1
|
Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. THE ISME JOURNAL 2021; 15:3455-3467. [PMID: 34103697 PMCID: PMC8629969 DOI: 10.1038/s41396-021-01021-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
Hadal trench sediments are hotspots of biogeochemical activity in the deep sea, but the biogeochemical and ecological factors that shape benthic hadal microbial communities remain unknown. Here, we sampled ten hadal sites from two trench regions with a vertical resolution of down to 1 cm. We sequenced 16S rRNA gene amplicons using universal and archaea-specific primer sets and compared the results to biogeochemical parameters. Despite bathymetric and depositional heterogeneity we found a high similarity of microbial communities within each of the two trench axes, while composition at the phylum level varied strongly with sediment depth in conjunction with the redox stratification into oxic, nitrogenous, and ferruginous zones. As a result, communities of a given sediment horizon were more similar to each other across a distance of hundreds of kilometers within each trench, than to those of adjacent horizons from the same sites separated only by centimeters. Total organic carbon content statistically only explained a small part of the variation within and between trenches, and did not explain the community differences observed between the hadal and adjacent shallower sites. Anaerobic taxa increased in abundance at the top of the ferruginous zone, seeded by organisms deposited at the sediment surface and surviving burial through the upper redox zones. While an influence of other potential factors such as geographic isolation, hydrostatic pressure, and non-steady state depositional regimes could not be discerned, redox stratification and diagenesis appear to be the main selective forces that structure community composition in hadal sediments.
Collapse
|
2
|
Cummings LA, Hoogestraat DR, Rassoulian-Barrett SL, Rosenthal CA, Salipante SJ, Cookson BT, Hoffman NG. Comprehensive evaluation of complex polymicrobial specimens using next generation sequencing and standard microbiological culture. Sci Rep 2020; 10:5446. [PMID: 32214207 PMCID: PMC7096443 DOI: 10.1038/s41598-020-62424-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Optimal clinical decision-making depends on identification of clinically relevant organisms present in a sample. Standard microbiological culture may fail to identify unusual or fastidious organisms and can misrepresent relative abundance of sample constituents. Culture-independent methods have improved our ability to deconvolute polymicrobial patient samples. We used next-generation 16S rRNA gene sequencing (NGS16S) to determine how often cultivatable organisms in complex polymicrobial samples are not reported by standard culture. Twenty consecutive bronchoalveolar lavage (BAL) samples were plated to standard and additional media; bacteria were identified by NGS16S analysis of DNA extracted directly from samples or from washed culture plates. 96% of organisms identified were cultivable, but only 21% were reported by standard culture, indicating that standard work-up provides an incomplete assessment of microbial constituents. Direct NGS16S correlated well with standard culture, identifying the same predominant organism in 50% of samples. When predominant organisms differed, NGS16S most often detected anaerobes, whose growth is unsupported by standard culture conditions for this specimen. NGS16S identified more organisms per sample and allowed identification of fastidious organisms, while culture was better at capturing organisms when bacterial load was low, and allowed incidental recovery of non-bacterial pathogens. Molecular and culture-based methods together detect more organisms than either method alone.
Collapse
Affiliation(s)
- Lisa A Cummings
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel R Hoogestraat
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | | | | - Stephen J Salipante
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Brad T Cookson
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA.,Departments of Microbiology, University of Washington, Seattle, Washington, USA
| | - Noah G Hoffman
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
3
|
Dartt DA, Hodges RR, Zoukhri D, Mircheff AK. Protein phosphorylation in Golgi, endosomal, and endoplasmic reticulum membrane fractions of lacrimal gland. Curr Eye Res 1996; 15:157-64. [PMID: 8670724 DOI: 10.3109/02713689608997409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ca2+/calmodulin- and cAMP-dependent protein kinase activities were characterized in two subcellular membrane samples. Membranes from rat lacrimal gland were isolated by differential and density gradient centrifugation into six density windows. The present study focused on membranes from density windows III and V which contain mixtures of apical, Golgi, endosomal, and endoplasmic reticulum membranes in different proportions. Phosphorylation of membrane proteins was measured by incubating the samples in [g-32P]ATP and separating the proteins by discontinuous SDS-PAGE followed by autoradiography. The amount of phosphate incorporated into specific peptide bands was quantified by densitometry. Ca2+/calmodulin-dependent protein kinase phosphorylated a 52,000 MW peptide in membranes from both density windows with a maximal increase from 0.3 to 66 microM free Ca2+. Trifluoperazine and promethazine, two inhibitors of Ca2+/calmodulin-dependent protein kinases, inhibited this phosphorylation. cAMP-dependent protein kinase phosphorylated a 22,000 MW peptide and a 91,000 MW peptide which were present in membranes from density window III only. We conclude that a Ca2+/calmodulin-dependent protein kinase activity is present in membranes from both density window III and V whereas a cAMP-dependent protein kinase activity is present only in membranes from density window III.
