1
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
3
|
Creation of a gold nanoparticle based electrochemical assay for the detection of inhibitors of bacterial cytochrome bd oxidases. Bioelectrochemistry 2016; 111:109-14. [DOI: 10.1016/j.bioelechem.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
|
4
|
Abstract
Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate-specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophosphate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and dimethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O₂ is served by two major oxidoreductases (oxidases), cytochrome bo₃ encoded by cyoABCDE and cytochrome bd encoded by cydABX. Terminal oxidases of aerobic respiratory chains of bacteria, which use O₂ as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo₃ and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo₃ and cytochrome bd. The E. coli membrane contains three types of quinones that all have an octaprenyl side chain (C₄₀). It has been proposed that the bo₃ oxidase can have two ubiquinone-binding sites with different affinities. "WHAT'S NEW" IN THE REVISED ARTICLE: The revised article comprises additional information about subunit composition of cytochrome bd and its role in bacterial resistance to nitrosative and oxidative stresses. Also, we present the novel data on the electrogenic function of appBCX-encoded cytochrome bd-II, a second bd-type oxidase that had been thought not to contribute to generation of a proton motive force in E. coli, although its spectral properties closely resemble those of cydABX-encoded cytochrome bd.
Collapse
|
5
|
Siletsky SA, Rappaport F, Poole RK, Borisov VB. Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli. PLoS One 2016; 11:e0155186. [PMID: 27152644 PMCID: PMC4859518 DOI: 10.1371/journal.pone.0155186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Cytochrome bd-I is one of the three proton motive force-generating quinol oxidases in the O2-dependent respiratory chain of Escherichia coli. It contains one low-spin haem (b558) and the two high-spin haems (b595 and d) as the redox-active cofactors. In order to examine the flash-induced intraprotein reverse electron transfer (the so-called ''electron backflow''), CO was photolyzed from the ferrous haem d in one-electron reduced (b5583+b5953+d2+-CO) cytochrome bd-I, and the fully reduced (b5582+b5952+d2+-CO) oxidase as a control. In contrast to the fully reduced cytochrome bd-I, the transient spectrum of one-electron reduced oxidase at a delay time of 1.5 μs is clearly different from that at a delay time of 200 ns. The difference between the two spectra can be modeled as the electron transfer from haem d to haem b595 in 3–4% of the cytochrome bd-I population. Thus, the interhaem electron backflow reaction induced by photodissociation of CO from haem d in one-electron reduced cytochrome bd-I comprises two kinetically different phases: the previously unnoticed fast electron transfer from haem d to haem b595 within 0.2–1.5 μs and the slower well-defined electron equilibration with τ ~16 μs. The major new finding of this work is the lack of electron transfer at 200 ns.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- * E-mail: (VBB); (SAS); (RKP)
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, Unite Mixte de Recherche 7141 CNRS, Universite Paris 6, Paris, France
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
- * E-mail: (VBB); (SAS); (RKP)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- * E-mail: (VBB); (SAS); (RKP)
| |
Collapse
|
6
|
Borisov VB, Forte E, Siletsky SA, Arese M, Davletshin AI, Sarti P, Giuffrè A. Cytochrome bd protects bacteria against oxidative and nitrosative stress: A potential target for next-generation antimicrobial agents. BIOCHEMISTRY (MOSCOW) 2015; 80:565-75. [DOI: 10.1134/s0006297915050077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Siletsky SA, Zaspa AA, Poole RK, Borisov VB. Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli. PLoS One 2014; 9:e95617. [PMID: 24755641 PMCID: PMC3995794 DOI: 10.1371/journal.pone.0095617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Cytochrome bd is a tri-heme (b558, b595, d) respiratory oxygen reductase that is found in many bacteria including pathogenic species. It couples the electron transfer from quinol to O2 with generation of an electrochemical proton gradient. We examined photolysis and subsequent recombination of CO with isolated cytochrome bd from Escherichia coli in one-electron reduced (MV) and fully reduced (R) states by microsecond time-resolved absorption spectroscopy at 532-nm excitation. Both Soret and visible band regions were examined. CO photodissociation from MV enzyme possibly causes fast (τ<1.5 µs) electron transfer from heme d to heme b595 in a small fraction of the protein, not reported earlier. Then the electron migrates to heme b558 (τ∼16 µs). It returns from the b-hemes to heme d with τ∼180 µs. Unlike cytochrome bd in the R state, in MV enzyme the apparent contribution of absorbance changes associated with CO dissociation from heme d is small, if any. Photodissociation of CO from heme d in MV enzyme is suggested to be accompanied by the binding of an internal ligand (L) at the opposite side of the heme. CO recombines with heme d (τ∼16 µs) yielding a transient hexacoordinate state (CO-Fe2+-L). Then the ligand slowly (τ∼30 ms) dissociates from heme d. Recombination of CO with a reduced heme b in a fraction of the MV sample may also contribute to the 30-ms phase. In R enzyme, CO recombines to heme d (τ∼20 µs), some heme b558 (τ∼0.2-3 ms), and finally migrates from heme d to heme b595 (τ∼24 ms) in ∼5% of the enzyme population. Data are consistent with the recent nanosecond study of Rappaport et al. conducted on the membranes at 640-nm excitation but limited to the Soret band. The additional phases were revealed due to differences in excitation and other experimental conditions.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andrey A. Zaspa
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
9
|
Arutyunyan AM, Sakamoto J, Inadome M, Kabashima Y, Borisov VB. Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2087-94. [DOI: 10.1016/j.bbabio.2012.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
10
|
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:1398-413. [PMID: 21756872 PMCID: PMC3171616 DOI: 10.1016/j.bbabio.2011.06.016] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/03/2023]
Abstract
Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation.
