1
|
Mursalimov S, Glagoleva A, Khlestkina E, Shoeva O. Chlorophyll deficiency delays but does not prevent melanogenesis in barley seed melanoplasts. PROTOPLASMA 2022; 259:317-326. [PMID: 34032929 DOI: 10.1007/s00709-021-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Plant melanin is a dark polymerized polyphenolic substance that can by synthesized in seed tissues. Unlike well-defined enzymatic browning reaction leading to melanin synthesis in senescent and damaged plant tissues, melanin formation in intact tissues was not studied properly. Recently, melanin synthesis was demonstrated in chloroplast-derived melanoplasts in pericarp and husk cells of barley seeds. In barley, there are two independent genes, Blp1 and Alm1, affecting respectively the biosynthesis of melanin and chlorophyll in seeds. Even though different genetic systems are responsible for these traits, the localization of these biosynthetic pathways in the same organelle prompted us to conduct an in-depth study of the i:Bwalm1Blp1 line characterized by simultaneous chlorophyll deficiency caused by recessive allele alm1 and melanin accumulation controlled by dominant allele Blp1. This barley line and parental ones-Bowman, i:BwBlp1, and i:Bwalm1, which are characterized by different combinations of pigments chlorophyll and melanin in seeds-were subjected to a comparative cytological analysis. Three markers were analyzed: the presence of visible pigments, chlorophyll, and PsbA protein (a thylakoid membrane marker). Plastids of the barley pericarp and husk showed prominent differences among the lines, with internal structures that are more developed in husk cells. Although chlorophyll deficiency did not prevent melanogenesis in the spike of the hybrid line, a 7-day delay in melanization initiation and a decrease in its magnitude were observed in comparison with the melanin-and-chlorophyll-containing line. Thus, melanin biosynthesis is not related to photosynthetic processes directly but may be dependent on the presence of plastids with well-developed internal membranes.
Collapse
Affiliation(s)
- S Mursalimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia.
| | - A Glagoleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
| | - E Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, 190000, Russia
| | - O Shoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. Proc Natl Acad Sci U S A 2015; 112:E1678-87. [PMID: 25775549 DOI: 10.1073/pnas.1424655112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes encode ∼ 37 proteins that integrate into the thylakoid membrane. The mechanisms that target these proteins to the membrane are largely unexplored. We used ribosome profiling to provide a comprehensive, high-resolution map of ribosome positions on chloroplast mRNAs in separated membrane and soluble fractions in maize seedlings. The results show that translation invariably initiates off the thylakoid membrane and that ribosomes synthesizing a subset of membrane proteins subsequently become attached to the membrane in a nuclease-resistant fashion. The transition from soluble to membrane-attached ribosomes occurs shortly after the first transmembrane segment in the nascent peptide has emerged from the ribosome. Membrane proteins whose translation terminates before emergence of a transmembrane segment are translated in the stroma and targeted to the membrane posttranslationally. These results indicate that the first transmembrane segment generally comprises the signal that links ribosomes to thylakoid membranes for cotranslational integration. The sole exception is cytochrome f, whose cleavable N-terminal cpSecA-dependent signal sequence engages the thylakoid membrane cotranslationally. The distinct behavior of ribosomes synthesizing the inner envelope protein CemA indicates that sorting signals for the thylakoid and envelope membranes are distinguished cotranslationally. In addition, the fractionation behavior of ribosomes in polycistronic transcription units encoding both membrane and soluble proteins adds to the evidence that the removal of upstream ORFs by RNA processing is not typically required for the translation of internal genes in polycistronic chloroplast mRNAs.
Collapse
|
3
|
Mabbitt PD, Wilbanks SM, Eaton-Rye JJ. Structure and function of the hydrophilic Photosystem II assembly proteins: Psb27, Psb28 and Ycf48. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:96-107. [PMID: 24656878 DOI: 10.1016/j.plaphy.2014.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/16/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PS II) is a macromolecular complex responsible for light-driven oxidation of water and reduction of plastoquinone as part of the photosynthetic electron transport chain found in thylakoid membranes. Each PS II complex is composed of at least 20 protein subunits and over 80 cofactors. The biogenesis of PS II requires further hydrophilic and membrane-spanning proteins which are not part of the active holoenzyme. Many of these biogenesis proteins make transient interactions with specific PS II assembly intermediates: sometimes these are essential for biogenesis while in other examples they are required for optimizing assembly of the mature complex. In this review the function and structure of the Psb27, Psb28 and Ycf48 hydrophilic assembly factors is discussed by combining structural, biochemical and physiological information. Each of these assembly factors has homologues in all oxygenic photosynthetic organisms. We provide a simple overview for the roles of these protein factors in cyanobacterial PS II assembly emphasizing their participation in both photosystem biogenesis and recovery from photodamage.
