1
|
Jia B, Shi Y, Yan Y, Shi H, Zheng J, Liu J. Engineering of Erythrocytes as Drug Carriers for Therapeutic Applications. Adv Biol (Weinh) 2024:e2400242. [PMID: 39037400 DOI: 10.1002/adbi.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes, also known as red blood cells (RBCs), have garnered considerable attention as potential carriers for drug delivery, owing to their inherent properties such as biocompatibility, biodegradability, and prolonged circulation half-life. This paper presents a comprehensive overview of the role of erythrocytes in drug delivery, elucidating recent advancements in delivering a diverse array of therapeutic agents, including small molecules, nucleic acids, antibodies, protein enzymes, and nanoparticles. Two primary strategies for encapsulating drugs within erythrocytes are systematically discussed: internal loading and surface loading. Each strategy offers distinct advantages in terms of drug stability and release kinetics. Notably, the utilization of erythrocyte membrane camouflaged nanocarriers holds promise for enhancing the biocompatibility of conventional nanoparticles and facilitating targeted drug delivery. Furthermore, the broad spectrum of biomedical applications of erythrocyte-based drug delivery systems are examined, ranging from cancer treatment to diabetes management, thrombosis prevention, and immunotherapy. This review provides a comprehensive evaluation of current technologies in erythrocyte-loaded drug delivery, highlighting the strengths, weaknesses, and future directions for advancing therapeutic interventions in various disease contexts.
Collapse
Affiliation(s)
- Baoshuo Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yujie Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yuling Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Glassman PM, Villa CH, Marcos-Contreras OA, Hood ED, Walsh LR, Greineder CF, Myerson JW, Shuvaeva T, Puentes L, Brenner JS, Siegel DL, Muzykantov VR. Targeted In Vivo Loading of Red Blood Cells Markedly Prolongs Nanocarrier Circulation. Bioconjug Chem 2022; 33:1286-1294. [PMID: 35710322 DOI: 10.1021/acs.bioconjchem.2c00196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering drug delivery systems for prolonged pharmacokinetics (PK) has been an ongoing pursuit for nearly 50 years. The gold standard for PK enhancement is the coating of nanoparticles with polymers, namely polyethylene glycol (PEGylation), which has been applied in several clinically used products. In the present work, we utilize the longest circulating and most abundant component of blood─the erythrocyte─to improve the PK behavior of liposomes. Antibody-mediated coupling of liposomes to erythrocytes was tested in vitro to identify a loading dose that did not adversely impact the carrier cells. Injection of erythrocyte targeting liposomes into mice resulted in a ∼2-fold improvement in the area under the blood concentration versus time profile versus PEGylated liposomes and a redistribution from the plasma into the cellular fraction of blood. These results suggest that in vivo targeting of erythrocytes is a viable strategy to improve liposome PK relative to current, clinically viable strategies.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carlos H Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Landis R Walsh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin F Greineder
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tea Shuvaeva
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laura Puentes
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
|
4
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
5
|
Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021; 23:225-248. [PMID: 33788581 PMCID: PMC8277719 DOI: 10.1146/annurev-bioeng-121219-024239] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.
Collapse
Affiliation(s)
- Jacob S Brenner
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Vladimir R Muzykantov
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Zhu R, Avsievich T, Popov A, Bykov A, Meglinski I. In vivo nano-biosensing element of red blood cell-mediated delivery. Biosens Bioelectron 2020; 175:112845. [PMID: 33262059 DOI: 10.1016/j.bios.2020.112845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Biosensors based on nanotechnology are developing rapidly and are widely applied in many fields including biomedicine, environmental monitoring, national defense and analytical chemistry, and have achieved vital positions in these fields. Novel nano-materials are intensively developed and manufactured for potential biosensing and theranostic applications while lacking comprehensive assessment of their potential health risks. The integration of diagnostic in vivo biosensors and the DDSs for delivery of therapeutic drugs holds an enormous potential in next-generation theranostic platforms. Controllable, precise, and safe delivery of diagnostic biosensing devices and therapeutic agents to the target tissues, organs, or cells is an important determinant in developing advanced nanobiosensor-based theranostic platforms. Particularly, inspired by the comprehensive biological investigations on the red blood cells (RBCs), advanced strategies of RBC-mediated in vivo delivery have been developed rapidly and are currently in different stages of transforming from research and design to pre-clinical and clinical investigations. In this review, the RBC-mediated delivery of in vivo nanobiosensors for applications of bio-imaging at the single-cell level, advanced medical diagnostics, and analytical detection of biomolecules and cellular activities are presented. A comprehensive perspective of the technical framework of the state-of-the-art RBC-mediated delivery systems is explained in detail to inspire the design and implementation of advanced nanobiosensor-based theranostic platforms taking advantage of RBC-delivery modalities.
