1
|
Guardia AE, Beligni MV, Cortéz N, Busalmen J. Electrochemistry of R. palustris Azul during phototrophic growth. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Verméglio A, Lavergne J, Rappaport F. Connectivity of the intracytoplasmic membrane of Rhodobacter sphaeroides: a functional approach. PHOTOSYNTHESIS RESEARCH 2016; 127:13-24. [PMID: 25512104 DOI: 10.1007/s11120-014-0068-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
The photosynthetic apparatus in the bacterium Rhodobacter sphaeroides is mostly present in intracytoplasmic membrane invaginations. It has long been debated whether these invaginations remain in topological continuity with the cytoplasmic membrane, or form isolated chromatophore vesicles. This issue is revisited here by functional approaches. The ionophore gramicidin was used as a probe of the relative size of the electro-osmotic units in isolated chromatophores, spheroplasts, or intact cells. The decay of the membrane potential was monitored from the electrochromic shift of carotenoids. The half-time of the decay induced by a single channel in intact cells was about 6 ms, thus three orders of magnitude slower than in isolated chromatophores. In spheroplasts obtained by lysis of the cell wall, the single channel decay was still slower (~23 ms) and the sensitivity toward the gramicidin concentration was enhanced 1,000-fold with respect to isolated chromatophores. These results indicate that the area of the functional membrane in cells or spheroplasts is about three orders of magnitude larger than that of isolated chromatophores. Intracytoplasmic vesicles, if present, could contribute to at most 10% of the photosynthetic apparatus in intact cells of Rba. sphaeroides. Similar conclusions were obtained from the effect of a ∆pH-induced diffusion potential in intact cells. This caused a large electrochromic response of carotenoids, of similar amplitude as the light-induced change, indicating that most of the system is sensitive to a pH change of the external medium. A single internal membrane and periplasmic space may offer significant advantages concerning renewal of the photosynthetic apparatus and reallocation of the components shared with other bioenergetic pathways.
Collapse
Affiliation(s)
- André Verméglio
- CEA, IBEB, Laboratoire de Bioénergétique Cellulaire, 13108, Saint-Paul-Lez-Durance, France.
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, 13108, Saint-Paul-Lez-Durance, France.
- Aix Marseille Université, BVME UMR7265, 13284, Marseille, France.
| | - Jérôme Lavergne
- CEA, IBEB, Laboratoire de Bioénergétique Cellulaire, 13108, Saint-Paul-Lez-Durance, France
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, 13108, Saint-Paul-Lez-Durance, France
- Aix Marseille Université, BVME UMR7265, 13284, Marseille, France
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13, rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
3
|
Ellington MJK, Richardson DJ, Ferguson SJ. Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions. MICROBIOLOGY (READING, ENGLAND) 2003; 149:941-948. [PMID: 12686636 DOI: 10.1099/mic.0.26090-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhodobacter capsulatus N22DNAR(+) possesses a periplasmic nitrate reductase and is capable of reducing nitrate to nitrite under anaerobic conditions. In the absence of light this ability cannot support chemoheterotrophic growth in batch cultures. This study investigated the effect of nitrate reduction on the growth of R. capsulatus N22DNAR(+) during multiple light-dark cycles of anaerobic photoheterotrophic/dark chemoheterotrophic growth conditions in carbon-limited continuous cultures. The reduction of nitrate did not affect the photoheterotrophic growth yield of R. capsulatus N22DNAR(+). After a transition from photoheterotrophic to dark chemoheterotrophic growth conditions, the reduction of nitrate slowed the initial washout of a R. capsulatus N22DNAR(+) culture. Towards the end of a period of darkness nitrate-reducing cultures maintained higher viable cell counts than non-nitrate-reducing cultures. During light-dark cycling of a mixed culture, the strain able to reduce nitrate (N22DNAR(+)) outcompeted the strain which was unable to reduce nitrate (N22). The evidence indicates that the periplasmic nitrate reductase activity supports slow growth that retards the washout of a culture during anaerobic chemoheterotrophic conditions, and provides a protonmotive force for cell maintenance during the dark period before reillumination. This translates into a selective advantage during repeated light-dark cycles, such that in mixed culture N22DNAR(+) outcompetes N22. Exposure to light-dark cycles will be a common feature for R. capsulatus in its natural habitats, and this study shows that nitrate respiration may provide a selective advantage under such conditions.