Collapse
Affiliation(s)
- Peter D Mabbitt
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
4
|
Odom OW, Baek KH, Dani RN, Herrin DL. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:842-853. [PMID: 18036204 DOI: 10.1111/j.1365-313x.2007.03376.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16S(spec)) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16S(spec) plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.
Collapse
Affiliation(s)
- Obed W Odom
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
5
|
Uniacke J, Zerges W. Photosystem II assembly and repair are differentially localized in Chlamydomonas. THE PLANT CELL 2007; 19:3640-54. [PMID: 18055604 PMCID: PMC2174875 DOI: 10.1105/tpc.107.054882] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 05/19/2023]
Abstract
Many proteins of the photosynthesis complexes are encoded by the genome of the chloroplast and synthesized by bacterium-like ribosomes within this organelle. To determine where proteins are synthesized for the de novo assembly and repair of photosystem II (PSII) in the chloroplast of Chlamydomonas reinhardtii, we used fluorescence in situ hybridization, immunofluorescence staining, and confocal microscopy. These locations were defined as having colocalized chloroplast mRNAs encoding PSII subunits and proteins of the chloroplast translation machinery specifically under conditions of PSII subunit synthesis. The results revealed that the synthesis of the D1 subunit for the repair of photodamaged PSII complexes occurs in regions of the chloroplast with thylakoids, consistent with the current model. However, for de novo PSII assembly, PSII subunit synthesis was detected in discrete regions near the pyrenoid, termed T zones (for translation zones). In two PSII assembly mutants, unassembled D1 subunits and incompletely assembled PSII complexes localized around the pyrenoid, where we propose that they mark an intermediate compartment of PSII assembly. These results reveal a novel chloroplast compartment that houses de novo PSII biogenesis and the regulated transport of newly assembled PSII complexes to thylakoid membranes throughout the chloroplast.
Collapse
Affiliation(s)
- James Uniacke
- Biology Department, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | | |
Collapse
|
6
|
Tyystjärvi T, Sirpiö S, Aro EM. Post-transcriptional regulation of the psbA gene family in the cyanobacterium Synechococcus sp. PCC 7942. FEBS Lett 2004; 576:211-5. [PMID: 15474039 DOI: 10.1016/j.febslet.2004.08.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 08/17/2004] [Accepted: 08/24/2004] [Indexed: 12/14/2022]
Abstract
In the cyanobacterium Synechococcus sp. PCC 7942, the photosystem II reaction center protein D1 is encoded by three psbA genes. The psbAI gene encodes the D1:1 protein that is the prevailing form under steady state conditions, whereas the expression of the psbAII and psbAIII genes, encoding the D1:2 protein, is enhanced under many stress conditions. Here, we show that in addition to transcriptional control, the synthesis of D1 protein forms is regulated at the levels of membrane targeting of psbA mRNA ribosome complexes and translation elongation, whereas the formation of translation initiation complexes does not have a significant regulatory role.
Collapse
Affiliation(s)
- Taina Tyystjärvi
- Plant Physiology and Molecular Biology, Department of Biology, BioCity, University of Turku, FIN-20014 Turku, Finland.
| | | | | |
Collapse
|
7
|
|
8
|
Ossenbühl F, Hartmann K, Nickelsen J. A chloroplast RNA binding protein from stromal thylakoid membranes specifically binds to the 5' untranslated region of the psbA mRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3912-9. [PMID: 12180968 DOI: 10.1046/j.1432-1033.2002.03057.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intrachloroplastic localization of post-transcriptional gene expression steps represents one key determinant for the regulation of chloroplast development. We have characterized an RNA binding protein of 63 kDa (RBP63) from Chlamydomonas reinhardtii chloroplasts, which cofractionates with stromal thylakoid membranes. Solubility properties suggest that RBP63 is a peripheral membrane protein. Among RNA probes from different 5' untranslated regions of chloroplast transcripts, RBP63 preferentially binds to the psbA leader. This binding is dependent on a region comprising seven consecutive A residues, which is required for D1 protein synthesis. A possible role for this newly discovered RNA binding protein in membrane targeting of psbA gene expression is discussed.