Collapse
Affiliation(s)
- Ruixue Zhu
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Tatiana Avsievich
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Alexey Popov
- VTT Technical Research Centre of Finland, Kaitoväylä 1, 90590, Oulu, Finland.
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland; Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050, Tomsk, Russia; Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), 115409, Moscow, Russia; Department of Histology, Cytology and Embryology, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
7
|
Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 2020; 12:E440. [PMID: 32397513 PMCID: PMC7284780 DOI: 10.3390/pharmaceutics12050440] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Red blood cells (RBC) have great potential as drug delivery systems, capable of producing unprecedented changes in pharmacokinetics, pharmacodynamics, and immunogenicity. Despite this great potential and nearly 50 years of research, it is only recently that RBC-mediated drug delivery has begun to move out of the academic lab and into industrial drug development. RBC loading with drugs can be performed in several ways-either via encapsulation within the RBC or surface coupling, and either ex vivo or in vivo-depending on the intended application. In this review, we briefly summarize currently used technologies for RBC loading/coupling with an eye on how pharmacokinetics is impacted. Additionally, we provide a detailed description of key ADME (absorption, distribution, metabolism, elimination) changes that would be expected for RBC-associated drugs and address unique features of RBC pharmacokinetics. As thorough understanding of pharmacokinetics is critical in successful translation to the clinic, we expect that this review will provide a jumping off point for further investigations into this area.
Collapse
Affiliation(s)
- Patrick M. Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Carlos H. Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Paige Smith
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alan J. Russell
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| |
Collapse
|
8
|
Muzykantov V, Seregina N, Smirnov M. Fast Lysis by Complement and Uptake by Liver of Avidin-Carrying Biotinylated Erythrocytes. Int J Artif Organs 2018. [DOI: 10.1177/039139889201501010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fate of 51Cr-labelled avidin-carrying biotinylated erythrocytes after intravenous injection in the rat was examined. Surface amino groups of the erythrocyte membrane were modified by biotin N-hydroxysuccinimide ester. The biodistribution and stability of biotinylated erythrocytes in the blood were similar to those of non-biotinylated cells. Both types of cells circulated in the bloodstream for prolonged periods of time without substantial lysis (about 2-3% of injected radioactivity per g of blood for 24-48 hours, no more than 2% of lysis). Both types of erythrocytes were cleared by the spleen. The clearance of biotinylated cells was faster and more pronounced (peak of spleen uptake at 3 hours after injection, up to 35% of injected radioactivity per g of spleen), than that of non-biotinylated cells (peak of spleen uptake at 24 hours after injection, up to 25% of injected radioactivity per g of spleen). Attachment of avidin to biotinylated cells results in extremely rapid lysis and clearance from the bloodstream (0.17% of injected radioactivity per g of blood 30 min after injection, 100% lysis). Radioactivity was rapidly cleared by the liver (up to 80% of injected dose per g of tissue, 70% per organ). Uptake by the spleen plays only a minor role in the clearance. Considerable lung uptake of avidin-carrying biotinylated erythrocytes was observed. Avidin-carrying biotinylated erythrocytes were lysed by fresh homologous serum in vitro in contrast to biotinylated and native cells. Lysis was eliminated by pretreatment of serum with EDTA or heating, which indicates a complement-dependent mechanism of lysis.
Collapse
Affiliation(s)
- V.R. Muzykantov
- Institute of Experimental Cardiology, National Cardiology Research Center, Moscow - Russia
| | - N. Seregina
- Radiology Department of the Institute of Clinical Cardiology, National Cardiology Research Center, Moscow - Russia
| | - M.D. Smirnov
- Institute of Experimental Cardiology, National Cardiology Research Center, Moscow - Russia
| |
Collapse
|
9
|
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106:88-103. [PMID: 26941164 DOI: 10.1016/j.addr.2016.02.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm.
Collapse
|
10
|
Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 2016; 96:115-128. [PMID: 27496050 DOI: 10.1016/j.ejps.2016.07.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 11/22/2022]
Abstract
Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development.