Collapse
Affiliation(s)
- D A Dartt
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
4
|
Yokoyama N. Purification and characterization of multiple S6 phosphatases from the rat parotid gland. Mol Cell Biochem 1995; 148:123-32. [PMID: 8594416 DOI: 10.1007/bf00928149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
S6 phosphatase activities, which dephosphorylate the phosphorylated S6 synthetic peptide, RRLSSLRASTSKSESSQK, were purified to near homogeneity from the membrane and cytosolic fractions of the rat parotid gland. Multiple S6 phosphatases were fractionated on Mono Q and gel filtration columns. In the cytosolic fraction, at least three forms of S6 phosphatase, termed peaks I, II, and III, were differentially resolved. The three forms had different sizes and protein compositions. The peak I enzyme, which had an approximately Mr of 68 kDa on gel filtration, appears to represent a dimeric form of the 39 kDa protein. This S6 phosphatase showed the high activity in the presence of EGTA and was completely inhibited by nanomolar concentrations of either okadaic acid or inhibitor 2. The peak II S6 phosphatase enzyme, with an Mr of 35 kDa, was activated by Mn2+. This form could be a proteolytic product of the catalytic subunit of type 1 phosphatase, due to its sensitivities to okadaic acid and inhibitor 2. The peak III enzyme, with an Mr of 55 kDa, is a Mn(2+)-dependent S6 phosphatase. This S6 phosphatase can be classified as a type 1 phosphatase, due to its sensitivity to okadaic acid, since the IC50 of okadaic acid is 4 nM. However, the molecular mass of this S6 phosphatase differs from that of the type 1 catalytic subunit (37 kDa) and showed less sensitivity to inhibitor 2. On the other hand, the membrane fraction contained one form of the S6 phosphatases, termed peak V (Mr 34 and 28 kDa), which could be classified as a type 1 phosphatase. This S6 phosphatase activity was greatly stimulated by Mn2+.
Collapse
Affiliation(s)
- N Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
5
|
Takuma T, Ichida T. Catalytic subunit of protein kinase A induces amylase release from streptolysin O-permeabilized parotid acini. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31764-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Hara-Yokoyama M, Sugiya H, Furuyama S. Possible involvement of adenylylation in the modification of a 26 kDa protein in rat parotid acinar cells. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1103-9. [PMID: 7527350 DOI: 10.1016/0020-711x(94)90132-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Adenylylation, a posttranslational modification of proteins, was investigated in saponin-permeabilized acinar cells of the rat parotid gland. 2. When cells were incubated with [2,8-3H]ATP, several proteins, including a 26 kDa protein in the particulate fraction, were labeled. 3. Upon incubation of cells with [alpha-32P]ATP in the presence of cAMP and 3-isobutyl-1-methylxanthine, 32P-labeling of the 26 kDa protein was observed. 4. After treatment with snake venom phosphodiesterase, [32P]AMP was released from the 26 kDa protein. Such release was not observed when cells were labeled with [gamma-32P]ATP. 5. The 32P-labeling pattern of proteins with [alpha-32P]ATP was clearly different from that with [adenylate-32P]NAD+. 6. The results suggest that the 26 kDa protein is one of the adenylylation substrates in rat parotid acinar cells.
Collapse
Affiliation(s)
- M Hara-Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | |
Collapse
|
7
|
Quissell DO, Watson E, Dowd FJ. Signal transduction mechanisms involved in salivary gland regulated exocytosis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1992; 3:83-107. [PMID: 1730072 DOI: 10.1177/10454411920030010701] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D O Quissell
- Department of Basic Sciences and Oral Research, University of Colorado School of Dentistry, Denver 80262
| | | | | |
Collapse
|
8
|
Lanoix J, Paiement J. cAMP-dependent phosphorylation of RER proteins from rat liver: relationship with GTP-dependent membrane fusion. Biochem Biophys Res Commun 1991; 179:463-70. [PMID: 1652958 DOI: 10.1016/0006-291x(91)91393-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Incubation of stripped rough microsomes (SRM) with the catalytic subunit of protein kinase A (PKA) permitted specific phosphorylation of seven proteins having relative molecular mass values of 55, 35, 23, 22.5, 22, 18.5 and 16.5 kDa (P55, P35 etc.). By two dimensional gel analysis, we compared these phosphoproteins with low-molecular-weight GTP-binding proteins and revealed that P23 and P22.5 co-migrated with known GTP-binding proteins. Next we examined the effect of cAMP-dependent phosphorylation on a GTP-dependent membrane function, membrane fusion. Quantitative analysis indicated no difference in the amount of membrane fusion obtained whether SRM were incubated in the absence or in the presence of PKA. Thus several rough microsomal proteins underwent cAMP-dependent phosphorylation and this post-translational modification did not affect GTP-dependent membrane fusion in a cell free system.
