1
|
Sheriff J, Malone LE, Avila C, Zigomalas A, Bluestein D, Bahou WF. Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood. Cell Mol Bioeng 2020; 13:575-590. [PMID: 33281988 PMCID: PMC7704822 DOI: 10.1007/s12195-020-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Antiplatelet therapy for neonates and infants is often extrapolated from the adult experience, based on limited observation of agonist-induced neonatal platelet hypoactivity and poor understanding of flow shear-mediated platelet activation. Therefore, thrombotic events due to device-associated disturbed flow are inadequately mitigated in critically ill neonates with indwelling umbilical catheters and infants receiving cardiovascular implants. METHODS Whole blood (WB), platelet-rich plasma (PRP), and gel-filtered platelets (GFP) were prepared from umbilical cord and adult blood, and exposed to biochemical agonists or pathological shear stress of 70 dyne/cm2. We evaluated α-granule release, phosphatidylserine (PS) scrambling, and procoagulant response using P-selectin expression, Annexin V binding, and thrombin generation (PAS), respectively. Activation modulation due to depletion of intracellular and extracellular calcium, requisite second messengers, was also examined. RESULTS Similar P-selectin expression was observed for sheared adult and cord platelets, with concordant inhibition due to intracellular and extracellular calcium depletion. Sheared cord platelet Annexin V binding and PAS activity was similar to adult values in GFP, but lower in PRP and WB. Annexin V on sheared cord platelets was calcium-independent, with PAS slightly reduced by intracellular calcium depletion. CONCLUSIONS Increased PS activity on purified sheared cord platelets suggest that their intrinsic function under pathological flow conditions is suppressed by cell-cell or plasmatic components. Although secretory functions of adult and cord platelets retain comparable calcium-dependence, PS exposure in sheared cord platelets is uniquely calcium-independent and distinct from adults. Identification of calcium-regulated developmental disparities in shear-mediated platelet function may provide novel targets for age-specific antiplatelet therapy.
Collapse
Affiliation(s)
- Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Lisa E. Malone
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Cecilia Avila
- Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Amanda Zigomalas
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Wadie F. Bahou
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
2
|
|
3
|
|
4
|
Abstract
The energy-dependent release of granule contents from activated platelets is a well-established component of normal hemostasis and thrombosis. A role for membrane fusion in this process has been presumed for decades, but only recently have the mechanisms of platelet membrane fusion been investigated at the molecular level. Such studies have demonstrated that platelet membrane fusion is controlled by lipid components of the membrane bilayer, by transmembrane proteins termed SNARE proteins, and by chaperone proteins that interact with SNARE proteins. This core membrane fusion machinery is controlled by activation-dependent changes in cytoskeletal organization, intracellular calcium levels, kinase activity, and intracellular protease activity. Through these mechanisms, interactions of ligands with their cognate cell-surface receptors are transmitted to the membrane fusion machinery to facilitate membrane fusion and secretion of granule contents from platelets.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Center for Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02115, USA.
| |
Collapse
|
5
|
Trifaró JM, Vitale ML, Rodríguez Del Castillo A. Cytoskeleton and molecular mechanisms in neurotransmitter release by neurosecretory cells. Eur J Pharmacol 1992; 225:83-104. [PMID: 1348034 DOI: 10.1016/0922-4106(92)90088-d] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The process of exocytosis is a fascinating interplay between secretory vesicles and cellular components. Secretory vesicles are true organelles which not only store and protect neurotransmitters from inactivation but also provide the cell with efficient carriers of material for export. Different types of secretory vesicles are described and their membrane components compared. Associations of several cytoplasmic proteins and cytoskeletal components with secretory vesicles and the importance of such associations in the mechanism of secretion are discussed. A description of possible sites of action for Ca2+ as well as possible roles for calmodulin, G-proteins and protein kinase C in secretion are also presented. Important aspects of the cytoskeleton of neurosecretory cells are discussed. The cytoskeleton undergoes dynamic changes as a result of cell stimulation. These changes (i.e. actin filament disassembly) which are a prelude to exocytosis, play a central role in secretion. Moreover, advanced electrophysiological techniques which allow the study of secretory vesicle-plasma membrane fusion in real-time resolution and at the level of the single secretory vesicle, have also provided a better understanding of the secretory process.