Collapse
|
11
|
Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv 2015; 6:795-826. [PMID: 26228773 PMCID: PMC4712023 DOI: 10.4155/tde.15.34] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel C Pan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Zaitsev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Mukthavaram R, Shi G, Kesari S, Simberg D. Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes. J Control Release 2014; 183:146-53. [PMID: 24685706 DOI: 10.1016/j.jconrel.2014.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
There is a great interest in targeting and selective ablation of populations of circulating cells for research or therapeutic purposes. Red blood cells (RBCs) are readily available and fully biocompatible long-circulating intravascular carriers (natural life is 120days) that are amenable to chemical modifications, drug loading and reinjection. Here we demonstrate that using our previously described lipophilic ligand painting strategy, red blood cells (RBCs) could be in one step converted into targeted entities that selectively seek and bind various cells in vitro and in vivo. In vitro, RBCs modified with lipophilic anti-EpCAM or anti-CD45 antibodies efficiently bound to cancer cells and leukocytes, forming characteristic rosettes. In vivo, intravenously injected RBCs painted with anti-CD45 antibody immediately associated with CD45 positive cells in blood, forming RBC-leukocyte rosettes. Moreover, anti-CD45-modified RBCs, but not the same amount of anti-CD45 antibody or anti-CD45-lipid conjugate (1-2μg/mouse), depleted over 50% of CD45+ leukocytes from circulation, with main clearance organs of leukocytes being liver and spleen with no visible deposition in kidneys and lungs. Anti-CD20 (Rituximab)-painted RBCs efficiently (over 90%) depleted CD19+/CD20+/CD45+ human lymphoma cells in mantle cell lymphoma (MCL) JeKo-1 model, while the same amount of rituximab-lipid (2μg/mouse) was much less efficient in lymphoma cell depletion. Treatment of MCL mice with rituximab-modified RBCs carrying only 2μg of the antibody resulted in a significant prolongation of survival as compared to the same amount of antibody-lipid control. Lipophilic ligand-painted RBCs is a novel tool that can be utilized for targeting blood borne cells for experimental immunology and drug delivery applications.
Collapse
Affiliation(s)
- Rajesh Mukthavaram
- Moores UCSD Cancer Center, UC San Diego, 3855 Health Sciences Drive, La Jolla 92093, USA; Neuro-Oncology Program and Translational Neuro-Oncology Laboratories, Moores UCSD Cancer Center, UC San Diego, 3855 Health Sciences Drive, La Jolla 92093-0819, USA
| | - Guixin Shi
- Moores UCSD Cancer Center, UC San Diego, 3855 Health Sciences Drive, La Jolla 92093, USA
| | - Santosh Kesari
- Neuro-Oncology Program and Translational Neuro-Oncology Laboratories, Moores UCSD Cancer Center, UC San Diego, 3855 Health Sciences Drive, La Jolla 92093-0819, USA; Department of Neurosciences, UC San Diego, La Jolla, USA
| | - Dmitri Simberg
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora 80045, USA.
| |
Collapse
|
13
|
Anselmo AC, Gupta V, Zern BJ, Pan D, Zakrewsky M, Muzykantov V, Mitragotri S. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS NANO 2013; 7:11129-37. [PMID: 24182189 PMCID: PMC4128963 DOI: 10.1021/nn404853z] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanoparticulate drug delivery systems are one of the most widely investigated approaches for developing novel therapies for a variety of diseases. However, rapid clearance and poor targeting limit their clinical utility. Here, we describe an approach to harness the flexibility, circulation, and vascular mobility of red blood cells (RBCs) to simultaneously overcome these limitations (cellular hitchhiking). A noncovalent attachment of nanoparticles to RBCs simultaneously increases their level in blood over a 24 h period and allows transient accumulation in the lungs, while reducing their uptake by liver and spleen. RBC-adsorbed nanoparticles exhibited ∼3-fold increase in blood persistence and ∼7-fold higher accumulation in lungs. RBC-adsorbed nanoparticles improved lung/liver and lung/spleen nanoparticle accumulation by over 15-fold and 10-fold, respectively. Accumulation in lungs is attributed to mechanical transfer of particles from the RBC surface to lung endothelium. Independent tracing of both nanoparticles and RBCs in vivo confirmed that RBCs themselves do not accumulate in lungs. Attachment of anti-ICAM-1 antibody to the exposed surface of NPs that were attached to RBCs led to further increase in lung targeting and retention over 24 h. Cellular hitchhiking onto RBCs provides a new platform for improving the blood pharmacokinetics and vascular delivery of nanoparticles while simultaneously avoiding uptake by liver and spleen, thus opening the door for new applications.