Collapse
Affiliation(s)
- J Lanoix
- Départment d'anatomie, Faculté de Médecine Université de Montréal, Québec, Canada
| | | |
Collapse
|
9
|
Ueno A, Kikuchi K, Nishino M, Kawano M, Matsumoto N, Inoue H. Sialagogue-stimulated protein phosphorylation related to ornithine decarboxylase induction in cultured rat parotid explants. Arch Oral Biol 1991; 36:415-23. [PMID: 1716879 DOI: 10.1016/0003-9969(91)90131-d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both beta-adrenergic (isoproterenol) and cholinergic (carbachol) sialagogues increase amylase secretion, ornithine decarboxylase activity and DNA synthesis in murine parotid gland in vivo and in vitro. These agonists enhanced the incorporation of labelled inorganic orthophosphate into parotid proteins in rat parotid explants cultured on siliconized lens paper floating on serum-free 199 medium. Analysis of the labelled proteins by SDS-PAGE and autoradiography revealed that isoproterenol enhanced the phosphorylation of four proteins with apparent molecular weights of 17, 20, 31 and 32 kDa and carbachol stimulated the phosphorylation of 31 and 32 K proteins. Isoproterenol-dependent ornithine decarboxylase induction and phosphorylation of the proteins were selectively suppressed by monensin but not by polymyxin B, whereas carbachol-dependent ornithine decarboxylase induction and protein phosphorylation were inhibited by polymyxin B but not by monensin. Neither monensin nor polymyxin B suppressed isoproterenol- or carbachol-stimulated amylase secretion. Time course experiments showed that sialagogue-stimulated protein phosphorylation preceded the increase of ornithine decarboxylase activity and had almost disappeared when it was maximal. Propranolol and atropine, antagonists of isoproterenol and carbachol, respectively, completely inhibited not only amylase secretion and ornithine decarboxylase induction but also protein phosphorylation stimulated by the corresponding agonists. These findings suggest that increased phosphorylation of specific proteins is associated with sialagogue-stimulated ornithine decarboxylase induction but not amylase secretion.
Collapse
Affiliation(s)
- A Ueno
- Department of Biochemistry, School of Dentistry, University of Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Williams JA, Burnham DB, Hootman SR. Cellular Regulation of Pancreatic Secretion. Compr Physiol 1989. [DOI: 10.1002/cphy.cp060321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Abstract
Proteins in lacrimal gland fluid are secreted primarily by the acinar cells. Secretory proteins are synthesized in the endoplasmic reticulum, modified in the Golgi apparatus, stored in secretory granules, and released upon a change in the cellular level of second messenger. The second messenger level is controlled by a process termed signal transduction. Agonists, primarily neurotransmitters in the lacrimal gland, bind to receptors in the basolateral membrane of secretory cells. This interaction activates enzymes in the membrane that cause production of second messengers. It has been hypothesized that second messengers stimulate secretion by activating specific protein kinases to phosphorylate proteins important for secretion. In the lacrimal gland, cholinergic agonists stimulate protein secretion. They act by activating phospholipase C to break down phosphatidylinositol bisphosphate into 1,4,5-inositol trisphosphate (1,4,5-IP3) and diacylglycerol (DAG). 1,4,5-IP3 causes release of Ca2+ from intracellular stores. This Ca2+, perhaps in conjunction with calmodulin, activates specific protein kinases that may be involved in secretion. DAG activates protein kinase C which stimulates protein secretion. alpha 1-Adrenergic agonists also stimulate lacrimal gland protein secretion. These agonists use a pathway that is separate from that utilized by cholinergic agonists and vasoactive intestinal peptide (VIP). The specific pathway has not been identified but may be DAG and protein kinase C. VIP, beta-adrenergic agonists, alpha-melanocyte stimulating hormone, and adrenocorticotropic hormone are lacrimal gland secretagogues. They activate adenylate cyclase to produce cAMP. cAMP stimulates protein kinase A, which perhaps causes protein secretion. Thus, three separate cellular pathways stimulate lacrimal gland protein secretion. Cholinergic agonists and VIP also stimulate lacrimal gland fluid secretion, and the same signal transduction pathways utilized by these agonists to stimulate protein secretion are most likely used for electrolyte and water secretion.
Collapse
|
12
|
Thiel G, Söling HD. cAMP-dependent protein phosphorylation of membrane proteins in the parotid gland, platelets and liver. Comparison of a 22-kDa phosphoprotein from rat parotid microsomes (protein III) with phosphoproteins of similar molecular size from platelet and liver membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:601-9. [PMID: 3391174 DOI: 10.1111/j.1432-1033.1988.tb14141.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stimulation of secretion in exocrine secretory glands leads to the phosphorylation of a 22-kDa membrane protein (protein III) whose function is still unknown [Jahn et al. (1980) Eur. J. Biochem. 112, 345-352; Jahn & Söling (1980) Proc. Natl Acad. Sci. USA 78, 6903-6906]. This report describes the comparison of this protein with phosphorylated membrane proteins of similar molecular mass in platelets and liver. Incubation of platelets with agents which raise the intracellular cAMP concentration results in the phosphorylation of a 22-kDa protein which is also phosphorylated in membrane preparations by endogenous kinases or by exogenous cAMP-dependent protein kinase. It is shown that this protein is distinct from protein III although both proteins have the same molecular mass and are substrates of cAMP-dependent protein kinase. In contrast to platelets, protein III could be demonstrated in liver microsomes. This indicates that the function of protein III is not exclusively linked to the stimulus-secretion coupling in exocrine cells.