Collapse
Affiliation(s)
- J M Trifaró
- Department of Pharmacology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
6
|
Kopeikina-Tsiboukidou L, Deliconstantinos G. Calmodulin selectively modulates the guanylate cyclase activity by repressing the lipid phase separation temperature in the inner half of the bilayer of rat brain synaptosomal plasma membranes. Neurochem Res 1989; 14:119-27. [PMID: 2566939 DOI: 10.1007/bf00969626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The association of [125I-]calmodulin with rat brain synaptosomal plasma membranes, when incubated for 1 h at 25 degrees in the presence or in absence of 20 microM Ca2+, follows a sigmoid path with a Hill coefficient h = 1.79 +/- 0.12 and h = 1.72 +/- 0.11, respectively. The total association of calmodulin with the membrane increased approx. 60%-80% at all the range of calmodulin concentrations used in the presence of 20 microM Ca2+. A three fold increase of guanylate cyclase activity was shown in the presence of low concentrations of calmodulin (up to 10 nM); higher concentrations (up to 40 nM) however, led to a progressive inhibition of the enzyme activity with respect to maximal stimulation. Calmodulin increased the lipid fluidity of synaptosomal plasma membranes labeled with 1,6-diphenyl-1,3,5-hexatriene (DPH), as indicated by the steady-state fluorescence anisotropy [(ro/r)-1]-1. Arrhenius-type plots of [(ro/r)-1]-1 indicated that the lipid separation of the membrane at 22.7 +/- 1.2 degrees was perturbed by calmodulin such that the temperature was reduced to 16.3 +/- 0.9 degrees and 15.5 +/- 0.8 degrees in the absence or in the presence of 20 microM Ca2+. Arrhenius plots of guanylate cyclase and acetylcholinesterase activities exhibited break points at 26.7 +/- 1.4 degrees and 22.3 +/- 1.0 degrees in control synaptosomal plasma membranes, respectively. The break point for the guanylate cyclase was reduced to 16.3 +/- 0.9 degrees in calmodulin treated synaptosomal plasma membranes whereas that of acetylcholinesterase remained unaffected (21.1 +/- 0.9 degrees).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
7
|
Trifaró JM, Fournier S, Novas ML. The p65 protein is a calmodulin-binding protein present in several types of secretory vesicles. Neuroscience 1989; 29:1-8. [PMID: 2651966 DOI: 10.1016/0306-4522(89)90327-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- J M Trifaró
- Department of Pharmacology, School of Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
8
|
Abstract
Calmodulin-binding proteins present in chromaffin cell plasma membranes were isolated and directly compared with calmodulin-binding proteins present in chromaffin granule membranes. Chromaffin cell plasma membranes were prepared using Cytodex 1 microcarriers. Marker enzyme studies on this preparation showed a nine- to 10-fold plasma membrane enrichment over cell homogenates and a low contamination of these plasma membranes by subcellular organelles. Plasma membranes prepared in this manner were solubilized with Triton X-100 and applied to a calmodulin-affinity column in the presence of calcium. Several major calmodulin-binding proteins (240, 105, and 65 kilodaltons) were eluted by an EGTA-containing buffer. 125I-Calmodulin overlay experiments on nitrocellulose sheets containing both chromaffin plasma and granule membranes showed that these two membranes have several calmodulin-binding proteins in common (65, 60, 53, and 50 kilodaltons), as well as unique calmodulin-binding proteins (34 kilodaltons in granule membranes and 240 and 160 kilodaltons in plasma membranes). The 65-kilodalton calmodulin-binding protein present in both membrane types was shown to consist of two isoforms (pI 6.0 and 6.2) by two-dimensional gel electrophoresis. Previous experiments from our laboratory, using two monoclonal antibodies (mAb 30 and mAb 48) specific for a rat brain synaptic vesicle membrane protein (p65), showed that the monoclonal antibodies reacted with a 65-kilodalton calmodulin-binding protein present in at least three neurosecretory vesicles (chromaffin granules, neurohypophyseal granules, and rat brain synaptic vesicles). When these monoclonal antibodies were tested on chromaffin cell plasma membranes and calmodulin-binding proteins isolated from these membranes, they recognized a 65-kilodalton protein. These results indicate that an immunologically identical calmodulin-binding protein is expressed in both chromaffin granule membranes (as well as other secretory vesicle membranes) and chromaffin cell plasma membranes, thus suggesting a possible role for this protein in granule/plasma membrane interaction.