Collapse
Affiliation(s)
- M J K Ellington
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - D J Richardson
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - S J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Sabaty M, Schwintner C, Cahors S, Richaud P, Verméglio A. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J Bacteriol 1999; 181:6028-32. [PMID: 10498715 PMCID: PMC103630 DOI: 10.1128/jb.181.19.6028-6032.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase.
Collapse
Affiliation(s)
- M Sabaty
- Commissariat à l'Energie Atomique/Cadarache DSV, DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 St. Paul lez Durance Cedex, France.
| | | | | | | | | |
Collapse
|
5
|
Dobbin PS, Warren LH, Cook NJ, McEwan AG, Powell AK, Richardson DJ. Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology (Reading) 1996; 142:765-774. [DOI: 10.1099/00221287-142-4-765] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic proteobacterium
Rhodobacter capsulatus
was shown to be capable of dissimilatory Fe(III) reduction. Activity was expressed during anaerobic phototrophic and microaerobic growth with malate as the carbon source, but not during equivalent aerobic growth. A variety of Fe(III) complexes were demonstrated to act as substrates for intact cells and membrane fractions of strain N22DNAR+ using a ferrozine assay for Fe(II) formation. Rates of reduction appeared to be influenced by the reduction potentials of the Fe(III) complexes. However, Fe(III) complexed by citrate, which is readily reduced by Shewanella putrefaciens, was a poor substrate for dissimilation by R. capsulatus. The Fe(III)-reducing activity of R. capsulatus was located solely in the membrane fraction. The reduction of Fe(III) complexes by intact cells was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), suggesting the involvement of ubiquinol: cytochrome c oxidoreductases in the electron transport chain. Lack of sensitivity to myxothiazol plus data from mutant strains implies that the cytochrome bc
1 complex and cytochrome c
2 are not obligatory for dissimilation of Fe(III)(maltol)3. Alternative pathways of electron transfer to Fe(III) must hence operate in R. capsulatus. Using strain N22DNAR+, the reduction rate of Fe(III) complexed by nitrilotriacetic acid (NTA) was elevated compared to that of Fe(III)(maltol)3, and moreover was sensitive to myxothiazol. However, these differences were not observed in the absence of the electron donor malate. The governing factor for the reduction rate of Fe(III)(maltol)3 thus appears to be the limited Fe(III)-reducing activity, whilst the reduction rate of Fe(III) complexed by NTA is controlled by the flux of electrons through the respiratory chain. The use of mutant strains confirmed that the role of the cytochrome bc
1 complex in Fe(III) reduction becomes apparent only with the superior substrate. The energy-conserving nature of Fe(III) reduction by R. capsulatus was demonstrated by electrochromic measurements, with the endogenous carotenoid pigments being employed as indicators of membrane potential generation in intact cells. Using Fe(III)EDTA as electron acceptor, periods of membrane potential generation were directly proportional to the quantity of complex added, and were extended in the presence of HQNO. Fe(III)-dependent carotenoid bandshifts were abolished by addition of the protonophoric uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone.
Collapse
Affiliation(s)
- Paul S. Dobbin
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Louise H. Warren
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nicola J. Cook
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alastair G. McEwan
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Anne K. Powell
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - David J. Richardson
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
6
|
Berks BC, Ferguson SJ, Moir JW, Richardson DJ. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:97-173. [PMID: 8534676 DOI: 10.1016/0005-2728(95)00092-5] [Citation(s) in RCA: 396] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B C Berks
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | |
Collapse
|
7
|
Sabaty M, Jappé J, Olive J, Verméglio A. Organization of electron transfer components in Rhodobacter sphaeroides forma sp. denitrificans whole cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90005-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Richardson DJ, Bell LC, Moir JW, Ferguson SJ. A denitrifying strain ofRhodobacter capsulatus. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07053.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Abstract
Denitrification in bacteria comprises a series of four reduction reactions; for nitrate, nitrite, nitric oxide and nitrous oxide. Nitrogen gas is the final product. The nature of the enzymes catalysing these reactions is described along with the the properties of the underlying electron transport systems. The factors influencing the expression of the reductases for the four reactions are reviewed along with the effect of oxygen on the activities of the enzymes of denitrification. The main emphasis is on observations made with Paracoccus denitrificans and Pseudomonas stutzeri.