Collapse
Affiliation(s)
- G Thiel
- Abteilung Klinische Biochemie, Zentrum Innere Medizin, Universität Göttingen
| | | |
Collapse
|
13
|
Burnham DB, Sung CK, Munowitz P, Williams JA. Regulation of protein phosphorylation in pancreatic acini by cyclic AMP-mediated secretagogues: interaction with carbamylcholine. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 969:33-9. [PMID: 2450590 DOI: 10.1016/0167-4889(88)90085-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects on protein phosphorylation in mouse pancreatic acini of cyclic AMP-mediated secretagogues and the Ca2+-mediated agonist carbamylcholine were compared. Under the conditions adopted for the study of protein phosphorylation, carbamylcholine (3 microM) stimulated amylase release from pancreatic acini 6-fold, whereas vasoactive intestinal polypeptide (VIP) (100 nM) and the cyclic AMP analogue 8-bromo-cyclic AMP (1 mM) caused little or no increase in secretion. However, VIP and 8-bromo-cyclic AMP, when added in combination with carbamylcholine, potentiated the stimulation of amylase release to 170-180% of that caused by carbamylcholine alone. As assessed by two-dimensional gel electrophoresis, VIP reproduced four of the ten changes in protein phosphorylation elicited by carbamylcholine, these changes being the increased phosphorylation of one soluble protein and the decreased phosphorylation of three soluble proteins. VIP enhanced the carbamylcholine-induced changes in phosphorylation for three proteins. In addition, VIP increased the phosphorylation of a unique protein of Mr 52,000 and pI 5.66 which was not affected by carbamylcholine. All of the effects on protein phosphorylation exerted by VIP in the presence or absence of carbamylcholine were mimicked by 8-bromo-cyclic AMP. Secretin also reproduced most of the changes in protein phosphorylation caused by VIP, although concentrations of secretin of at least 100-fold higher were required to elicit a maximal response. It is concluded that cyclic AMP-mediated secretagogues alter the phosphorylation of a unique protein as well as of several pancreatic proteins affected by carbamylcholine. Moreover, these effects appear to be mediated primarily by VIP-preferring receptors and may be involved in the synergistic action of VIP to promote carbamylcholine-induced amylase release.
Collapse
Affiliation(s)
- D B Burnham
- Department of Physiology, University of California, San Francisco
| | | | | | | |
Collapse
|
14
|
Thiel G, Schmidt WE, Meyer HE, Söling HD. Purification and characterization of a 22-kDa microsomal protein from rat parotid gland which is phosphorylated following stimulation by agonists involving cAMP as second messenger. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 170:643-51. [PMID: 2828047 DOI: 10.1111/j.1432-1033.1988.tb13746.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stimulation of secretion in exocrine glands by agonists involving cAMP as second messenger leads to the phosphorylation of the ribosomal protein S6 (protein I) and two other particulate proteins with apparent molecular masses of 24 kDa (protein II) and 22 kDa (protein III) [Jahn, R., Unger, C. & Söling, H. D. (1980) Eur. J. Biochem. 112, 345-352]. This report describes the purification and characterization of protein III. Solubilization studies indicate that protein III is an intrinsic membrane protein. It could be extracted from the endoplasmic reticulum membrane only with Triton X-100, SDS or concentrated formic or acetic acid. The purification of this protein involved extraction of the microsomes with Triton X-100, removal of the detergent by acetone precipitation, extraction of water-soluble proteins, lipids and lipoproteins, and preparative SDS polyacrylamide gel electrophoresis. The protein has a basic pI (greater than 8.7). For determination of the amino acid composition of protein III and for sequencing of its amino-terminal portion, the protein was electroeluted out off the gel, the detergent removed and the protein finally purified by reversed-phase HPLC. Protein III could be phosphorylated in vitro by the catalytic subunit of the cAMP-dependent protein kinase to a degree of approximately 0.14 mol phosphate/mol protein. The only phosphopeptide obtained after in vitro phosphorylation and subsequent tryptic or chymotryptic digestion was identical with the phosphopeptide obtained after stimulation of intact rat parotid gland lobules with isoproterenol. The sequence of this peptide was Lys-Leu-Ser(P)-Glu-Ala-Asp-Asn-Arg. It was confirmed by an analysis of the synthetic peptide following in vitro phosphorylation with cAMP-dependent protein kinase. The first 41 N-terminal residues of protein III were sequenced. So far no sequence homology with other known peptides or proteins could be found.