| | | | | | | |
Collapse
|
11
|
Rappaport F, Zhang J, Vos MH, Gennis RB, Borisov VB. Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1657-64. [PMID: 20529691 DOI: 10.1016/j.bbabio.2010.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/12/2010] [Accepted: 05/15/2010] [Indexed: 01/07/2023]
Abstract
Cytochrome bd is a terminal quinol:O(2) oxidoreductase of respiratory chains of many bacteria. It contains three hemes, b(558), b(595), and d. The role of heme b(595) remains obscure. A CO photolysis/recombination study of the membranes of Escherichia coli containing either wild type cytochrome bd or inactive E445A mutant was performed using nanosecond absorption spectroscopy. We compared photoinduced changes of heme d-CO complex in one-electron-reduced, two-electron-reduced, and fully reduced states of cytochromes bd. The line shape of spectra of photodissociation of one-electron-reduced and two-electron-reduced enzymes is strikingly different from that of the fully reduced enzyme. The difference demonstrates that in the fully reduced enzyme photolysis of CO from heme d perturbs ferrous heme b(595) causing loss of an absorption band centered at 435 nm, thus supporting interactions between heme b(595) and heme d in the di-heme oxygen-reducing site, in agreement with previous works. Photolyzed CO recombines with the fully reduced enzyme monoexponentially with tau approximately 12 micros, whereas recombination of CO with one-electron-reduced cytochrome bd shows three kinetic phases, with tau approximately 14 ns, 14 micros, and 280 micros. The spectra of the absorption changes associated with these components are different in line shape. The 14 ns phase, absent in the fully reduced enzyme, reflects geminate recombination of CO with part of heme d. The 14-micros component reflects bimolecular recombination of CO with heme d and electron backflow from heme d to hemes b in approximately 4% of the enzyme population. The final, 280-micros component, reflects return of the electron from hemes b to heme d and bimolecular recombination of CO in that population. The fact that even in the two-electron-reduced enzyme, a nanosecond geminate recombination is observed, suggests that namely the redox state of heme b(595), and not that of heme b(558), controls the pathway(s) by which CO migrates between heme d and the medium.
Collapse
Affiliation(s)
- Fabrice Rappaport
- Institut de Biologie Physico-Chimique, Unite Mixte de Recherche 7141 CNRS, Universite Paris 6, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
12
|
Abstract
Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophoshate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and demethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O2 is served by two major oxidoreductases (oxidases), cytochrome bo3 and cytochrome bd. Terminal oxidases of aerobic respiratory chains of bacteria, which use O2 as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo3 and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo3 and cytochrome bd. The E. coli membrane contains three types of quinones which all have an octaprenyl side chain (C40). It has been proposed that the bo3 oxidase can have two ubiquinone-binding sites with different affinities. The spectral properties of cytochrome bd-II closely resemble those of cydAB-encoded cytochrome bd.