Collapse
Affiliation(s)
- S Fournier
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
9
|
Fournier S, Trifaró JM. A similar calmodulin-binding protein expressed in chromaffin, synaptic, and neurohypophyseal secretory vesicles. J Neurochem 1988; 50:27-37. [PMID: 3335845 DOI: 10.1111/j.1471-4159.1988.tb13225.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.
Collapse
Affiliation(s)
- S Fournier
- Department of Pharmacology, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
10
|
|
11
|
Nelson TY, Lorenson MY, Jacobs LS, Boyd AE. Distribution of calmodulin and calmodulin-binding proteins in bovine pituitary: association of myosin light chain kinase with pituitary secretory granule membranes. Mol Cell Biochem 1987; 74:83-94. [PMID: 3587233 DOI: 10.1007/bf00221915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calcium is necessary for secretion of pituitary hormones. Many of the biological effects of Ca2+ are mediated by the Ca2+-binding protein calmodulin (CaM), which interacts specifically with proteins regulated by the Ca2+-CaM complex. One of these proteins is myosin light chain kinase (MLCK), a Ca2+-calmodulin dependent enzyme that phosphorylates the regulatory light chains of myosin, and has been implicated in motile processes in both muscle and non-muscle tissues. We determined the content and distribution of CaM and CaM-binding proteins in bovine pituitary homogenates, and subcellular fractions including secretory granules and secretory granule membranes. CaM measured by radioimmunoassay was found in each fraction; although approximately one-half was in the cytosolic fraction, CaM was also associated with the plasma membrane and secretory granule fractions. CaM-binding proteins were identified by an 125I-CaM gel overlay technique and quantitated by densitometric analysis of the autoradiograms. Pituitary homogenates contained nine major CaM-binding proteins of 146, 131, 90, 64, 58, 56, 52, 31 and 22 kilodaltons (kDa). Binding to all the bands was specific, Ca2+-sensitive, and displaceable with excess unlabeled CaM. Severe heat treatment (100 degrees C, 15 min), which results in a 75% reduction in phosphodiesterase activation by CaM, markedly decreased 125I-CaM binding to all protein bands. Secretory granule membranes showed enhancement for CaM-binding proteins with molecular weights of 184, 146, 131, 90, and 52,000. A specific, affinity purified antibody to chicken gizzard MLCK bound to the 146 kDa band in homogenates, centrifugal subcellular fractions, and secretory granule membrane. No such binding was associated with the granule contents. The enrichment of MLCK and other CaM-binding proteins in pituitary secretory granule membranes suggest a possible role for CaM and/or CaM-binding proteins in granule membrane function and possibly exocytosis.
Collapse
|
12
|
Abstract
The Ca ion plays a central role in the control of the regulated pathway of exocytotic secretion in eukaryote cells. Most secretagogues either directly or indirectly raise cytosolic free Ca levels which in turn affects granule biogenesis, contractile events, gel/sol transition in intracellular matrix and membrane fusion events occurring at exocytosis. Many of these responses are mediated by Ca-binding proteins among which calmodulin and protein kinase C have received prominent attention. Studies of the nature and inter-relationship of proteins which undergo Ca-dependent association with intracellular membranes in secretory tissue reveal that there may be further Ca-binding proteins in these cells which act as intracellular transducers of the Ca signal during secretion.
Collapse
|
13
|
Chenoufi HL, Engberg E, Slaninová J, Thorn NA. Identification of calmodulin-binding proteins on membranes of secretory granules isolated from bovine neurohypophyses. ACTA PHYSIOLOGICA SCANDINAVICA 1986; 127:33-8. [PMID: 3728045 DOI: 10.1111/j.1748-1716.1986.tb07872.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Membrane proteins from isolated, purified ox neurohypophyseal secretory granules were separated by sodium dodecylsulphate (SDS) polyacrylamide gel electrophoresis (PAGE). Using a gel overlay technique, after renaturation procedures, it was demonstrated that 125J calmodulin bound in a Ca2+-dependent way to two protein bands with molecular weights (MW) of 58,000 and 52,000. Binding of small amounts of calmodulin to other protein bands was independent of calcium. No calmodulin binding to granule content proteins could be detected. Treatment of the granules with trypsin prior to separation of membrane proteins removed the Ca2+-dependent binding proteins from the granule membrane. On incubation of granules with [gamma-32P]ATP, protein bands with MW of 52,000 and 45,000 showed a marked phosphorylation activity. The 52,000 band had the same electrophoretic mobility as one of the calmodulin-binding bands. However, no effect of calmodulin on phosphorylation of this band could be demonstrated.