Collapse
Affiliation(s)
- Friedrich Ossenbühl
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
9
|
Zhang L, Aro EM. Synthesis, membrane insertion and assembly of the chloroplast-encoded D1 protein into photosystem II. FEBS Lett 2002; 512:13-8. [PMID: 11852043 DOI: 10.1016/s0014-5793(02)02218-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid light-dependent turnover of the chloroplast-encoded D1 protein maintains photosystem II (PS II) functional over a wide range of light intensities. Following initiation of psbA mRNA translation, the elongating D1 is targeted, possibly by chloroplast signal recognition particle 54 (cpSRP54), to the thylakoid cpSecY translocation channel. Transmembrane domains of nascent D1 start interacting with other PS II core proteins already during the translocation process to ensure an efficient assembly of the multiprotein membrane complex. Here we review the progress recently made concerning the synthesis, targeting, membrane insertion and assembly to PS II of the chloroplast-encoded D1 protein and discuss the possible convergence of targeting and translocation of chloroplast- and nuclear-encoded thylakoid proteins.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Biology, University of Turku, FIN-20014, Turku, Finland
| | | |
Collapse
|
10
|
Tyystjärvi T, Herranen M, Aro EM. Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 protein. Mol Microbiol 2001; 40:476-84. [PMID: 11309129 DOI: 10.1046/j.1365-2958.2001.02402.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photosystem II reaction centre protein D1 is encoded by the psbA gene. The D1 protein is stable in darkness but undergoes rapid turnover in the light. Here, we show that, in cyanobacterium Synechocystis sp. PCC6803, the synthesis of the D1 protein is regulated at the level of translation elongation in addition to the previously known transcriptional regulation. When Synechocystis sp. PCC6803 cells were transferred from light to darkness, the psbA mRNA remained abundant for hours. Cytosolic ribosomes were attached to psbA transcripts in the dark, and translation continued up to a distinct pausing site. However, ribosome nascent D1 chain complexes were not targeted to the thylakoid membrane, and no full-length D1 protein was produced in darkness. The arrest in translation elongation was released in the light, concomitantly with targeting of ribosome D1 nascent-chain complexes to the thylakoid membrane, allowing the synthesis of the full-length D1 protein. Downregulation of membrane targeting of ribosome complexes was also observed in the light if damage to the D1 protein was slow. This novel type of regulation of prokaryotic translation functions to balance the synthesis and degradation of the rapidly turning over photosystem II D1 protein in Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- T Tyystjärvi
- Plant Physiology and Molecular Biology, University of Turku, BioCity A, Tykistökatu 6, FIN-20520 Turku, Finland.
| | | | | |
Collapse
|
11
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
He Q, Vermaas W. Chlorophyll a availability affects psbA translation and D1 precursor processing in vivo in Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 1998; 95:5830-5. [PMID: 9576970 PMCID: PMC20465 DOI: 10.1073/pnas.95.10.5830] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transcript accumulation and translation of psbA as well as processing of the D1 precursor protein were investigated in relation to chlorophyll availability in vivo in cyanobacterial strains lacking photosystem I (PS I). The psbA transcript level was almost independent of chlorophyll availability and was approximately 3-fold lower in darkness than in continuous light (5 microE m-2 s-1). Upon illumination, it reached a steady-state level within several hours. Upon growth under light-activated heterotrophic growth conditions (LAHG) in the PS I-less strain, D1 synthesis occurred immediately upon illumination. However, in PS I-less/chlL- cells, which lacked the light-independent chlorophyll biosynthesis pathway and had very low chlorophyll levels after LAHG growth, very little D1 synthesis occurred upon illumination, and the synthesis rate increased with time. This result suggests a translational control of D1 biosynthesis related to chlorophyll availability. Upon illumination, initially a high level of the nonprocessed D1 precursor was observed by pulse labeling and immunodetection in LAHG-grown PS I-less/chlL- cells but not in PS I-less cells. A significant amount of the D1 precursor eventually was processed to mature D1, and the half-life of the D1 precursor decreased as the chlorophyll content of the cells increased. The D1 processing enzyme CtpA was found to be present at similar levels regardless illumination or chlorophyll levels. We conclude that, directly or indirectly, chlorophyll availability is needed for D1 translation as well as for efficient processing of the D1 precursor.