Collapse
|
13
|
Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H, Migita CT, Ui H, Shiomi K, Omura S, Kita K, Matsushita K. Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem 2009; 146:263-71. [PMID: 19416958 DOI: 10.1093/jb/mvp067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyanide-insensitive quinol oxidase (CioAB), a relative of cytochrome bd, has no spectroscopic features of hemes b(595) and d in the wild-type bacteria and is difficult to purify for detailed characterization. Here we studied enzymatic and spectroscopic properties of CioAB from the acetic acid bacterium Gluconobacter oxydans. Gluconobacter oxydans CioAB showed the K(m) value for ubiquinol-1 comparable to that of Escherichia coli cytochrome bd but it was more resistant to KCN and quinone-analogue inhibitors except piericidin A and LL-Z1272gamma. We obtained the spectroscopic evidence for the presence of hemes b(595) and d. Heme b(595) showed the alpha peak at 587 nm in the reduced state and a rhombic high-spin signal at g = 6.3 and 5.5 in the air-oxidized state. Heme d showed the alpha peak at 626 and 644 nm in the reduced and air-oxidized state, respectively, and an axial high-spin signal at g = 6.0 and low-spin signals at g = 2.63, 2.37 and 2.32. We found also a broad low-spin signal at g = 3.2, attributable to heme b(558). Further, we identified the presence of heme D by mass spectrometry. In conclusion, CioAB binds all three ham species present in cytochrome bd quinol oxidase.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, the University of Tokyo, Bunkyo-ku, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mogi T. Probing the haem d-binding site in cytochrome bd quinol oxidase by site-directed mutagenesis. J Biochem 2009; 145:763-70. [DOI: 10.1093/jb/mvp033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Mogi T. Effects of replacement of low-spin haem b by haem O on Escherichia coli cytochromes bo and bd quinol oxidases. J Biochem 2009; 145:599-607. [PMID: 19174546 DOI: 10.1093/jb/mvp015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytochromes bo and bd are terminal ubiquinol oxidases in the aerobic respiratory chain of Escherichia coli and generate proton motive force across the membrane. To probe roles of haem species in the oxidation of quinols, intramolecular electron transfer and the dioxygen reduction, we replaced b-haems with haem O by using the haem O synthase-overproducing system, which can accumulate haem O in cytoplasmic membranes. Characterizations of spectroscopic properties of cytochromes bo and bd isolated from BL21 (DE3)/pLysS and BL21 (DE3)/pLysS/pTTQ18-cyoE after 4 h of the aerobic induction of haem O synthase (CyoE) showed the specific incorporation of haem O into the low-spin haem-binding site in both oxidases. We found that the resultant haem oo- and obd-type oxidase severely reduced the ubiquinol-1 oxidase activity due to the perturbations of the quinol oxidation site. Our observations suggest that haem B is required at the low-spin haem site for the oxidation of quinols by cytochromes bo and bd.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| |
Collapse
|
16
|
Borisov VB, Belevich I, Bloch DA, Mogi T, Verkhovsky MI. Glutamate 107 in Subunit I of Cytochrome bd from Escherichia coli Is Part of a Transmembrane Intraprotein Pathway Conducting Protons from the Cytoplasm to the Heme b595/Heme d Active Site. Biochemistry 2008; 47:7907-14. [DOI: 10.1021/bi800435a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation, Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), 00014, Helsinki, Finland, and Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ilya Belevich
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation, Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), 00014, Helsinki, Finland, and Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dmitry A. Bloch
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation, Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), 00014, Helsinki, Finland, and Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsushi Mogi
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation, Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), 00014, Helsinki, Finland, and Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael I. Verkhovsky
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation, Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), 00014, Helsinki, Finland, and Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Borisov VB. Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity. BIOCHEMISTRY (MOSCOW) 2008; 73:14-22. [PMID: 18294124 DOI: 10.1134/s0006297908010021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative studies on the interaction of the membrane-bound and detergent-solubilized forms of the enzyme in the fully reduced state with carbon monoxide at room temperature have been carried out. CO brings about a bathochromic shift of the heme d band with a maximum at 644 nm and a minimum at 624 nm, and a peak at 540 nm. In the Soret band, CO binding to cytochrome bd results in absorption decrease and minima at 430 and 445 nm. Absorption perturbations in the Soret band and at 540 nm occur in parallel with the changes at 630 nm and reach saturation at 3-5 microM CO. The peak at 540 nm is probably either beta-band of the heme d-CO complex or part of its split alpha-band. In both forms of cytochrome bd, CO reacts predominantly with heme d. Addition of high CO concentrations to the solubilized cytochrome bd results in additional spectral changes in the gamma-band attributable to the reaction of the ligand with 10-15% of low-spin heme b558. High-spin heme b595 does not bind CO even at high concentrations of the ligand. The apparent dissociation constant values for the heme d-CO complex of the membrane-bound and detergent-solubilized forms of the fully reduced enzyme are about 70 and 80 nM, respectively.
