1
|
Chen F, Ren CG, Zhou T, Wei YJ, Dai CC. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea. Sci Rep 2016; 6:34735. [PMID: 27703209 PMCID: PMC5050437 DOI: 10.1038/srep34735] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/15/2016] [Indexed: 02/01/2023] Open
Abstract
Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26–42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants.
Collapse
Affiliation(s)
- Fei Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Cheng-Gang Ren
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Jia Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Ranjeva R, Carrasco A, Boudet A. Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated fromAcercells. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80657-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Aharon GS, Gelli A, Snedden WA, Blumwald E. Activation of a plant plasma membrane Ca2+ channel by TGalpha1, a heterotrimeric G protein alpha-subunit homologue. FEBS Lett 1998; 424:17-21. [PMID: 9537507 DOI: 10.1016/s0014-5793(98)00129-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Wild-type and GTPase-deficient recombinant TGalpha1 were used along patch-clamp techniques to study the role of heterotrimeric G proteins in the regulation of the hyperpolarized active tomato plasma membrane Ca2+ channel. Recombinant alpha-subunits induced an increase in channel activity as shown by the increase in channel events and the mean open probability of the channel. Our results suggest a membrane-delimited pathway involving heterotrimeric G proteins in Ca2+ channel activation.
Collapse
Affiliation(s)
- G S Aharon
- Department of Botany, University of Toronto, Ont., Canada
| | | | | | | |
Collapse
|
4
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
5
|
Substances interfering with phosphatidyl inositol signalling pathway affect ultradian rhythm ofDesmodium motorium. J Biosci 1997. [DOI: 10.1007/bf02703192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
The Role of Suppressors in Determining Host-Parasite Specificities in Plant Cells. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0074-7696(08)62358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
7
|
Crespi P, Perroud PF, Greppin H. Guanosine triphosphate-binding proteins on the plasmalemma of spinach leaf cells. PLANTA 1996; 198:557-562. [PMID: 28321666 DOI: 10.1007/bf00262642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/1995] [Accepted: 08/21/1995] [Indexed: 06/06/2023]
Abstract
The molecular mechanism of light perception through phytochrome is not well understood. This red-light photosensor has been implicated in various physiological processes, including the photoinduction of flowering. A few recent studies have shown that phytochrome initiates signal transduction chains via guanosine triphosphate (GTP)-binding proteins (G-proteins). We show here by different approaches that G-proteins exist in spinach (Spinacia oleracea L. cv. Nobel). Binding of GTP on the plasmalemma has been partially characterized and its possible regulation by red light examined by in-vitro assays. These experiments indicate a clear regulation of GTP binding by red light and also by Mastoparan. At least three G-proteins or protein subunits were found to be associated with the plasmalemma of leaf cells. The use of an antibody raised against an animal Gβ subunit confirmed the presence of heterotrimeric G-proteins. Separation of a crude membrane extract by free-flow electrophoresis also showed that some G-proteins could exist on the tonoplast.