Collapse
|
14
|
Puszkin EG, Raghuraman V. Catalytic properties of a calmodulin-regulated transglutaminase from human platelet and chicken gizzard. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)36359-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Abstract
Protein secretion from cells can take several forms. Secretion is constitutive if proteins are secreted as fast as they are synthesized. In regulated secretion newly synthesized proteins destined for secretion are stored at high concentration in secretory vesicles until the cell receives an appropriate stimulus. When both constitutive and regulated protein secretion can take place in the same cell a mechanism must exist for sorting the correct secretory protein into the correct secretory vesicle. The secretory vesicle must then be delivered to the appropriate region of plasma membrane. Transfection of DNA encoding foreign secretory proteins into regulated secretory cells has provided insight into the specificity of sorting into secretory vesicles.
Collapse
|
16
|
Bader MF, Hikita T, Trifaró JM. Calcium-dependent calmodulin binding to chromaffin granule membranes: presence of a 65-kilodalton calmodulin-binding protein. J Neurochem 1985; 44:526-39. [PMID: 2981287 DOI: 10.1111/j.1471-4159.1985.tb05445.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The presence of calmodulin-binding sites on chromaffin granule membranes has been investigated. Saturable, high-affinity 125I-calmodulin-binding sites (KD = 9.8 nM; Bmax = 25 pmol/mg protein) were observed in the presence of 10(-4) M free calcium. A second, nonsaturable, calmodulin-binding activity could also be detected at 10(-7) M free calcium. No binding occurred at lower calcium levels. When chromaffin granule membranes were delipidated by solvent extraction, calmodulin binding was observed at 10(-4) M free calcium. However no binding was detected at lower calcium concentrations. Thus it appears that a calcium concentration of 10(-7) M promotes the binding of calmodulin to some solvent-soluble components of the chromaffin granule membrane. Calmodulin-binding proteins associated with the granule membrane identified by photoaffinity cross-linking. A calmodulin-binding protein complex, of molecular weight 82K, was formed in the presence of 10(-4) M free calcium. This cross-linked product was specific because it was not detected either in the absence of calcium, in the presence of nonlabeled calmodulin, or in the absence of cross-linker activation. When solvent-treated membranes were used, a second, specific, calmodulin-binding protein complex (70K) was formed. Since the apparent molecular weight of calmodulin in our electrophoresis system was 17K, these experiments suggested the presence of two calmodulin-binding proteins, of molecular weights 65K and 53K, in the chromaffin granule membrane. This result was confirmed by the use of calmodulin-affinity chromatography. When detergent-solubilized membranes were applied on the column in the presence of calcium, two polypeptides of apparent molecular weights of 65K and 53K were specifically eluted by EGTA buffers. Since detergent treatments or solvent extractions are necessary to detect the 53K calmodulin-binding protein, it is concluded that only the 65K calmodulin-binding polypeptide may play a role in the interaction between calmodulin and secretory granules in chromaffin cells.
Collapse
|
17
|
Nagao S, Nozawa Y. Calmodulin-binding proteins of Tetrahymena microsomal membranes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1985; 82:689-93. [PMID: 3937657 DOI: 10.1016/0305-0491(85)90509-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tetrahymena calmodulin radioiodinated with a lactoperoxidase method retained full ability to activate Tetrahymena guanylate cyclase. Binding of [125I]calmodulin to Tetrahymena microsomal membranes was Ca2+-dependent and inhibited by excess unlabeled calmodulin or trifluoperazine. When Triton X-100-solubilized microsomes were chromatographed on calmodulin Sepharose, several proteins were found to interact with calmodulin in a Ca2+-dependent manner.