Collapse
Affiliation(s)
- V B Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
18
|
Arutyunyan AM, Borisov VB, Novoderezhkin VI, Ghaim J, Zhang J, Gennis RB, Konstantinov AA. Strong Excitonic Interactions in the Oxygen-Reducing Site of bd-Type Oxidase: The Fe-to-Fe Distance between Hemes d and b595 is 10 Å. Biochemistry 2008; 47:1752-9. [DOI: 10.1021/bi701884g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander M. Arutyunyan
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, and Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, Illinois 61801
| | - Vitaliy B. Borisov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, and Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, Illinois 61801
| | - Vladimir I. Novoderezhkin
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, and Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, Illinois 61801
| | - Josh Ghaim
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, and Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, Illinois 61801
| | - Jie Zhang
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, and Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, Illinois 61801
| | - Robert B. Gennis
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, and Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, Illinois 61801
| | - Alexander A. Konstantinov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, and Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, Illinois 61801
| |
Collapse
|
19
|
Mogi T, Endou S, Akimoto S, Morimoto-Tadokoro M, Miyoshi H. Glutamates 99 and 107 in Transmembrane Helix III of Subunit I of Cytochrome bd Are Critical for Binding of the Heme b595-d Binuclear Center and Enzyme Activity. Biochemistry 2006; 45:15785-92. [PMID: 17176101 DOI: 10.1021/bi0615792] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome bd is a quinol oxidase of Escherichia coli under microaerophilic growth conditions. Coupling of the release of protons to the periplasm by quinol oxidation to the uptake of protons from the cytoplasm for dioxygen reduction generates a proton motive force. On the basis of sequence analysis, glutamates 99 and 107 conserved in transmembrane helix III of subunit I have been proposed to convey protons from the cytoplasm to heme d at the periplasmic side. To probe a putative proton channel present in subunit I of E. coli cytochrome bd, we substituted a total of 10 hydrophilic residues and two glycines conserved in helices I and III-V and examined effects of amino acid substitutions on the oxidase activity and bound hemes. We found that Ala or Leu mutants of Arg9 and Thr15 in helix I, Gly93 and Gly100 in helix III, and Ser190 and Thr194 in helix V exhibited the wild-type phenotypes, while Ala and Gln mutants of His126 in helix IV retained all hemes but partially lost the activity. In contrast, substitutions of Thr26 in helix I, Glu99 and Glu107 in helix III, Ser140 in helix IV, and Thr187 in helix V resulted in the concomitant loss of bound heme b558 (T187L) or b595-d (T26L, E99L/A/D, E107L/A/D, and S140A) and the activity. Glu99 and Glu107 mutants except E107L completely lost the heme b595-d center, as reported for heme b595 ligand (His19) mutants. On the basis of this study and previous studies, we propose arrangement of transmembrane helices in subunit I, which may explain possible roles of conserved hydrophilic residues within the membrane.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|
20
|
Matsumoto Y, Muneyuki E, Fujita D, Sakamoto K, Miyoshi H, Yoshida M, Mogi T. Kinetic mechanism of quinol oxidation by cytochrome bd studied with ubiquinone-2 analogs. J Biochem 2006; 139:779-88. [PMID: 16672279 DOI: 10.1093/jb/mvj087] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytochrome bd is a heterodimeric terminal ubiquinol oxidase of Escherichia coli under microaerophilic growth conditions. The oxidase activity shows sigmoidal concentration-dependence with low concentrations of ubiquinols, and a marked substrate inhibition with high concentrations of ubiquinol-2 analogs [Sakamoto, K., Miyoshi, H., Takegami, K., Mogi, T., Anraku, Y., and Iwamura H. (1996) J. Biol. Chem. 271, 29897-29902]. Kinetic analysis of the oxidation of the ubiquinol-2 analogs, where the 2- or 3-methoxy group has been substituted with an azido or ethoxy group, suggested that its peculiar enzyme kinetics can be explained by a modified ping-pong bi-bi mechanism with the formation of inactive binary complex FS in the one-electron reduced oxygenated state and inactive ternary complex (E2S)S(n) on the oxidation of the second quinol molecule. Structure-function studies on the ubiquinol-2 analogs suggested that the 6-diprenyl group and the 3-methoxy group on the quinone ring are involved in the substrate inhibition. We also found that oxidized forms of ubiquinone-2 analogs served as weak noncompetitive inhibitors. These results indicate that the mechanism for the substrate oxidation by cytochrome bd is different from that of the heme-copper terminal quinol oxidase and is tightly coupled to dioxygen reduction chemistry.