Collapse
Affiliation(s)
- Pierre Crespi
- Laboratoire de Biochimie et Physiologie Végétales, Université de Genève, Place de l'Université 3, CH-1211, Genève 4, Switzerland
| | - Pierre-François Perroud
- Laboratoire de Biochimie et Physiologie Végétales, Université de Genève, Place de l'Université 3, CH-1211, Genève 4, Switzerland
| | - Hubert Greppin
- Laboratoire de Biochimie et Physiologie Végétales, Université de Genève, Place de l'Université 3, CH-1211, Genève 4, Switzerland
| |
Collapse
|
8
|
Sopory SK, Chandok MR. Light-induced signal transduction pathway involving inositol phosphates. Subcell Biochem 1996; 26:345-70. [PMID: 8744271 DOI: 10.1007/978-1-4613-0343-5_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S K Sopory
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
9
|
Affiliation(s)
- H Ma
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
10
|
Ma H. GTP-binding proteins in plants: new members of an old family. PLANT MOLECULAR BIOLOGY 1994; 26:1611-1636. [PMID: 7858207 DOI: 10.1007/bf00016493] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Regulatory guanine nucleotide-binding proteins (G proteins) have been studied extensively in animal and microbial organisms, and they are divided into the heterotrimeric and the small (monomeric) classes. Heterotrimeric G proteins are known to mediate signal responses in a variety of pathways in animals and simple eukaryotes, while small G proteins perform diverse functions including signal transduction, secretion, and regulation of cytoskeleton. In recent years, biochemical analyses have produced a large amount of information on the presence and possible functions of G proteins in plants. Further, molecular cloning has clearly demonstrated that plants have both heterotrimeric and small G proteins. Although the functions of the plant heterotrimeric G proteins are yet to be determined, expression analysis of an Arabidopsis G alpha protein suggests that it may be involved in the regulation of cell division and differentiation. In contrast to the very few genes cloned thus far that encode heterotrimeric G proteins in plants, a large number of small G proteins have been identified by molecular cloning from various plants. In addition, several plant small G proteins have been shown to be functional homologues of their counterparts in animals and yeasts. Future studies using a number of approaches are likely to yield insights into the role plant G proteins play.
Collapse
Affiliation(s)
- H Ma
- Cold Spring Harbor Laboratory, NY 11724
| |
Collapse
|
11
|
Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74503-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Terryn N, Van Montagu M, Inzé D. GTP-binding proteins in plants. PLANT MOLECULAR BIOLOGY 1993; 22:143-152. [PMID: 8499613 DOI: 10.1007/bf00039002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- N Terryn
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | |
Collapse
|
13
|
Einspahr KJ. Inositol phospholipids in plant cell signalling. Trends Genet 1992. [DOI: 10.1016/0168-9525(92)90379-i] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Affiliation(s)
- A M Hetherington
- Division of Biological Sciences, IEBS, Lancaster University, U.K
| | | |
Collapse
|
15
|
|
16
|
Kamada Y, Muto S. Ca2+ regulation of phosphatidylinositol turnover in the plasma membrane of tobacco suspension culture cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1093:72-9. [PMID: 1646649 DOI: 10.1016/0167-4889(91)90140-s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biochemical properties of the enzymes involved in phosphatidylinositol (PI) turnover in higher plants were investigated using the plasma membrane isolated from tobacco suspension culture cells by aqueous two-phase partitioning. Submicromolar concentrations of Ca2+ inhibited PI kinase and phosphatidylinositol 4-phosphate (PIP) kinase and stimulated phospholipase C. Diacylglycerol (DG) kinase was inhibited by Ca2+, but required a higher concentration than the physiological level. From the above results we postulate the following scheme: signal coupled activation of phospholipase C produces IP3 which induces Ca2+ release from the intracellular Ca2+ compartment, the increased cytoplasmic Ca2+ in turn activates phospholipase C and causes a further increase of the cytoplasmic Ca2+ level. This inhibits PI kinase and PIP kinase and brings about a limited supply of PIP2, the substrate of phospholipase C. Consequently, IP3 production decreases and Ca2+ mobilization ceases. Then cytosolic Ca2+ returns to the stationary level by the Ca2+ pump at the plasma membrane and at the endoplasmic reticulum and Ca2+/H+ antiporter at the plasma membrane and at the tonoplast.
Collapse
Affiliation(s)
- Y Kamada
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
17
|
Signal Transduction at the Membrane Level of Plant Cells. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-94-009-2103-0_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Abstract
Studies on a variety of animal cell types have revealed a GTP-specific calcium-releasing mechanism in a non-mitochondrial, microsomal fraction. Here we report that GTP also induces rapid release of calcium from a zucchini (Cucurbita pepo L.) hypocotyl microsomal fraction. Maximal release occurs at 50 microM, and half-maximal release at 8 microM GTP. GTP is highly specific in its effect, and may not be replaced by UTP, ATP, CTP, TTP, GMP, or by non-hydrolysable analogues of GTP. Reuptake of calcium after release does not normally occur; however, this may be induced by non-hydrolysable GTP analogues. Calcium release is also blocked by prior treatment with these analogues.
