van Haastert PJ, van Dijken P. Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium.
FEBS Lett 1997;
410:39-43. [PMID:
9247119 DOI:
10.1016/s0014-5793(97)00415-8]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biochemical and genetic data on the metabolism of inositol phosphates in the microorganism Dictyostelium are combined in a scheme composed of in five subroutes. The first subroute is the inositol cycle as found in other organisms: inositol is incorporated into phospholipids that are hydrolysed by PLC producing Ins(1,4,5)P3 which is dephosphorylated to inositol. The second subroute is the sequential phosphorylation of inositol to InsP6; the Ins(3,4,6)P3 intermediate does not release Ca2+. The third subroute is the sequential phosphorylation of Ins(1,4,5)P3 to InsP6 in a nucleus associated fraction, whereas the fourth subroute is the dephosphorylation of Ins(1,3,4,5,6)P5 to Ins(1,4,5)P3 at the plasma membrane. This last route mediates Ins(1,4,5)P3 formation in cells with a disruption of the single PLC gene. Finally, we recognize the formation of InsP7 and InsP8 as the fifth subroute.
Collapse