Collapse
Affiliation(s)
- S J Ferguson
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
10
|
Dobao MM, Mart�nez-Luque M, Castillo F. Nitrate reductase activity in spheroplasts from Rhodobacter capsulatus E1F1 requires a periplasmic protein. Arch Microbiol 1993. [DOI: 10.1007/bf00245308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Inhibition of nitrate reduction by light and oxygen in Rhodobacter sphaeroides forma sp. denitrificans. Arch Microbiol 1993. [DOI: 10.1007/bf00250276] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Richardson DJ, Bell LC, McEwan AG, Jackson JB, Ferguson SJ. Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Correlation with photoinhibition studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 199:677-83. [PMID: 1651241 DOI: 10.1111/j.1432-1033.1991.tb16170.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Addition of nitrous oxide to a periplasmic fraction released from Rhodobacter capsulatus strains MT1131, N22DNAR+ or AD2 caused oxidation of c-type cytochrome, as judged by the decrease in absorbance at 550 nm. The periplasmic fraction catalysed reduction of nitrous oxide in the presence of either isoascorbate plus phenazine ethosulphate or reduced methyl viologen. The rates with these two electron donors were similar and were comparable to the activity observed with a quantity of cells equivalent to those from which the periplasm sample had been derived. Activity in the periplasm could not be observed with ascorbate plus 2,3,5,6-tetramethyl-p-phenylenediamine although this reductant was effective with intact cells treated with myxothiazol to block the activity of the cytochrome-bc1 complex. 2. Cells of R. capsulatus MTG4/S4, a mutant from which the gene for cytochrome c2 has been specifically deleted, did not catalyse detectable rates of nitrous-oxide reduction. A nitrous-oxide reductase activity was present, as shown by activity of both cells and a periplasmic fraction with isoascorbate plus phenazine ethosulphate as reductant. The rates in cells and the periplasmic fraction were similar to those observed in the corresponding wild-type strain (MT1131). In contrast to wild-type cells, 2,3,5,6-tetramethyl-p-phenylenediamine and N,N,N',N'-tetramethyl-p-phenylenediamine [Ph(NMe2)2] were ineffective as mediators of electrons from isoascorbate. Visible absorption spectra showed that no detectable cytochromes in either the periplasm or intact cells of the MTG4/S4 mutant were oxidised by nitrous oxide. 3. Purified ferroycytochrome c2 from R. capsulatus was oxidised by nitrous oxide in the presence of periplasm from R. capsulatus MTG4/S4. The rate of oxidation was proportional to the amount of periplasm added, but was considerably lower than the rate of nitrous-oxide reduction observed with the same periplasmic fraction when either ascorbate plus phenazine ethosulphate or reduced methyl viologen were used as substrates. The oxidation of cytochrome c2 was inhibited by acetylene and by low concentrations of NaCl. 4. Oxidation of ferrocytochrome c2 by nitrous oxide was observed when the purified cytochrome was mixed with a preparation of nitrous-oxide reductase. However, oxidation of ferrocytochrome c' by nitrous oxide was not observed in the presence of the reductase. The observations with the mutant MTG4/S4 suggest that cytochrome c2 is the only periplasmic cytochrome involved in nitrous-oxide reduction. 5. Nitrous-oxide-dependent oxidation of a c-type cytochrome was observed in a periplasmic fraction from Paracoccus denitrificans, provided the fraction was first reduced.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Richardson
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
13
|
Richardson DJ, McEwan AG, Page MD, Jackson JB, Ferguson SJ. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:263-70. [PMID: 2174775 DOI: 10.1111/j.1432-1033.1990.tb19452.