Collapse
Affiliation(s)
- Yushi Matsumoto
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503
| | | | | | | | | | | | | |
Collapse
|
21
|
Mogi T, Akimoto S, Endou S, Watanabe-Nakayama T, Mizuochi-Asai E, Miyoshi H. Probing the Ubiquinol-Binding Site in Cytochrome bd by Site-Directed Mutagenesis. Biochemistry 2006; 45:7924-30. [PMID: 16784245 DOI: 10.1021/bi060192w] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Matsumoto Y, Murai M, Fujita D, Sakamoto K, Miyoshi H, Yoshida M, Mogi T. Mass spectrometric analysis of the ubiquinol-binding site in cytochrome bd from Escherichia coli. J Biol Chem 2005; 281:1905-12. [PMID: 16299377 DOI: 10.1074/jbc.m508206200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome bd is a heterodimeric terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. For understanding the unique catalytic mechanism of the quinol oxidation, mass spectrometry was used to identify amino acid residue(s) that can be labeled with a reduced form of 2-azido-3-methoxy-5-methyl-6-geranyl-1,4-benzoquinone or 2-methoxy-3-azido-5-methyl-6-geranyl-1,4-benzoquinone. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry demonstrated that the photo inactivation of ubiquinol-1 oxidase activity was accompanied by the labeling of subunit I with both azidoquinols. The cross-linked domain was identified by reverse-phase high performance liquid chromatography of subunit I peptides produced by in-gel double digestion with lysyl endopeptidase and endoproteinase Asp-N. Electrospray ionization quadrupole time-of-flight mass spectrometry determined the amino acid sequence of the peptide (m/z 1047.5) to be Glu(278)-Lys(283), where a photoproduct of azido-Q(2) was linked to the carboxylic side chain of I-Glu(280). This study demonstrated directly that the N-terminal region of periplasmic loop VI/VII (Q-loop) is a part of the quinol oxidation site and indicates that the 2- and 3-methoxy groups of the quinone ring are in the close vicinity of I-Glu(280).
Collapse
Affiliation(s)
- Yushi Matsumoto
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Belevich I, Borisov VB, Zhang J, Yang K, Konstantinov AA, Gennis RB, Verkhovsky MI. Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site. Proc Natl Acad Sci U S A 2005; 102:3657-62. [PMID: 15728392 PMCID: PMC553295 DOI: 10.1073/pnas.0405683102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 01/28/2005] [Indexed: 11/18/2022] Open
Abstract
Time-resolved electron transfer and electrogenic H(+) translocation have been compared in a bd-type quinol oxidase from Escherichia coli and its E445A mutant. The high-spin heme b(595) is found to be retained by the enzyme in contrast to the original proposal, but it is not reducible even by excess of dithionite. When preincubated with the reductants, both the WT (b(558)(2+), b(595)(2+), d(2+)) and E445A mutant oxidase (b(558)(2+), b(595)(3+), d(2+)) bind O(2) rapidly, but formation of the oxoferryl state in the mutant is approximately 100-fold slower than in the WT enzyme. At the same time, the E445A substitution does not affect intraprotein electron re-equilibration after the photolysis of CO bound to ferrous heme d in the one-electron-reduced enzyme (the so-called "electron backflow"). The backflow is coupled to membrane potential generation. Electron transfer between hemes d and b(558) is electrogenic. In contrast, electron transfer between hemes d and b(595) is not electrogenic, although heme b(595) is the major electron acceptor for heme d during the backflow, and therefore is not likely to be accompanied by net H(+) uptake or release. The E445A replacement does not alter electron distribution between hemes b(595) and d in the one-electron reduced cytochrome bd [E(m)(d) > E(m)(b(595)), where E(m) is the midpoint redox potential]; however, it precludes reduction of heme b(595), given heme d has been reduced already by the first electron. Presumably, E445 is one of the two redox-linked ionizable groups required for charge compensation of the di-heme oxygen-reducing site (b(595), d) upon its full reduction by two electrons.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, PB 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
24
|
Borisov VB, Sedelnikova SE, Poole RK, Konstantinov AA. Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO. J Biol Chem 2001; 276:22095-9. [PMID: 11283005 DOI: 10.1074/jbc.m011542200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azotobacter vinelandii is an obligately aerobic bacterium in which aerotolerant dinitrogen fixation requires cytochrome bd. This oxidase comprises two polypeptide subunits and three hemes, but no copper, and has been studied extensively. However, there remain apparently conflicting reports on the reactivity of the high spin heme b(595) with ligands. Using purified cytochrome bd, we show that absorption changes induced by CO photodissociation from the fully reduced cytochrome bd at low temperatures demonstrate binding of the ligand with heme b(595). However, the magnitude of these changes corresponds to the reaction with CO of only about 5% of the heme. CO binding with a minor fraction of heme b(595) is also revealed at room temperature by time-resolved studies of CO recombination. The data resolve the apparent discrepancies between conclusions drawn from room and low temperature spectroscopic studies of the CO reaction with cytochrome bd. The results are consistent with the proposal that hemes b(595) and d form a diheme oxygen-reducing center with a binding capacity for a single exogenous ligand molecule that partitions between the hemes d and b(595) in accordance with their intrinsic affinities for the ligand. In this model, the affinity of heme b(595) for CO is about 20-fold lower than that of heme d.