Collapse
Affiliation(s)
- G Thiel
- Abteilung Klinische Biochemie, Zentrum Innere Medizin, Universität Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
15
|
Kanamori T, Hayakawa T. Ion-exchange chromatography of ionic detergent-solubilized proteins: application to purification of rat parotid gland phosphoproteins including ribosomal protein S6. Anal Biochem 1987; 167:372-80. [PMID: 3442333 DOI: 10.1016/0003-2697(87)90179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method is described for separation of ionic detergent-solubilized proteins by ion-exchange chromatography. This method has been developed for purification of two phosphoproteins (Mr 19,000 and 30,000) from 32Pi-prelabeled, isoproterenol-stimulated rat parotid tissue and is based on the observation that, in the presence of urea and Nonidet-P40, ionic detergent-solubilized proteins can be adsorbed by ion exchangers according to their own charge. After adsorption, proteins were eluted with a stepwise gradient of NaCl in a urea-containing buffer. By the procedure described, the 30 kDa phosphoprotein was freed from other 32P-labeled substances; and it was identified as ribosomal protein S6 that was phosphorylated at some serine residues. The method is generally applicable and especially suited for preliminary purification of hydrophobic proteins subjected to analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- T Kanamori
- Department of Biochemistry, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | |
Collapse
|
16
|
Properties of p19, a novel cAMP-dependent protein kinase substrate protein purified from bovine brain. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)60895-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Cohn JA, Kinder B, Jamieson JD, Delahunt NG, Gorelick FS. Purification and properties of a multifunctional calcium/calmodulin-dependent protein kinase from rat pancreas. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 928:320-31. [PMID: 3105599 DOI: 10.1016/0167-4889(87)90192-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A calcium/calmodulin-dependent protein kinase (Ca/calmodulin protein kinase) was purified from rat pancreas using hydrophobic chromatography followed by gel filtration and affinity chromatography. Ca/calmodulin protein kinase from pancreas resembled previously described multifunctional Ca/calmodulin protein kinases from other tissues with respect to substrate specificity, autophosphorylation on serine and threonine residues, and catalytic and hydrodynamic properties. While Ca/calmodulin protein kinase from other tissues contains subunits of 53-60 kDa with variable proportions of a smaller 50-52 kDa subunit, pancreatic Ca/calmodulin protein kinase was found to contain a single component of 51 kDa. Experiments mixing brain Ca/calmodulin protein kinase with pancreatic homogenate suggest that the absence of a larger subunit in the pancreatic Ca/calmodulin protein kinase is not due to proteolytic degradation during enzyme preparation. Ca/calmodulin protein kinase binding to 125I-labeled calmodulin in solution was demonstrated using the photoaffinity cross-linker, N-hydroxysuccinimidyl-4-azidobenzoate. 125I-labeled calmodulin binding to Ca/calmodulin protein kinase was also demonstrated using filters containing Ca/calmodulin protein kinase transferred from polyacrylamide gels after two-dimensional gel electrophoresis. Finally, the ribosomal substrate for Ca/calmodulin protein kinase was identified as the ribosomal protein, S6. The purification procedure presented in this study promises to be useful in characterizing Ca/calmodulin protein kinase in other tissues and in clarifying the role of these enzymes in cellular function.
Collapse
|
18
|
Dowd F, Watson EL, Lau YS, Justin J, Pasieniuk J, Jacobson KL. Calcium-dependent protein kinase reactions associated with parotid gland secretory granule membranes. J Dent Res 1987; 66:557-63. [PMID: 3476570 DOI: 10.1177/00220345870660022901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rat parotid secretory granule membranes were examined for the presence of calcium-dependent protein kinase activities and kinase substrates. Protein kinase C (C-kinase), which is stimulated by certain phospholipids, was present in the membranes, as indicated by its ability to catalyze the phosphorylation of histone. Two substrates for protein kinase C were seen in the granule membranes. The cytosolic fraction from the cell contained kinase activity, which was stimulated by phosphatidylserine and which caused the phosphorylation of two granule membrane polypeptides. In addition, when both granule membranes and cytosol were incubated together, phosphorylation of the cytosolic substrates was inhibited, indicating that the granule membrane substrates were phosphorylated preferentially. The results indicate that the granule membranes may react with cytosolic protein kinase C activity in a way which would direct an intracellular calcium and diacylglycerol signal toward the granule membrane. Since these signals occur during stimulation by various agonists, the mechanism may contribute to secretion.
Collapse
|
19
|
Burnham DB, Munowitz P, Hootman SR, Williams JA. Regulation of protein phosphorylation in pancreatic acini. Distinct effects of Ca2+ ionophore A23187 and 12-O-tetradecanoylphorbol 13-acetate. Biochem J 1986; 235:125-31. [PMID: 2427068 PMCID: PMC1146658 DOI: 10.1042/bj2350125] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulation of protein phosphorylation in isolated pancreatic acini by the intracellular messengers Ca2+ and diacylglycerol was studied by using the Ca2+ ionophore A23187 and the tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate. As assessed by two-dimensional polyacrylamide-gel electrophoresis, the phorbol ester (1 microM) and Ca2+ ionophore (2 microM) altered the phosphorylation of distinct sets of proteins between Mr 83,000 and 23,000 in mouse and guinea-pig acini. The phorbol ester increased the phosphorylation of four proteins, whereas the ionophore increased the phosphorylation of two proteins and, in mouse acini, decreased the phosphorylation of one other protein. In addition, the phorbol ester and ionophore each caused the dephosphorylation of two proteins, of Mr 20,000 and 20,500. Administered together, these agents reproduced the changes in phosphorylation induced by the cholinergic agonist carbamoylcholine. The effects of the phorbol ester and ionophore on acinar amylase release were also studied. In mouse pancreatic acini, a maximally effective concentration of phorbol ester (1 microM) produced a secretory response that was only 28% of that produced by a maximally effective concentration of carbamoylcholine, whereas the ionophore (0.3 microM) stimulated amylase release to two-thirds of the maximal response to carbamoylcholine. In contrast, in guinea-pig acini, the phorbol ester and carbamoylcholine evoked similar maximal secretory responses, whereas the maximal secretory response to the ionophore was only 35% of that to carbamoylcholine. Combination of phorbol ester and ionophore resulted in a modest synergistic effect on amylase release in both species. It is concluded that cholinergic agonists act via both diacylglycerol and Ca2+ to regulate pancreatic protein phosphorylation, but that synergism between these intracellular messengers is of limited importance in stimulating enzyme secretion.