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The involvement of cytochromes in the electron-transport pathway to the periplasmic NO3- reductase of Rhodobacter capsulatus was studied in cells grown photoheterotrophically in the presence of nitrate with butyrate as carbon source. The specific rate of NO3- reduction by such cells was five times higher than when malate was carbon source. Reduced minus NO3(-)-oxidized spectra of cells had peaks in the alpha-band region for cytochromes at 552 nm and 559 nm, indicating the involvement of c- and b-type cytochromes in the electron-transport pathway to NO3-. The total ferricyanide-oxidizable cytochrome that was also oxidized in the steady state by NO3- was greater in cells grown with butyrate rather than malate. Low concentrations of cyanide inhibited NO3- reduction. Neither CN-, nor a previously characterized inhibitor of NO3- reduction, 2-n-heptyl-4-hydroxyquinoline N-oxide, prevented the oxidation of the cytochromes by NO3-. This suggested a site of action for these inhibitors on the reducing side of the b- and c-type cytochromes involved in electron transport to the NO3- reductase. The predominant cytochrome in a periplasmic fraction prepared from cells of R. capsulatus grown on butyrate medium was cytochrome c2 but a c-type cytochrome with an alpha-band reduced absorbance maximum at 552 nm could also be identified. The reduced form of this latter cytochrome, but not that of cytochrome c2, was oxidized upon addition of NO3- to a periplasmic fraction. The NO3(-)-oxidizable cytochrome co-purified with the periplasmic NO3- reductase through fractionation procedures that included ammonium sulphate precipitation, gel filtration at low and high salt concentrations, and ion-exchange chromatography. A NO3(-)-reductase-cytochrome-c552 redox complex that comprised two types of polypeptide, a nitrate reductase subunit and a c-type cytochrome subunit, was purified. The polypeptides were separated when the complex was chromatographed on a phenyl-Sepharose hydrophobic chromatography column.
Collapse
Affiliation(s)
- D J Richardson
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
14
|
In vivo redox poising of the cyclic electron transport system of Rhodobacter capsulatus and the effects of the auxiliary oxidants, nitrate, nitrous oxide and trimethylamine N-oxide, as revealed by multiple short flash excitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90186-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Willison JC. Derivatives ofRhodobacter capsulatusstrain AD2 cured of their endogenous plasmid are unable to utilize nitrate. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb03966.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Richardson DJ, McEwan AG, Jackson JB, Ferguson SJ. Electron transport pathways to nitrous oxide in Rhodobacter species. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:659-69. [PMID: 2556273 DOI: 10.1111/j.1432-1033.1989.tb15163.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Electron transport components involved in nitrous oxide reduction in several strains of Rhodobacter capsulatus and in the denitrifying strain of Rhodobacter sphaeroides (f. sp. denitrificans) have been investigated. Detailed titrations with antimycin A and myxothiazol, inhibitors of the cytochrome bc1 complex, show that part of the electron flow to nitrous oxide passes through this complex. The sensitivity to myxothiazol varies between strains and growth conditions of R. capsulatus; the higher rates of nitrous oxide reduction correlate with the higher sensitivities. Partial inhibition of the nitrous oxide reductase enzyme with azide decreased the sensitivity to myxothiazol of the strains that had the highest nitrous oxide reductase activity. 2. Inhibition of nitrous oxide reduction in cells of R. capsulatus by myxothiazol could be restored under dark conditions by addition of N,N,N',N'-tetramethyl-p-phenylene diamine. The highest activities observed after addition of this electron carrier were found in the strains that had the highest sensitivity to myxothiazol, consistent with the premise that this inhibitor is more effective at the higher flux rates to nitrous oxide. 3. Addition of nitrous oxide to cells of R. capsulatus strain N22DNAR+ under darkness caused oxidation of both b- and c-type cytochromes. The oxidation of b cytochromes was less pronounced in the presence of myxothiazol, consistent with a role for the cytochrome bc1 complex in the electron pathway to nitrous oxide. Ferricyanide, in the absence of myxothiazol, caused a similar extent of oxidation of b cytochromes, but a greater oxidation of c-type, suggesting that there was a pool of c-type cytochrome that was not oxidisable by nitrous oxide. The time course showed that both the b- and c-type cytochromes were oxidised within a few seconds of the addition of nitrous oxide. During the following seconds there was a partial re-reduction of the cytochromes such that after approximately 1 min a lower steady-state of oxidation was attained and this persisted until the nitrous oxide was exhausted. 4. A mutant, MTCBC1, of R. capsulatus that specifically lacked a functional cytochrome bc1 complex reduced nitrous oxide, albeit at 30% of the rate shown by the parent strain MT1131. A reduced minus nitrous-oxide-oxidised difference spectrum for MTCBC1 in the absence of myxothiazol was similar to the corresponding difference spectrum observed for strain N22DNAR+ in the presence of myxothiazol. It is suggested that these difference spectra identify the cytochrome components, including a b-type, involved in a pathway that is alternative to, and independent of, the cytochrome bc1 complex.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Richardson