Collapse
Affiliation(s)
- V B Borisov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | |
Collapse
|
25
|
Vos MH, Borisov VB, Liebl U, Martin JL, Konstantinov AA. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc Natl Acad Sci U S A 2000; 97:1554-9. [PMID: 10660685 PMCID: PMC26473 DOI: 10.1073/pnas.030528197] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1999] [Accepted: 12/06/1999] [Indexed: 11/18/2022] Open
Abstract
Interaction of the two high-spin hemes in the oxygen reduction site of the bd-type quinol oxidase from Escherichia coli has been studied by femtosecond multicolor transient absorption spectroscopy. The previously unidentified Soret band of ferrous heme b(595) was determined to be centered around 440 nm by selective excitation of the fully reduced unliganded or CO-bound cytochrome bd in the alpha-band of heme b(595). The redox state of the b-type hemes strongly affects both the line shape and the kinetics of the absorption changes induced by photodissociation of CO from heme d. In the reduced enzyme, CO photodissociation from heme d perturbs the spectrum of ferrous cytochrome b(595) within a few ps, pointing to a direct interaction between hemes b(595) and d. Whereas in the reduced enzyme no heme d-CO geminate recombination is observed, in the mixed-valence CO-liganded complex with heme b(595) initially oxidized, a significant part of photodissociated CO does not leave the protein and recombines with heme d within a few hundred ps. This caging effect may indicate that ferrous heme b(595) provides a transient binding site for carbon monoxide within one of the routes by which the dissociated ligand leaves the protein. Taken together, the data indicate physical proximity of the hemes d and b(595) and corroborate the possibility of a functional cooperation between the two hemes in the dioxygen-reducing center of cytochrome bd.
Collapse
Affiliation(s)
- M H Vos
- Institut National de la Santé et de la Recherche Médicale U451, Laboratoire d'Optique Appliquée, Ecole Polytechnique-Ecole Nationale Supérieure des Techniques Avancées, 91761 Palaiseau Cedex, France.
| | | | | | | | | |
Collapse
|
26
|
Sakamoto J, Koga E, Mizuta T, Sato C, Noguchi S, Sone N. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:147-58. [PMID: 10216161 DOI: 10.1016/s0005-2728(99)00012-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.
Collapse
Affiliation(s)
- J Sakamoto
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Borisov V, Arutyunyan AM, Osborne JP, Gennis RB, Konstantinov AA. Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands. Biochemistry 1999; 38:740-50. [PMID: 9888814 DOI: 10.1021/bi981908t] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interactions of the fully reduced and fully oxidized cytochrome bd from E. coli with ligands CO, NO, and CN- have been studied by a combination of absorption and magnetic circular dichroism (MCD) spectroscopy. In the reduced cytochrome bd, MCD resolves individual bands due to the high-spin heme b595 and the low-spin heme b558 components of the enzyme, allowing one to separately monitor their interactions along with ligand binding to the heme d component. The data show that at low concentrations, the ligands bind almost exclusively to heme d. At high concentrations, the ligands begin to interact with the low-spin heme b558. At the same time, no evidence for significant binding of the ligands to the high-spin heme b595 is revealed in either the reduced or the fully oxidized cytochrome bd complex. The data support the model [Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Biochemistry (Moscow) 60, 231-239] according to which the two high-spin hemes d and b595 share a high-affinity ligand binding site with a capacity for only a single molecule of the ligand; i.e., there is a strong negative cooperativity with respect to ligand binding to these two hemes with cytochrome d having an intrinsic ligand affinity much higher than that of heme b595.
Collapse
Affiliation(s)
- V Borisov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- S Jünemann
- Glynn Laboratory of Bioenergetics, Department of Biology, University College London, UK.
| |
Collapse
|
29
|
D'mello R, Hill S, Poole RK. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):755-763. [PMID: 8936304 DOI: 10.1099/00221287-142-4-755] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cytochrome bd is a respiratory oxidase in Escherichia coli and many other bacteria. It contains cytochromes b558, b595 and d as redox centres, and is thus unrelated to the haem-copper super-family of terminal oxidases. The apparent affinities (Km) for oxygen uptake by respiring cells and membranes from a mutant lacking the alternative oxidase cytochrome bo' were determined by deoxygenation of oxyleghaemoglobin as a sensitive reporter of dissolved oxygen concentration. Respiration rates were maximal at oxygen concentrations of 25-50 nM, but the kinetics were complex and indicative of substrate (i.e. oxygen) inhibition. Km values were in the range 3-8 nM (the lowest recorded for a respiratory oxidase), and Ki values between 0.5 and 1.8 microM were obtained. Low temperature photodissociation of anoxic, CO-ligated membranes confirmed the absence of cytochrome bo' and revealed a high-spin b-type cytochrome identified as cytochrome b595 of the cytochrome bd complex. Photodissociation in the presence of oxygen revealed binding of a ligand (presumably oxygen) to cytochrome b595 at a rate much greater than that of CO binding, and formation of the oxygenated form of cytochrome d. The results confirm that both high-spin haems in the cytochrome bd complex bind CO and demonstrate that oxygen can also react with both haems. Substrate inhibition of oxidase activity, in addition to transcriptional regulation of oxidase synthesis, may play a crucial role in the regulation of partitioning of electron flux between the cytochrome bd- and bo'-terminated respiratory pathways.