Collapse
Affiliation(s)
- Q He
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, Tempe, AZ 85287-1601, USA
| | | |
Collapse
|
13
|
Rochaix JD. Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1996; 32:327-341. [PMID: 8980486 DOI: 10.1007/bf00039389] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The biosynthesis of the photosynthetic apparatus depends on the concerted action of the nuclear and chloroplast genetic systems. Numerous nuclear and chloroplast mutants of Chlamydomonas deficient in photosynthetic activity have been isolated and characterized. While several of these mutations alter the genes of components of the photosynthetic complexes, a large number of the mutations affect the expression of chloroplast genes involved in photosynthesis. Most of these mutations are nuclear and only affect the expression of a single chloroplast gene. The mutations examined appear to act principally at post-transcriptional steps such as RNA stability, RNA processing, cis- and trans-splicing and translation. Directed chloroplast DNA surgery through biolistic transformation has provided a powerful tool for identifying important cis elements involved in chloroplast gene expression. Insertion of chimeric genes consisting of chloroplast regulatory regions fused to reporter genes into the chloroplast genome has led to the identification of target sites of the nuclear-encoded functions affected in some of the mutants. Biochemical studies have identified a set of RNA-binding proteins that interact with the 5'-untranslated regions of plastid mRNAs. The binding activity of some of these factors appears to be modulated by light and by the growth conditions.
Collapse
Affiliation(s)
- J D Rochaix
- Department of Molecular Biology, University of Geneva, Switzerland
| |
Collapse
|
14
|
van Wijk KJ, Eichacker L. Light is required for efficient translation elongation and subsequent integration of the D1-protein into photosystem II. FEBS Lett 1996; 388:89-93. [PMID: 8690097 DOI: 10.1016/0014-5793(96)00540-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The light dependence of translation and successive assembly of the D1 reaction center protein into Photosystem II subcomplexes was followed in fully developed chloroplasts isolated from the dark phase of diurnally grown spinach. The incorporation of synthesized D1 protein into Photosystem II (PSII) was analyzed by fractionation of radiolabeled unassembled protein and PSII (sub)complexes on sucrose density gradients. The ribosomes with attached nascent chains were recovered as pellets in the same gradients, and nascent chains of the D1 protein were immunoprecipitated. The analysis showed that absence of light during translation leads to an increased accumulation of polysome-bound D1 translation intermediates, indicating that light is required for efficient elongation of the D1 protein. The accumulation of the D1 protein and CP43 decreased three-fold in darkness, whereas accumulation of the D2 reaction center protein was not affected by light. In addition, light was also required for efficient incorporation of the D1 protein into the PSII core complex. In darkness, the newly synthesized D1 protein accumulated predominantly as unassembled protein or in PSII subcomplexes smaller than 100 kDa.
Collapse
Affiliation(s)
- K J van Wijk
- Department of Biochemistry, Arrhenius Laboratories, Stockholm University, Sweden
| | | |
Collapse
|
15
|
van Wijk KJ, Andersson B, Aro EM. Kinetic resolution of the incorporation of the D1 protein into photosystem II and localization of assembly intermediates in thylakoid membranes of spinach chloroplasts. J Biol Chem 1996; 271:9627-36. [PMID: 8621638 DOI: 10.1074/jbc.271.16.9627] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The chloroplast-encoded D1 protein of photosystem II (PSII) has a much higher turnover rate than the other subunits of the PSII complex as a consequence of photodamage and subsequent repair of its reaction center. The replacement of the D1 protein in existing PSII complexes was followed in two in vitro translation systems consisting of isolated chloroplasts or isolated thylakoid membranes with attached ribosomes. By application of pulse-chase translation experiments, we followed translation elongation, release of proteins from the ribosomes, and subsequent incorporation of newly synthesized products into PSII (sub)complexes. The time course of incorporation of newly synthesized proteins into the different PSII (sub)complexes was analyzed by sucrose density gradient centrifugation. Immediately after termination of translation, the D1 protein was found both unassembled in the membrane as well as already incorporated into PSII reaction center complexes, possibly due to a cotranslational association of the D1 protein with other PSII reaction center components. Later steps in the reassembly of PSII were clearly post-translational and sequential. Different rate-limiting steps in the assembly process were found to be related to the depletion of nuclear encoded and stromal components as well as the lateral migration of subcomplexes within the heterogeneous thylakoid membrane. The slow processing of precursor D1 in the thylakoid translation system revealed that processing was not required for the assembly of the D1 protein into a PSII (sub)complex and that processing of the unassembled precursor could take place. The limited incorporation into PSII subcomplexes of three other PSII core proteins (D2 protein, CP43, and CP47) was clearly post-translational in both translation systems. Radiolabeled assembly intermediates smaller than the PSII core complex were found to be located in the stroma-exposed thylakoid membranes, the site of protein synthesis. Larger PSII assembly intermediates were almost exclusively located in the appressed regions of the membranes.