Collapse
|
20
|
Hootman SR. Neuroendocrine control of secretion in pancreatic and parotid gland acini and the role of Na+,K+-ATPase activity. INTERNATIONAL REVIEW OF CYTOLOGY 1986; 105:129-81. [PMID: 2878903 DOI: 10.1016/s0074-7696(08)61063-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The results of our investigations into the localization of Na+,K+-pump activity in pancreatic and parotid acinar cells and the effects of hormones and neurotransmitters on pump turnover can be integrated with data on other aspects of stimulus-response coupling to construct models of the neurohumoral control of protein, fluid, and electrolyte secretion (Fig. 23). In both tissues, Ca2+ and cyclic AMP serve as intracellular messengers. In pancreatic acinar cells, the Ca2+-dependent pathway activated by the occupation of CCK or cholinergic receptors provides the primary stimulus for digestive enzyme secretion. Cyclic AMP plays a comparatively minor role; VIP and secretin are much less effective stimulators of protein secretion. Conversely, cyclic AMP levels in parotid acinar cells, which are modulated primarily through occupation of beta-adrenergic receptors, are a major determinant of enzyme secretion. Activation of the Ca2+-dependent pathway by cholinergic or alpha-adrenergic agonists or substance P is less important. The presence of dual control processes in each gland suggests that the observed differences in effectiveness of cyclic AMP- versus Ca2+-dependent secretagogues may reflect not different mechanisms, but rather a shift in the relative emphasis placed on each pathway. This emphasis could conceivably result from subtle variations in the interaction between cellular protein kinases and phosphatases and their phosphoprotein substrates. Electrolyte secretion, on the other hand, appears to involve both discrete and common entities. In pancreatic acinar cells from rodent species, cholinergic or CCK receptor occupancy elicits a Ca2+-dependent increase in the open-state probability of nonselective cation channels in the basolateral plasma membrane. The resultant influx of Na+ and efflux of K+ is most probably the factor which activates Na+, K+-pumps. Based on electron probe studies of the effects of cholinergic agonists on acinar cell Na+ and K+ contents discussed earlier, a transient reduction in the intracellular K+/Na+ ratio of up to 4-fold may occur. A shift of this magnitude in the cytoplasmic microenvironment of the Na+, K+-pump clearly would have a stimulatory influence (see discussion by Jorgensen, 1980). In addition, Ca2+ itself may have direct effects on Na+,K+-pump activity. Calcium at levels much above 1 microM progressively inhibits Na+,K+-ATPase activity (Tobin et al., 1973; Yingst and Polasek, 1985). In unstimulated guinea pig pancreatic acinar cells, Ca2+i measured by quin-2 fluorescence was 161 +/- 13 nM (Hootman et al., 1985a) which increased to a maximal concentration of 803 +/- 122 nM following CCh stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
21
|
Traugh JA, Pendergast AM. Regulation of protein synthesis by phosphorylation of ribosomal protein S6 and aminoacyl-tRNA synthetases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1986; 33:195-230. [PMID: 3541042 DOI: 10.1016/s0079-6603(08)60024-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Padel U, Söling HD. Phosphorylation of the ribosomal protein S6 during agonist-induced exocytosis in exocrine glands is catalyzed by calcium-phospholipid-dependent protein kinase (protein kinase C). Experiments with guinea pig parotid glands. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 151:1-10. [PMID: 2992953 DOI: 10.1111/j.1432-1033.1985.tb09061.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ribosomal protein S6 in exocrine cells is phosphorylated during stimulation of exocytosis by cAMP-dependent or calcium-dependent agonists. Under both conditions the same tryptic S6 phosphopeptides (termed A, B, and C) were found [Padel, Kruppa, Jahn & Söling (1983) FEBS Lett. 159, 112-118]. Studies have now been made of the phosphorylation pattern of protein S6 from purified guinea pig parotid ribosomes following in vitro phosphorylation with calmodulin-dependent, phospholipid-dependent, and cAMP-dependent protein kinases. Only the phospholipid-dependent enzyme led to the phosphorylation of peptides A, B, and C, while the cAMP-dependent enzyme phosphorylated only peptides A and C, and the calmodulin-dependent enzyme did not phosphorylate any of the phosphopeptides found in S6 from unstimulated or stimulated intact cells. Guinea pig parotid microsomes contain substantial phospholipid-dependent protein kinase activity. Stimulation of intact parotid glands with tetradecanoylphorbol acetate led to a significant phosphorylation of S6 and a similar tryptic S6 phosphopeptide pattern as seen with carbamoylcholine. It is concluded that activation of phospholipid-dependent protein kinase is responsible for the phosphorylation of protein S6 during stimulation with calcium-dependent and cAMP-dependent secretagogues.