Collapse
Affiliation(s)
- Rita D'mello
- Division of Life Sciences, King's College London, Campden Hill Road, London W8 7AH, UK
| | - Susan Hill
- Nitrogen Fixation Laboratory, John Innes Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Robert K Poole
- Division of Life Sciences, King's College London, Campden Hill Road, London W8 7AH, UK
| |
Collapse
|
30
|
D'mello R, Palmer S, Hill S, Poole RK. The cytochromebdterminal oxidase ofAzotobacter vinelandii: Low temperature photodissociation spectrophotometry reveals reactivity of cytochromesb595anddwith both carbon monoxide and oxygen. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07084.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Hill JJ, Alben JO, Gennis RB. Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli. Proc Natl Acad Sci U S A 1993; 90:5863-7. [PMID: 8516338 PMCID: PMC46823 DOI: 10.1073/pnas.90.12.5863] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cytochrome bd complex is a ubiquinol oxidase, which is part of the aerobic respiratory chain of Escherichia coli. This enzyme is structurally unrelated to the heme-Cu oxidases such as cytochrome c oxidase. While the cytochrome bd complex contains no copper, it does have three heme prosthetic groups: heme b558, heme b595, and heme d (a chlorin). Heme b558 appears to be involved in the oxidation of quinol, and heme d is known to be the site where oxygen binds and is reduced to water. The role of heme b595, which is high spin, is not known. In this paper, CO is used to probe the oxygen-binding site by use of Fourier transform infrared spectroscopy to monitor the stretching frequency of CO bound to the enzyme. Photodissociation at low temperature (e.g., 20 K) of the CO-heme d adduct results in CO associated with the protein within the heme binding pocket. This photodissociated CO can subsequently relax to form a kinetically trapped CO-heme b595 adduct. The data clearly show that heme d and heme b595 must reside within a common binding pocket in the enzyme. The catalytic active site where oxygen is reduced to water is, thus, properly considered to be a heme d-heme b595 binuclear center. This is analogous to the heme alpha 3-Cu(B) binuclear center in the heme-Cu oxidases. Heme b595 may play roles analogous to those proposed for the Cu(B) component of cytochrome c oxidase.
Collapse
Affiliation(s)
- J J Hill
- School of Chemical Sciences, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
32
|
Moshiri F, Chawla A, Maier RJ. Cloning, characterization, and expression in Escherichia coli of the genes encoding the cytochrome d oxidase complex from Azotobacter vinelandii. J Bacteriol 1991; 173:6230-41. [PMID: 1655703 PMCID: PMC208375 DOI: 10.1128/jb.173.19.6230-6241.1991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Azotobacter vinelandii is a free-living nitrogen-fixing bacterium that has one of the highest respiratory rates of all aerobic organisms. Based on various physiological studies, a d-type cytochrome has been postulated to be the terminal oxidase of a vigorously respiring but apparently uncoupled branch of the electron transport system in the membranes of this organism. We cloned and characterized the structural genes of the two subunits of this oxidase. The deduced amino acid sequences of both subunits of the A. vinelandii oxidase have extensive regions of homology with those of the two subunits of the Escherichia coli cytochrome d complex. Most notably, the histidine residues proposed to be the axial ligands for the b hemes of the E. coli oxidase and an 11-amino-acid stretch proposed to be part of the ubiquinone binding site are all conserved in subunit I of the A. vinelandii oxidase. The A. vinelandii cytochrome d was expressed in a spectrally and functionally active form in the membranes of E. coli, under the control of the lac or tac promoter. The spectral features of the A. vinelandii cytochrome d expressed in E. coli are very similar to those of the E. coli cytochrome d. The expressed oxidase was active as a quinol oxidase and could reconstitute an NADH to oxygen electron transport chain.