Collapse
Affiliation(s)
- K J van Wijk
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
16
|
van Wijk KJ, Bingsmark S, Aro EM, Andersson B. In vitro synthesis and assembly of photosystem II core proteins. The D1 protein can be incorporated into photosystem II in isolated chloroplasts and thylakoids. J Biol Chem 1995; 270:25685-95. [PMID: 7592747 DOI: 10.1074/jbc.270.43.25685] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The D1 reaction center protein of the membrane-bound photosystem II complex (PSII) has a much higher turnover rate than the other PSII proteins. Thus, the D1 protein has to be replaced while the other PSII components are not newly synthesized. In this study, this D1 protein replacement into PSII complexes was followed in two in vitro translation systems: isolated chloroplasts and a homologous run-off translation system consisting primarily of isolated thylakoids with attached ribosomes. The incorporation of newly synthesized radiolabeled products into different (sub)complexes was analyzed by sucrose density gradient centrifugation of n-dodecyl beta -D-maltoside-solubilized thylakoid membranes. This analysis allowed us to follow the release of the nascent polypeptide chains from the ribosomes and identification of at least four assembly steps of the PSII complex, as shown below. (i) Both in isolated chloroplasts and in thylakoids, newly synthesized D1 protein is predominantly incorporated into existing PSII subcomplexes, indicating that synthesis and import of nuclear-encoded factors is not needed for D1 protein replacement. (ii) In chloroplasts, D1 protein incorporation into PSII core complexes is more efficient than during translation in isolated thylakoids. In the thylakoid translation system, a large percentage of radiolabeled D1 protein is found in smaller PSII subcomplexes, like PSII reaction center particles, and as unassembled protein in the membrane. This indicates that stromal factors are required in the replacement process of the D1 protein. (iii) Both in isolated chloroplasts and in thylakoids, the other PSII core proteins D2, CP43, and CP47 are also synthesized and released from the membrane-bound ribosomes, but incorporation into PSII complexes occurs to a much smaller extent than the D1 protein. Instead they accumulate predominantly as unassembled proteins in the thylakoid membrane. (iv) In chloroplasts, synthesis of the D1 protein seems to be adjusted according to the possibilities of incorporation into PSII complexes, while synthesis of the D2 protein, CP43, and CP47 is less regulated and their accumulation as unassembled protein in the membrane is abundant.
Collapse
Affiliation(s)
- K J van Wijk
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | |
Collapse
|
17
|
van Wijk KJ, Knott TG, Robinson C. Evidence for SecA- and delta pH-independent insertion of D1 into thylakoids. FEBS Lett 1995; 368:263-6. [PMID: 7628618 DOI: 10.1016/0014-5793(95)00668-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many nuclear-encoded proteins are targeted into chloroplast thylakoids by an azide sensitive Sec-related mechanism or by a delta pH-driven mechanism. In this report, the requirements for the integration of chloroplast-encoded thylakoid proteins have been analysed in pulse-labeled intact chloroplasts. We show that the integration of the photosystem II reaction centre protein, D1, continues in the absence of a delta pH and in the presence of azide. A range of other proteins are similarly targeted to thylakoids in the presence of azide, suggesting that the SecA-related mechanism is not widely used for the targeting of chloroplast-encoded proteins.
Collapse
Affiliation(s)
- K J van Wijk
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
18
|
Aro EM, Virgin I, Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:113-34. [PMID: 8318516 DOI: 10.1016/0005-2728(93)90134-2] [Citation(s) in RCA: 1287] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Even though light is the source of energy for photosynthesis, it can also be harmful to plants. Light-induced damage is targetted mainly to Photosystem II and leads to inactivation of electron transport and subsequent oxidative damage of the reaction centre, in particular to the D1 protein. Inactivation and protein damage can be induced by two different mechanisms, either from the acceptor side or from donor side of P680. The damaged D1 protein is triggered for degradation and digested by at least one serine-type proteinase that is tightly associated with the Photosystem II complex itself. The damaged Photosystem II complex dissociates from the light-harvesting antenna and migrates from appressed to non-appressed thylakoid regions where a new D1 protein is co-translationally inserted into the partially disassembled Photosystem II complex. D1 protein phosphorylation probably allows for coordinated biodegradation and biosynthesis of the D1 protein. After religation of cofactors and assembly of subunits, the repaired Photosystem II complex can again be found in the appressed membrane regions. Various protective mechanisms and an efficient repair cycle of Photosystem II allow plants to survive light stress.