Collapse
Affiliation(s)
- Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106
| | - Vivek Gupta
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106
| | - Blaine J. Zern
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania
| | - Daniel Pan
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania
| | - Michael Zakrewsky
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106
| | - Vladimir Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106
- To whom correspondence should be addressed: Prof. Samir Mitragotri, Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, Ph: 805-893-7532, Fax: 805-893-4731,
| |
Collapse
|
14
|
Sternberg N, Georgieva R, Duft K, Bäumler H. Surface-modified loaded human red blood cells for targeting and delivery of drugs. J Microencapsul 2011; 29:9-20. [DOI: 10.3109/02652048.2011.629741] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7:403-27. [PMID: 20192900 DOI: 10.1517/17425241003610633] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
16
|
|
17
|
Chiarantini L, Droleskey RE, DeLoach JR. Introduction to in vivo targeting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 326:269-77. [PMID: 1295315 DOI: 10.1007/978-1-4615-3030-5_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- L Chiarantini
- USDA-ARS, Food Animal Protection Research Laboratory, College Station, TX
| | | | | |
Collapse
|
18
|
Avidin acylation prevents the complement-dependent lysis of avidin-carrying erythrocytes. Biochem J 1991; 273(Pt 2):393-7. [PMID: 1991038 PMCID: PMC1149858 DOI: 10.1042/bj2730393] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Non-covalent binding of avidin to biotinylated erythrocytes results in complement-dependent haemolysis. Biotinylated erythrocytes, as well as native cells, are not lysed by complement. Complement activation requires a tight contact between avidin and the erythrocyte membrane, since avidin does not in itself activate complement and does not inhibit lysis of sensitized sheep erythrocytes. The efficiency of haemolysis depends on avidin's surface density. When the avidin concentration in the reaction mixture is less than 15 micrograms/ml, erythrocyte lysis is not induced. However, the attachment of biotinylated antibodies to avidin-carrying erythrocytes decreases dramatically. Acylation of avidin with succinic anhydride strongly decreases its ability to induce complement-dependent haemolysis. However, the ability of avidin to cross-link the biotin-containing structures decreases after acylation. A 50% modification of avidin by succinic anhydride (pI about 7.0) allows preparation of 'immunoerythrocytes', which retain their affinity to antigen and stability in the presence of complement.
Collapse
|
19
|
|
20
|
Muzykantov VR, Sakharov DV, Smirnov MD, Samokhin GP, Smirnov VN. Immunotargeting of erythrocyte-bound streptokinase provides local lysis of a fibrin clot. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 884:355-62. [PMID: 3768424 DOI: 10.1016/0304-4165(86)90184-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The creation of an anticollagen antibody-erythrocyte-streptokinase complex has been described. Immobilization of both proteins on erythrocyte membrane has been performed using an avidin-biotin interaction. Modification of streptokinase with (6-biotinylamido)hexanoic acid N-hydroxysuccinimide ester at the concentration of 1.1 mM (20% modification of protein amino groups) provides effective (up to 90%) attachment of streptokinase to an avidin-carrying erythrocyte surface. The loss of streptokinase activity due to modification under these conditions is not significant. The maximal attachment of streptokinase was equal to about 50 ng per 10(6) erythrocytes, i.e., about 5 X 10(5) molecules of streptokinase per erythrocyte. The presence of streptokinase in the incubation mixture inhibited the attachment of antibodies by about 50%. Nevertheless, co-immobilization of anticollagen antibody (1.0 X 10(5) molecules per cell) and streptokinase (2.8 X 10(5) molecules per cell) on the erythrocyte surface provided firm and specific binding of such erythrocytes to a collagen-coated surface (1.6 X 10(6) bound cells per 1 cm2 on a collagen-coated surface against 0.006 X 10(6) bound cells on a bovine serum albumin-coated surface). Targeting of such erythrocytes led to local lysis of a fibrin clot in the target zone. The properties described offer in principle the possibility of the application of this or a similar system of fibrinolytic agent targeting for the preventive therapy of rethrombosis during surgical manipulations on vessels.
Collapse
|
21
|
Red blood cell targeting to human aortic smooth muscle cells. Bull Exp Biol Med 1986. [DOI: 10.1007/bf00854687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Glukhova MA, Domogatsky SP, Kabakov AE, Muzykantov VR, Ornatsky OI, Sakharov DV, Frid MG, Smirnov VN. Red blood cell targeting to smooth muscle cells. FEBS Lett 1986; 198:155-8. [PMID: 3956726 DOI: 10.1016/0014-5793(86)81203-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monoclonal antibody discriminating between endothelial and smooth muscle cells is suggested to be used as a vector for directed transport of drugs to injured (denuded) areas of blood vessel wall. An in vitro model system was used in the studies: vascular smooth muscle or endothelial cells grown on plastic surface were treated with specific mouse monoclonal antibody recognizing an antigen localized on the surface of smooth muscle rather than endothelial cells; then erythrocytes coated with secondary (rabbit antimouse) antibodies were added. The results were analyzed spectrophotometrically or with scanning electron microscopy. Under the experimental conditions, erythrocytes, possible 'containers' for carrying the drugs, were found to bind only to smooth muscle cells. The data show that antibody provides absolute discrimination between endothelial and smooth muscle cells and, thus, may be used as a vector for drug targeting.
Collapse
|