Collapse
|
18
|
Hikita T, Bader MF, Trifaró JM. Adrenal chromaffin cell calmodulin: its subcellular distribution and binding to chromaffin granule membrane proteins. J Neurochem 1984; 43:1087-97. [PMID: 6088691 DOI: 10.1111/j.1471-4159.1984.tb12848.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bovine adrenal medullae were homogenized in the presence or in the absence of EGTA and different subcellular fractions were prepared by differential and density gradient centrifugations. In the presence of the chelating agent, 69% of the total calmodulin, measured by radioimmunoassay, was present in the cytosol; the rest was bound to different membrane-containing fractions (nuclei, microsomal, and crude granule fraction). When the chelating agent was omitted, 43% of the calmodulin was present in the cytosol, the remaining calmodulin being membrane-bound. Further resolution of the crude granule fraction by sucrose density centrifugation demonstrated that the distribution of calmodulin in the density gradient was similar to the distribution of chromaffin granules rather than to that of mitochondria, Golgi elements, and lysosomes. In this case, there was also more calmodulin bound to chromaffin granules when EGTA was omitted from the density gradient. Experiments with 125I-calmodulin indicated the presence of high-affinity binding sites (KD = 1.3 X 10(-8) M; Bmax = 30 pmol/mg protein) for calmodulin in chromaffin granule membranes. Further, photoaffinity crosslinking experiments with 125I-calmodulin followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography indicated the presence of three calmodulin-binding polypeptide complexes (84,000; 41,000; and 38,000 daltons) in chromaffin granule membranes. These polypeptides were not labelled when either Ca2+ was omitted or an excess of nonradioactive calmodulin was present in the photolysis buffer, indicating the Ca2+ dependency and the specificity of the interaction. On the basis of the results described, it is suggested that the cellular levels of Ca2+ control the cellular distribution of calmodulin and its binding to specific chromaffin granule membrane proteins. Further, it is also suggested that the interactions between calmodulin and granule proteins might play a role in stimulus-secretion coupling.
Collapse
|
19
|
|
20
|
Hooper JE, Kelly RB. Calmodulin is tightly associated with synaptic vesicles independent of calcium. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43633-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Olsen SF, Slaninova J, Treiman M, Saermark T, Thorn NA. Calmodulin binding to secretory granules isolated from bovine neurohypophyses. ACTA PHYSIOLOGICA SCANDINAVICA 1983; 118:355-9. [PMID: 6314746 DOI: 10.1111/j.1748-1716.1983.tb07283.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Secretory granules, isolated from bovine neurohypophyses on isoosmolar Percoll-sucrose-EGTA gradients had a calmodulin content of 0.09 +/- 0.01 micrograms/mg protein (SE, n = 6). The distribution of calmodulin on the gradient showed that it did not copurify with the granules. Specific binding sites for calmodulin with a high affinity (Kd = 2.43 +/- 0.27 X 10(-9) M (SE, n = 5] and a maximum binding capacity of 1.3 +/- 0.4 pmol/mg protein (SE, n = 5) could be demonstrated when such secretory granules were incubated with 125I-calmodulin.
Collapse
|
22
|
Geisow MJ, Burgoyne RD. Recruitment of cytosolic proteins to a secretory granule membrane depends on Ca2+-calmodulin. Nature 1983; 301:432-5. [PMID: 6823320 DOI: 10.1038/301432a0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An increase in free calcium triggers catecholamine secretion from chromaffin cells and calmodulin is strongly implicated as the intracellular Ca2+ receptor. In our recent studies of calmodulin action in the chromaffin cell, micromolar Ca2+ concentrations resulted in calmodulin and cytosolic proteins becoming bound to the chromaffin granule membranes. We now report that calmodulin is bound with high affinity to granule membrane proteins of molecular weights (Mrs) 25,000 and 22,000 (25K and 22K) at low Ca2+ (less than 10(-8) M) and to proteins with Mrs 69K and 50K at high Ca2+ (greater than 1 microM). Other cytosolic components (Mrs 70K, 36K, 34K and 32K) require calmodulin for their interfraction with membrane. These proteins separately bound to calmodulin-Sepharose at high Ca2+ concentrations. Although the functions of these adrenal proteins have not been established, the 34K and 32K Mr components co-migrate with clathrin light chains isolated from medullary coated vesicles and the Mr 34K components from both sources share the same one-dimensional peptide map. These interactions were observed at micromolar Ca2+ levels at 'intracellular' conditions of pH and ionic strength and would be expected to occur during secretion from the chromaffin cell.
Collapse
|
23
|
|
24
|
Grinstein S, Furuya W. A Mg2+-stimulated ATPase in platelet alpha-granule membranes: possible involvement in proton translocation. Arch Biochem Biophys 1982; 218:502-12. [PMID: 6130746 DOI: 10.1016/0003-9861(82)90374-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|