitivity of bacteria to many types of antibiotics, and drug resistance involving modifications of these macromolecules is common. This review will describe the molecular mechanisms for permeation of antibiotics through the outer membrane, and the strategies that bacteria have deployed to resist antibiotics by modifications of these pathways.
Collapse
|
49
|
Folkesson A, Haagensen JAJ, Zampaloni C, Sternberg C, Molin S. Biofilm induced tolerance towards antimicrobial peptides. PLoS One 2008; 3:e1891. [PMID: 18382672 PMCID: PMC2270907 DOI: 10.1371/journal.pone.0001891] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/23/2008] [Indexed: 11/18/2022] Open
Abstract
Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.
Collapse
Affiliation(s)
- Anders Folkesson
- Infection Microbiology Group, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
50
|
Genetic and functional analyses of PptA, a phospho-form transferase targeting type IV pili in Neisseria gonorrhoeae. J Bacteriol 2007; 190:387-400. [PMID: 17951381 DOI: 10.1128/jb.00765-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The PilE pilin subunit protein of Neisseria gonorrhoeae undergoes unique covalent modifications with phosphoethanolamine (PE) and phosphocholine (PC). The pilin phospho-form transferase A (PptA) protein, required for these modifications, shows sequence relatedness with and architectural similarities to lipopolysaccharide PE transferases. Here, we used regulated expression and mutagenesis as means to better define the relationships between PptA structure and function, as well as to probe the mechanisms by which other factors impact the system. We show here that pptA expression is coupled at the level of transcription to its distal gene, murF, in a division/cell wall gene operon and that PptA can act in a dose-dependent fashion in PilE phospho-form modification. Molecular modeling and site-directed mutagenesis provided the first direct evidence that PptA is a member of the alkaline phosphatase superfamily of metalloenzymes with similar metal-binding sites and conserved structural folds. Through phylogenetic analyses and sequence alignments, these conclusions were extended to include the lipopolysaccharide PE transferases, including members of the disparate Lpt6 subfamily, and the MdoB family of phosphoglycerol transferases. Each of these enzymes thus likely acts as a phospholipid head group transferase whose catalytic mechanism involves a trans-esterification step generating a protein-phospho-form ester intermediate. Coexpression of PptA with PilE in Pseudomonas aeruginosa resulted in high levels of PE modification but was not sufficient for PC modification. This and other findings show that PptA-associated PC modification is governed by as-yet-undefined ancillary factors unique to N. gonorrhoeae.
Collapse
|