Collapse
Affiliation(s)
- E M Aro
- Department of Biology, University of Turku, Finland
| | | | | |
Collapse
|
19
|
Bowyer J, Packer J, McCormack B, Whitelegge J, Robinson C, Taylor M. Carboxyl-terminal processing of the D1 protein and photoactivation of water-splitting in photosystem II. Partial purification and characterization of the processing enzyme from Scenedesmus obliquus and Pisum sativum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42783-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Michaels A, Herrin DL. Translational regulation of chloroplast gene expression during the light-dark cell cycle of Chlamydomonas: evidence for control by ATP/energy supply. Biochem Biophys Res Commun 1990; 170:1082-8. [PMID: 2390075 DOI: 10.1016/0006-291x(90)90503-f] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Chlamydomonas reinhardtii growing synchronously under a light-dark cycle, the major chloroplast mRNAs are constitutively present but are translated only during the light period. We show that translation of these mRNAs can be induced during the normal dark period by light or by acetate and the induction is blocked by an inhibitor of ATP synthesis, CCCP. Moreover, ATP levels in synchronous cells were found to be 2-5-fold lower during the dark than in the light period; the administration of acetate or light at the mid-dark period increased the ATP level 2-3-fold. These results exclude cell-cycle mediated control and suggest that the regulation of chloroplast translation in light-dark grown Chlamydomonas is mediated, at least in part, by ATP levels.
Collapse
Affiliation(s)
- A Michaels
- Biology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
21
|
Adir N, Shochat S, Ohad I. Light-dependent D1 protein synthesis and translocation is regulated by reaction center II. Reaction center II serves as an acceptor for the D1 precursor. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38381-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Breidenbach E, Leu S, Michaels A, Boschetti A. Synthesis of EF-Tu and distribution of its mRNA between stroma and thylakoids during the cell cycle of Chlamydomonas reinhardii. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1048:209-16. [PMID: 2322577 DOI: 10.1016/0167-4781(90)90058-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Chlamydomonas reinhardii the elongation factor EF-Tu is encoded in the chloroplast DNA. We identified EF-Tu in the electrophoretic product pattern of chloroplast-made proteins and showed that this protein is only synthesized in the first half of the light period in synchronized cells. The newly synthesized EF-Tu contributed little to the almost invariable content of EF-Tu in chloroplasts during the light period of the cell cycle. However, increasing cell volume and the lack of EF-Tu synthesis in the second half of the light period led to a decrease in the concentration of EF-Tu in chloroplasts. At different times in the vegetative cell cycle, the RNA was extracted from whole chloroplasts and from free and thylakoid-bound chloroplast polysomes. The content of mRNA of EF-Tu in chloroplasts and the distribution between stroma and thylakoids were determined. During the light period, the content of the mRNA for EF-Tu varied in parallel to the rate of EF-Tu synthesis. However, in the dark, some mRNA was present even in the absence of EF-Tu synthesis. Most of the mRNA was bound to thylakoids during the whole cell cycle. This suggests that synthesis of EF-Tu is associated with thylakoid membranes.
Collapse
Affiliation(s)
- E Breidenbach
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | | | |
Collapse
|
23
|
Faleev NG, Ruvinov SB, Demidkina TV, Myagkikh IV, Gololobov MYu, Bakhmutov VI, Belikov VM. Tyrosine phenol-lyase from Citrobacter intermedius. Factors controlling substrate specificity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:395-401. [PMID: 2847927 DOI: 10.1111/j.1432-1033.1988.tb14388.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
L-Amino acids are competitive inhibitors of tyrosine phenol-lyase from Citrobacter intermedius. For non-branched amino acids the correlation exists between -RTlnKi and side-chain hydrophobicity. Aspartic and glutamic acids are anomalously potent inhibitors taking into account low hydrophobicity of their side chains. This suggests the presence of an electrophilic group in the active site which interacts with the terminal carboxylic group of aspartic or glutamic acids. Tyramine, beta-phenylethylamine and tryptamine do not display detectable inhibition. The esters and amides of aromatic L-amino acids, D-phenylalanine and D-tryptophan are competitive inhibitors. The enzymatic isotope exchange of the alpha-proton in 2H2O was observed only in the case of L-amino acids. For L-phenylalanine and L-tryptophan it was shown to proceed with complete retention of configuration. The substrate specificity of tyrosine phenol-lyase is controlled during the stage of phenol elimination. The OH group in the para position of the ring is necessary for this stage to proceed. The same stage is also sensitive to the steric parameters of the substituent in the ring which ensures the second factor of control. When all the requirements of substrate specificity are fulfilled (L-tyrosine, 3-fluoro-L-tyrosine), the 'key' phenol-elimination step is not the rate-limiting one, the reaction velocity being determined by the preceding alpha-proton abstraction.