Collapse
Affiliation(s)
- F Moshiri
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
33
|
|
34
|
Appleby CA, Poole RK. Characterization of a soluble catalase-peroxidase hemoproteinb-590, previously identified as âcytochromea1â fromBradyrhizobium japonicumbacteroids. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Kelly MJ, Poole RK, Yates MG, Kennedy C. Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 1990; 172:6010-9. [PMID: 2170336 PMCID: PMC526923 DOI: 10.1128/jb.172.10.6010-6019.1990] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genome of Azotobacter vinelandii contains DNA sequences homologous to the structural genes for the Escherichia coli cytochrome bd terminal oxidase complex. Two recombinant clones bearing cydA- and cydB-like sequence were isolated from an A. vinelandii gene library and subcloned into the plasmid vector pACYC184. Physical mapping demonstrated that the cydA- and cydB-like regions in A. vinelandii are contiguous. The cydAB and flanking DNA was mutagenized by the insertion of Tn5-B20. Mutations in the cydB-hybridizing region resulted in the loss of spectral features associated with cytochromes b595 and d. A new locus, cydB, encoding cytochromes b595 and d in A. vinelandii is proposed. A second region adjacent to cydB was also involved in expression of the cytochrome bd complex in A. vinelandii, since mutations in this region resulted in an increase in the levels of both cytochrome b595 and cytochrome d. The regions involved in expression of the cytochrome bd complex and cydB are transcribed in the same direction. Mutants deficient in cytochromes b595 and d were unable to grow on N-deficient medium when incubated in air but could fix nitrogen when the environmental O2 concentration was reduced to 1.5% (vol/vol). It is proposed that the branch of the respiratory chain terminated by the cytochrome bd complex supports the high respiration rates required for the respiratory protection of nitrogenase.
Collapse
Affiliation(s)
- M J Kelly
- Division of Biosphere Sciences, Kings College London, United Kingdom
| | | | | | | |
Collapse
|
36
|
Epitopes of monoclonal antibodies which inhibit ubiquinol oxidase activity of Escherichia coli cytochrome d complex localize functional domain. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39558-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Meinhardt SW, Gennis RB, Ohnishi T. EPR studies of the cytochrome-d complex of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 975:175-84. [PMID: 2544229 DOI: 10.1016/s0005-2728(89)80216-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have examined the thermodynamic and EPR properties of one of the ubiquinol oxidase systems (the cytochrome d complex) of Escherichia coli, and have assigned the EPR-detectable signals to the optically identified cytochromes. The axial high spin g = 6.0 signal has been assigned to cytochrome d based on the physicochemical properties of this signal and those of the optically defined cytochrome d. A rhombic low spin species at gx,y,z = 1.85, 2.3, 2.5 exhibited similar properties but was present at only one-fifth the concentration of the axial high spin species. Both species have an Em7 of 260 mV and follow a -60 mV/pH unit dependence from pH 6 to 10. The rhombic high spin signal with gy,z = 5.5 and 6.3 has been assigned to cytochrome b-595. This component has an Em7 of 136 mV and follows a -30 mV/pH unit dependence from pH 6 to 10. Lastly, the low spin gz = 3.3 signal which titrates with an Em7 of 195 mV and follows a -40 mV/pH unit dependence from pH 6 to 10 has been assigned to cytochrome b-558. Spin quantitation of the high-spin signals indicates that cytochrome d and b-595 are present in approximately equal amounts. These observations are discussed in terms of the stoichiometry of the prosthetic groups and its implications on the mechanism of electron transport.
Collapse
Affiliation(s)
- S W Meinhardt
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
38
|
Lorence RM, Gennis RB. Spectroscopic and quantitative analysis of the oxygenated and peroxy states of the purified cytochrome d complex of Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83212-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Williams HD, Poole RK. Cytochromes ofAcetobacter pasteurianus NCIB 6428: Reaction with oxygen of cytochromeo in cells, membranes, and nonsedimentable subcellular fractions. Curr Microbiol 1988. [DOI: 10.1007/bf01568691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Poole RK, Williams HD. Formation of the 680 nm-absorbing form of the cytochrome bd oxidase complex of Escherichia coli by reaction of hydrogen peroxide with the ferric form. FEBS Lett 1988; 231:243-6. [PMID: 3282921 DOI: 10.1016/0014-5793(88)80740-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reduced minus aerated difference spectra of membranes from Escherichia coli (grown under oxygen-limited conditions) show, in addition to the 650 nm trough attributed to the oxygenated form of cytochrome d, a smaller trough centred at about 680 nm of unknown origin. When the reference spectrum is that of a sample oxidized with ferricyanide and to which hydrogen peroxide was added, the trough proportions changed, the 680 nm species being more dominant. Similarly, when 8.8 mM hydrogen peroxide is added to a persulphate-oxidized sample, a peak at 680 nm is immediately formed. No such compound is observed when peroxide is added to persulphate-oxidized membranes from a cytochrome d-deficient mutant. It is concluded that the 680 nm species represents a peroxy form of haem d, which is stable at room temperature and is probably an intermediate in the reaction mechanism of this oxidase.
Collapse
Affiliation(s)
- R K Poole
- Department of Microbiology, King's College London, England
| | | |
Collapse
|