- School of Biochemistry, University of Birmingham, England
| | | | | | | |
Collapse
|
17
|
Identification of cytochromes involved in electron transport to trimethylamine N-oxide/dimethylsulphoxide reductase in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80437-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Takamiya KI, Arata H, Shioi Y, Doi M. Restoration of the optimal redox state for the photosynthetic electron transfer system by auxiliary oxidants in an aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90104-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Arch Microbiol 1988. [DOI: 10.1007/bf00425152] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kelly DJ, Richardson DJ, Ferguson SJ, Jackson JB. Isolation of transposon Tn5 insertion mutants of Rhodobacter capsulatus unable to reduce trimethylamine-N-oxide and dimethylsulphoxide. Arch Microbiol 1988. [DOI: 10.1007/bf00425153] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
|
22
|
Ferguson SJ, Jackson J, McEwan AG. Anaerobic respiration in the Rhodospirillaceae: characterisation of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02455.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
The periplasmic nitrate reductase of Rhodobacter capsulatus; purification, characterisation and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulphoxide and chlorate. Arch Microbiol 1987. [DOI: 10.1007/bf00406130] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Chapter 9 Substrate oxidation and NAD+ reduction by phototrophic bacteria. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0167-7306(08)60140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Richardson DJ, Kelly DJ, Jackson JB, Ferguson SJ, Alef K. Inhibitory effects of myxothiazol and 2-n-heptyl-4-hydroxyquinoline-N-oxide on the auxiliary electron transport pathways of Rhodobacter capsulatus. Arch Microbiol 1986. [DOI: 10.1007/bf00402344] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
McEwan A, Cotton N, Ferguson S, Jackson J. The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90129-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
McEwan AG, Greenfield AJ, Wetzstein HG, Jackson JB, Ferguson SJ. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J Bacteriol 1985; 164:823-30. [PMID: 2997133 PMCID: PMC214325 DOI: 10.1128/jb.164.2.823-830.1985] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was coupled to generation of a membrane potential and inhibited by rotenone but not antimycin. It is suggested that electron flow to nitrous oxide reductase branches at the level of ubiquinone from the previously characterized electron transfer components of R. capsulata. This pathway of electron transport could include cytochrome c', a component hitherto without a recognized function. R. capsulata grew under dark anaerobic conditions in the presence of malate as carbon source and nitrous oxide as electron acceptor. This confirms that nitrous oxide respiration is linked to ATP synthesis. Phototrophically and anaerobically grown cultures of nondenitrifying strains of Rhodopseudomonas sphaeroides, Rhodopseudomonas palustris, and Rhodospirillum rubrum also possessed nitrous oxide reductase activity.
Collapse
|
28
|
Alef K, Jackson JB, McEwan AG, Ferguson SJ. The activities of two pathways of nitrate reduction in Rhodopseudomonas capsulata. Arch Microbiol 1985. [DOI: 10.1007/bf00491912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
McEwan A, Wetzstein H, Ferguson S, Jackson J. Periplasmic location of the terminal reductase in trimethylamine N-oxide and dimethylsulphoxide respiration in the photosynthetic bacterium Rhodopseudomonas capsulata. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90248-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
McEwan AG, Jackson JB, Ferguson SJ. Rationalization of properties of nitrate reductases in Rhodopseudomonas capsulata. Arch Microbiol 1984. [DOI: 10.1007/bf00410732] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|