Collapse
Affiliation(s)
- N G Faleev
- A.N. Nesmeyanov Institute of Organo-Element Compounds, Academy of Sciences of the USSR, Moscow
| | | | | | | | | | | | | |
Collapse
|
24
|
Breidenbach E, Jenni E, Boschetti A. Synthesis of two proteins in chloroplasts and mRNA distribution between thylakoids and stroma during the cell cycle of Chlamydomonas reinhardii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:225-32. [PMID: 3181155 DOI: 10.1111/j.1432-1033.1988.tb14366.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.
Collapse
Affiliation(s)
- E Breidenbach
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | |
Collapse
|
25
|
trans-splicing of transcripts for the chloroplast psaA1 gene. In vivo requirement for nuclear gene products. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68075-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Friemann A, Hachtel W. Chloroplast messenger RNAs of free and thylakoid-bound polysomes from Vicia faba L. PLANTA 1988; 175:50-9. [PMID: 24221628 DOI: 10.1007/bf00402881] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/1987] [Accepted: 01/26/1988] [Indexed: 05/11/2023]
Abstract
Purified chloroplasts from developing leaves of Vicia faba L. were broken and separated into stroma and thylakoid fractions. Both fractions contained polysomes as demonstrated by analytical density gradient centrifugation and in-vitro read-out translation. Messenger RNAs of free and thylakoid-bound polysomes were isolated and analysed by hybridization with heterologous gene probes from spinach and tobacco. Transcripts of the chloroplast genes psaA, psbB, psbC, psbD and petA were found predominantly on thylakoidbound polysomes engaged in the synthesis and the contrasslational integration of membrane proteins. In contrast, transcripts of the genes rbcL, psbE, petD, atpA, atpB, atpE and atpH were found more frequently on free polysomes corresponding to a stroma-located translation of these mRNAs and a posttranslational integration of the encoded intrinsic membrane proteins. We conclude from these findings that chloroplast-encoded membrane proteins are integrated by co-and posttranslational mechanisms.
Collapse
Affiliation(s)
- A Friemann
- Botanisches Institut der Universität, Kirschallee 1, D-5300, Bonn 1, Germany
| | | |
Collapse
|
27
|
Gnanam A, Subbaiah CC, Mannan RM. Protein synthesis by isolated chloroplasts. PHOTOSYNTHESIS RESEARCH 1988; 19:129-152. [PMID: 24425371 DOI: 10.1007/bf00114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/1987] [Accepted: 03/10/1988] [Indexed: 06/03/2023]
Abstract
Isolated chloroplasts show substantial rates of protein synthesis when illuminated. This 'in organello' protein synthesis system has been advantageously utilised to elucidate the coding capacity of chloroplast and the regulation of chloroplast genes. The system is also being used recently to transcribe and translate homologous and heterologous templates. In this mini-review, we attempt to critically ecaluate the available literature and present the current and the prospective lines of research.
Collapse
Affiliation(s)
- A Gnanam
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, 625021, Madurai, India
| | | | | |
Collapse
|
28
|
Margulies MM, Tiffany HL, Hattori T. Photosystem I reaction center polypeptides of spinach are synthesized on thylakoid-bound ribosomes. Arch Biochem Biophys 1987; 254:454-61. [PMID: 3555344 DOI: 10.1016/0003-9861(87)90124-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purified chloroplasts were prepared from developing spinach leaves. The chloroplasts were separated into thylakoid and stroma fractions, and nucleic acids were prepared from them. Photosystem I reaction center polypeptide(s) (PS I RC) mRNA was associated with the thylakoid fraction when measured by hybridization using a probe for PS I RC polypeptide ps1A1, or when measured by translation assay. The ps1A1 polypeptide was coded for by a 5.5-kbp mRNA which others have shown also codes for PS IRC polypeptide ps1A2. This mRNA was in functional thylakoid-bound ribosomes because when thylakoids with bound ribosomes were translated in the absence of protein synthesis initiation, polypeptides that reacted with anti-PS I RC were formed. The results indicate that PS I RC polypeptides are synthesized exclusively by thylakoid-bound ribosomes.