Collapse
|
23
|
The rate-determining step in cAMP-mediated exocytosis in the rat parotid and submandibular glands appears to involve analogous 26-kDa integral membrane phosphoproteins. Proc Natl Acad Sci U S A 1985; 82:3237-41. [PMID: 2987915 PMCID: PMC397750 DOI: 10.1073/pnas.82.10.3237] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The possible direct involvement of protein phosphorylation in the regulation of exocytosis during beta-adrenergic receptor stimulation in rat parotid and submandibular salivary glands was investigated in vitro using dispersed cells. The dispersed cells were labeled with [32P]orthophosphate for 40 min prior to experimental manipulation. Subcellular fractions were isolated, the proteins were separated using sodium dodecylsulfate/polyacrylamide gel electrophoresis (NaDodSO4/PAGE), and the phosphoproteins were detected by autoradiography. Changes in the extent of phosphorylation for each phosphoprotein were determined indirectly by densitometric analyses. The analogous parotid and submandibular 26-kDa membrane phosphoproteins had a rapid phosphate turnover rate (t 1/2 = 5-6 min) whereas the analogous 21-kDa membrane phosphoproteins had a much slower phosphate turnover rate (t 1/2 greater than 20 min). The results of Triton X-114 extraction indicated that the 26- and 21-kDa phosphoproteins were integral membrane proteins. The rate of phosphate turnover for the analogous 26-kDa phosphoproteins is compatible with a regulatory role in exocytosis, whereas the slower phosphate turnover rate for the analogous 21-kDa phosphoproteins suggests that these proteins may play a more subordinate role in secretion or they may coordinate secretion with other cellular metabolic events.
Collapse
|
24
|
Söling HD, Padel U, Jahn R, Thiel G, Kricke P, Fest W. Regulation of protein kinases in exocrine secretory cells during agonist-induced exocytosis. ADVANCES IN ENZYME REGULATION 1985; 23:141-56. [PMID: 4072796 DOI: 10.1016/0065-2571(85)90044-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stimulation of exocytosis in exocrine glands is associated with an increased phosphorylation of several particulate proteins. Irrespective of the type of secretagogue (cAMP-dependent agonists, calcium-dependent agonists, calcium ionophores, phorbol esters) exocytosis is always accompanied by an enhanced phosphorylation of the ribosomal protein S6. It is shown by an analysis of the phosphopeptide pattern of the in vivo and the in vitro phosphorylated S6 protein that the protein kinase responsible for phosphorylation of the S6 protein during enhanced exocytosis is protein kinase C. This is so irrespective of whether the agonist uses cAMP or calcium as second messenger. Experiments with isolated guinea pig parotid gland lobules reveal that not only the acetylcholine analog carbamoylcholine, but also the beta-agonist isoproterenol lead within seconds to an increased formation of diacylglycerol. As diacylglycerol increases the affinity of protein kinase C for calcium this finding would explain why the phosphorylation pattern of the S6 protein reflects activation of protein kinase C also under conditions where (as in the case of stimulation with beta-agonists) cAMP is the primary second messenger. It would further explain why the changes of the phosphorylation of individual histones observed during agonist-induced exocytosis in the parotid gland are quite similar for isoproterenol on one hand and carbamoylcholine on the other. A 22 K protein which becomes phosphorylated only when cAMP serves as second messenger is located in the membrane of the endoplasmic reticulum. A possible relationship of this protein with the calcium transport ATPase of the endoplasmic reticulum is under investigation.
Collapse
|
25
|
Spearman TN, Hurley KP, Olivas R, Ulrich RG, Butcher FR. Subcellular location of stimulus-affected endogenous phosphoproteins in the rat parotid gland. J Cell Biol 1984; 99:1354-63. [PMID: 6148346 PMCID: PMC2113334 DOI: 10.1083/jcb.99.4.1354] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rat parotid minces were labeled with [32P]Pi, stimulated with isoproterenol, homogenized in sucrose, and fractionated on continuous sucrose density gradients. We analyzed the resulting fractions by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiograms were made from the gels. Comparison of fractions from control and isoproterenol-stimulated minces revealed seven phosphoproteins that were affected by isoproterenol. The subcellular location of these proteins was determined by comparing their distribution in the sucrose gradients with that of a number of enzymes that are characteristic of specific organelles. Isoproterenol decreased the phosphorylation of two cytoplasmic proteins (Mr 16,000 and 18,000) and increased the phosphorylation of a third (Mr 14,000). The phosphorylation of two endoplasmic reticulum proteins was increased by isoproterenol (Mr 20,500 and 22,500), as was an Mr 31,000 protein which was probably the S6 ribosomal protein. The phosphorylation of a secretory granule protein (Mr 24,000) was decreased by isoproterenol. We then developed a purification scheme for parotid secretory granules. By using this method, we demonstrated that the phosphorylation of the Mr 24,000 was also decreased by carbamylcholine. Granules purified by this method also contained a small number of other phosphoproteins whose phosphorylation was increased only by isoproterenol. Secretory granule-associated stimulus-affected phosphoproteins were found in the particulate fraction when the granules were hypotonically lysed, and were not extracted from the particulate fraction by washing with 0.6 M KCl.