Collapse
Affiliation(s)
- E Allan
- John Innes Institute, Norwich, England
| | | | | | | |
Collapse
|
19
|
Zbell BA, Walter-Back C, Bucher H. Evidence of an auxin-mediated phosphoinositide turnover and an inositol (1,4,5)trisphosphate effect on isolated membranes of Daucus carota L. J Cell Biochem 1989; 40:331-40. [PMID: 2550489 DOI: 10.1002/jcb.240400309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microsomal membranes from carrot suspension cells were phosphorylated in vitro with [gamma-32P]ATP. In the presence of submicromolar concentrations of the natural auxin indoleacetic acid (IAA), a rapid, but transient decrease of the [32P] label could be detected in the phospholipid extracts of the membranes. The phytohormone effect was not the result of an inhibition of the lipid phosphorylation reactions, but was caused by a simultaneous release of water-soluble compounds, which, according to their chromatographic properties, were assumed to contain inositol polyphosphates. Although the [32P]-labeled lipids, as well as the inositol polyphosphates, were not identified unequivocally by chemical analysis, these findings point to an auxin-mediated control of a phosphoinositidase C-like reaction similar to the hormone-stimulated phosphoinositide response in animals. Exogenously applied inositol (1,4,5)trisphosphate [(1,4,5)IP3] was found to release 45Ca2+ from preloaded membrane vesicles of carrot cells. Both the detection of the auxin-stimulated phosphoinositide response and the (1,4,5)IP3-mediated Ca2+ release on isolated cell membranes offer new experimental approaches for the identification of the putative auxin receptor and its signal transduction pathway.
Collapse
Affiliation(s)
- B A Zbell
- Botanical Institute, Ruprecht-Karls-University, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
20
|
Molecular Evolution of the Endocrine System. Mol Endocrinol 1989. [DOI: 10.1016/b978-0-12-111230-1.50018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Blum W, Hinsch KD, Schultz G, Weiler EW. Identification of GTP-binding proteins in the plasma membrane of higher plants. Biochem Biophys Res Commun 1988; 156:954-9. [PMID: 3142467 DOI: 10.1016/s0006-291x(88)80936-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antisera raised against a highly conserved amino acid sequence (G alpha-common peptide) of animal Gs alpha, Gi alpha, Go alpha and Gt alpha recognize, in plasma membranes of several higher plants, sets of proteins of Mr = 37 and 31 kDa (Vicia faba), 36 and 31 kDa (Arabidopsis thaliana) and 38 and 34 kDa (Commelina communis). The A. thaliana proteins were solubilized and partially purified. They bind [35S]GTP gamma S with high affinity (apparent Kd approximately 10 nM) and, with lower affinity, GTP but not the other nucleotides tested (ATP, CTP, ITP, UTP).
Collapse
Affiliation(s)
- W Blum
- Arbeitsgruppe Pflanzenphysiologie, Universität Osnabrück, FRG
| | | | | | | |
Collapse
|
22
|
Cockcroft S, Stutchfield J. G-proteins, the inositol lipid signalling pathway, and secretion. Philos Trans R Soc Lond B Biol Sci 1988; 320:247-65. [PMID: 2906137 DOI: 10.1098/rstb.1988.0075] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The formation of the second messenger cyclic AMP (cAMP) is known to be coupled to its receptor via a guanine nucleotide regulatory protein, GS. Ca2+-mobilizing receptors stimulate the hydrolysis of phosphatidylinositol bisphosphate (PtdIns(4,5)P2), which generates two intracellular signals Ins(1,4,5)P3 and diacylglycerol. We review the evidence that this signalling system is also composed of three types of proteins: receptor, G-protein and effector. The G-protein that couples to the effector, polyphosphoinositide phosphodiesterase (PPI-PDE), is a novel G-protein, GP, which is a substrate for pertussis toxin in some cells (e.g. neutrophils and platelets) but not others (e.g. pancreatic acinar cells and GH3 cells). This implies that GP is not a single G-protein but encompasses a family of proteins that can activate PPI-PDE. We have also identified a role for another G-protein, GE, which is involved in the secretory process in mast cells and neutrophils. In this case, neither the receptor nor effector has been identified and the main evidence for proposing this second G-protein is based on the ability of guanine nucleotide analogues (e.g. GTP gamma S) to stimulate secretion independently of PPI-PDE activation.