Collapse
|
29
|
Reisman S, Michaels A, Ohad I. Lack of recovery from photoinhibition in a temperature-sensitive Chlamydomonas reinhardtii mutant T44 unable to synthesize and/or integrate the QB protein of Photosystem II at 37°C. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90094-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Hattori T, Margulies MM. Synthesis of large subunit of ribulosebisphosphate carboxylase by thylakoid-bound polyribosomes from spinach chloroplasts. Arch Biochem Biophys 1986; 244:630-40. [PMID: 3947083 DOI: 10.1016/0003-9861(86)90631-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intact chloroplasts were isolated from developing first leaves of spinach. The chloroplasts were broken and separated into an extensively washed membrane (thylakoid) fraction and a soluble (stroma) fraction. The membrane fraction contained polyribosomes with properties similar to those of thylakoid-bound polyribosomes of other organisms. The distribution of mRNA for large-subunit ribulosebisphosphate carboxylase (LS) was determined by translating RNA from chloroplasts, thylakoids, and stroma in a wheat germ cell-free translation system. LS translation product was identified by immunoprecipitation with antibody to LS from spinach, electrophoresis of the immunoprecipitated product, and fluorography. At least 44% of translatable chloroplast LS-mRNA was in the washed thylakoid fraction. Thylakoid-bound LS-mRNA was in polyribosomes since LS was produced by thylakoids in an Escherichia coli cell-free translation system under conditions where initiation did not take place. Our results demonstrate that membrane-bound polyribosomes can synthesize the stroma-localized polypeptide LS, and suggest that the thylakoids may be an important site of its synthesis.
Collapse
|
31
|
Wettern M, Galling G. Degradation of the 32-kilodalton thylakoid-membrane polypeptide of Chlamydomonas reinhardi Y-1. PLANTA 1985; 166:474-482. [PMID: 24241612 DOI: 10.1007/bf00391271] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/1985] [Accepted: 08/01/1985] [Indexed: 06/02/2023]
Abstract
Isolated thylakoid membranes of Chlamydomonas reinhardi Y-1 with the 32-kDa polypeptide either radioactively labelled or unlabelled were incubated in vitro under various conditions in order to gain information about the degradation of the 32-kDa polypeptide. The degradation was higher at pH 6 compared with pH 7 and pH 8 and exhibited a temperature maximum between 20° C and 25° C (pH 6, pH 8). A light-dependent part of the total degradation was linearly dependent on white light of energy fluence rate between 1 and 20 mW·cm(-2) at 25° C and leveled out at higher fluence rates. The degradation in light was only slightly stimulated by ATP but was reduced by 3-(3'-4'-dichlorophenyl)-1,1-dimethylurea. Adenosine-5'-diphosphate and heparin (2.7 mM and 200 μg per 100 μl, respectively) known to inhibit kinases, caused a 50% decrease in degradation indicating that a phosphorylation step is involved in degradating the 32-kDa polypeptide. Out of various inhibitors specific for different types of proteases, only those for thiol- and endoproteases showed intense effects. These results point to a proteolytic degradation of the 32-kDa polypetide by a thylakoid-membrane-bound thiol-endoprotease. Its activity yields soluble breakdown products with relative molecular masses (Mrs) of 23, 16.5, 11.3 and 10.7 kDa, and these are accumulated in the in-vitro system. Partial proteolytic digestion of thylakoids with Staphylococcus aureus V8 protease results in at least two labelled breakdown products (Mrs 23, and 16.5 kDa). It is assumed that cleaving at identical amino-acid residues of the 32-kDa polypeptide by the thylakoid-membrane-bound thiolendoprotease and the V8 protease results in these two breakdown products. They are derived from subsequent cleavage at amino-acid residues 60-242 and 60-189 according to the deduced protein sequence (Erickson et al. 1984, EMBO J. 3, 2753-2762).
Collapse
Affiliation(s)
- M Wettern
- Botanisches Institut der Technischen Universität Braunschweig, Humboldtstrasse 1, D-3300, Braunschweig, Federal Republic of Germany
| | | |
Collapse
|