Collapse
|
26
|
Vandermeers A, Vandermeers-Piret MC, Rathe J, Dehaye JP, Winand J, Christophe J. Phosphorylation of 3 particulate proteins in rat pancreatic acini in response to vasoactive intestinal peptide (VIP), secretin and cholecystokinin (CCK-8). Peptides 1984; 5:359-65. [PMID: 6089135 DOI: 10.1016/0196-9781(84)90234-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rat pancreatic acini were preincubated with 0.4 mM 32Pi for 45 min at 37 degrees C, then exposed for 15 min to VIP, secretin or CCK-8. The incubation was terminated with a stop solution and a fraction rich in mitochondria and zymogen granules was separated from a microsome-rich fraction by differential centrifugation. After heating in the presence of SDS, beta-mercaptoethanol was added and the pattern of equivalent amounts of 32P-labelled proteins was examined by autoradiography of SDS-PAGE gels. VIP, secretin, and CCK-8 stimulated the phosphorylation of a Mr=33 K microsomal protein and that of two proteins of Mr=21 K and Mr=25 K mostly present in a fraction rich in mitochondria and zymogen granules. Stimulations were dose-dependent, the highest stimulant concentrations tested allowing 2- to 3-fold increases of phosphorylation over basal. When 1 nM CCK-8 was used simultaneously with 1 microM VIP, the cyclic AMP levels attained and the pattern of protein phosphorylation were similar to those obtained with VIP alone, and there was a potentiation of amylase secretion; when a supra-maximal 0.1 microM CCK-8 concentration was added, the VIP-induced elevation in cyclic AMP levels and the phosphorylation of the Mr=21 K and Mr=25 K proteins were partially antagonized, and no potentiation any more of secretion occurred. To conclude the in vitro phosphorylation of three particulate proteins (Mr=33 K, 25 K, and 21 K) was similarly increased in rat pancreatic acini in response to secretin and VIP (acting through cyclic AMP) and to CCK-8 (acting mostly through Ca2+).
Collapse
|
27
|
Plewe G, Jahn R, Immelmann A, Bode C, Söling HD. Specific phosphorylation of a protein in calcium accumulating endoplasmic reticulum from rat parotid glands following stimulation by agonists involving cAMP as second messenger. FEBS Lett 1984; 166:96-103. [PMID: 6319193 DOI: 10.1016/0014-5793(84)80052-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stimulation of secretion in exocrine cells by agonists involving cAMP as second messenger is associated with the phosphorylation of a specific membrane-associated 22.4-kDa protein (protein III) (Jahn et al.). Here it is shown by subcellular fractionation of rat parotid gland lobules that protein III is associated with the endoplasmic reticulum. The submicrosomal fractions containing protein III, also contain the ATP-dependent microsomal calcium pump activity. Protein III in microsomal subfractions can be phosphorylated in vitro with catalytic subunit from cAMP-dependent protein kinase. Phosphorylated protein III contains exclusively P-serine. Protein III can be removed from ER-membranes with acid chloroform-methanol or Triton X-114, but not by high salt wash indicating that it is tightly associated with the membranes. Protein III is smaller than phospholamban and, in contrast to phospholamban, resistant to heating in SDS. A relationship between phosphorylation of protein III and microsomal calcium sequestration is discussed.
Collapse
|
28
|
Padel U, Kruppa J, Jahn R, Söling HD. Phosphopeptide patterns of the ribosomal protein S6 following stimulation of guinea pig parotid glands by secretagogues involving either cAMP or calcium as second messenger. FEBS Lett 1983; 159:112-8. [PMID: 6307749 DOI: 10.1016/0014-5793(83)80427-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stimulation of secretion in exocrine cells is associated with the incorporation of up to 3 to 4 phosphates into the ribosomal protein S6. This occurs with secretagogues involving either cAMP or free calcium as second messenger. An analysis of the phosphorylation pattern of S6 from stimulated guinea pig parotid glands reveals 3 phosphopeptides (termed A,B,C). The phosphopeptide pattern was identical for cAMP- or calcium-mediated stimulation, whereas phosphorylation of the S6 protein in vitro with catalytic subunit of cAMP-dependent protein kinase resulted only in the formation of phosphopeptides A and C. Therefore, secretagogue-mediated phosphorylation is not or not exclusively catalyzed by cAMP-dependent protein kinase even when cAMP is the second messenger.
Collapse
|