Collapse
Affiliation(s)
- S Cockcroft
- Department of Experimental Pathology, School of Medicine, University College London, U.K
| | | |
Collapse
|
23
|
Drobak BK, Allan EF, Comerford JG, Roberts K, Dawson AP. Presence of guanine nucleotide-binding proteins in a plant hypocotyl microsomal fraction. Biochem Biophys Res Commun 1988; 150:899-903. [PMID: 3124845 DOI: 10.1016/0006-291x(88)90713-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The presence of specific guanine nucleotide-binding proteins in a zucchini (Cucurbita pepo L.) hypocotyl microsomal fraction was investigated. Polypeptides were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and transferred to nitrocellulose. Incubation of nitrocellulose blots with [alpha-32P]GTP and [gamma-32P]GTP indicated the presence of four specific and distinct GTP-binding proteins with molecular masses of approx. 23.4 kDa, 24.8 kDa, 26.6 kDa and 28.5 kDa. Binding of [alpha-32P]GTP could be completely prevented by 30 microM GDP or 10 microM guanosine 5'[gamma-thio]triphosphate. This report presents evidence for the presence in a microsomal fraction from zucchini hypocotyls of Gn-proteins as defined by Bhullar and Haslam (1987) Biochem.J. 245, 617-620. The four plant proteins resemble animal Gn-proteins when molecular weights and GTP-binding specificities are considered.
Collapse
|
24
|
Phosphatidylinositol and phosphatidylinositolphosphate kinases in plant plasma membranes. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0005-2760(88)90185-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Janssens PM. The evolutionary origin of eukaryotic transmembrane signal transduction. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1988; 90:209-23. [PMID: 2900114 DOI: 10.1016/0300-9629(88)91106-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. A comparison was made of transmembrane signal transduction mechanisms in different eukaryotes and prokaryotes. 2. Much attention was given to eukaryotic microbes and their signal transduction mechanisms, since these organisms are intermediate in complexity between animals, plants and bacteria. 3. Signal transduction mechanisms in eukaryotic microbes, however, do not appear to be intermediate between those in animals, plants and bacteria, but show features characteristic of the higher eukaryotes. 4. These similarities include the regulation of receptor function, adenylate cyclase activity, the presence of a phosphatidylinositol cycle and of GTP-binding regulatory proteins. 5. It is proposed that the signal transduction systems known to operate in present-day eukaryotes evolved in the earliest eukaryotic cells.
Collapse
Affiliation(s)
- P M Janssens
- Cell Biology and Genetics Unit, University of Leiden, The Netherlands
| |
Collapse
|
26
|
Melin PM, Sommarin M, Sandelius AS, Jergil B. Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett 1987; 223:87-91. [PMID: 2822482 DOI: 10.1016/0014-5793(87)80515-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A polyphosphoinositide phospholipase C has been identified in highly purified plasma membranes from shoots and roots of wheat seedlings. The enzyme preferentially hydrolysed phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate and had a different phosphoinositide substrate profile from soluble phospholipase C. The enzyme activity was lower in plasma membranes isolated from light-grown shoots than from dark-grown ones, whereas no differences in activity between plasma membranes from light- and dark-grown roots were seen. Maximum activity of the membrane-bound enzyme was observed around pH 6. It was activated by micromolar concentrations of Ca2+, but not by GTP or GTP analogues. The enzyme may participate in signal transduction over the plant plasma membrane.
Collapse
Affiliation(s)
- P M Melin
- Department of Biochemistry, Chemical Centre, Lund, Sweden
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, USA
| | | |
Collapse
|