1
|
Puzdrova VA, Kudryashova TV, Gaynullina DK, Mochalov SV, Aalkjaer C, Nilsson H, Vorotnikov AV, Schubert R, Tarasova OS. Trophic action of sympathetic nerves reduces arterial smooth muscle Ca2+sensitivity during early post-natal development in rats. Acta Physiol (Oxf) 2014; 212:128-41. [DOI: 10.1111/apha.12331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/20/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Affiliation(s)
- V. A. Puzdrova
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - T. V. Kudryashova
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
| | - D. K. Gaynullina
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- Department of Physiology; Russian National Research Medical University; Moscow Russia
| | - S. V. Mochalov
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
| | - C. Aalkjaer
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - H. Nilsson
- Department of Physiology; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - A. V. Vorotnikov
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
| | - R. Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
| | - O. S. Tarasova
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Moscow Russia
| |
Collapse
|
2
|
Moran CM, Garriock RJ, Miller MK, Heimark RL, Gregorio CC, Krieg PA. Expression of the fast twitch troponin complex, fTnT, fTnI and fTnC, in vascular smooth muscle. ACTA ACUST UNITED AC 2008; 65:652-61. [PMID: 18548613 DOI: 10.1002/cm.20291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is generally believed that proteins of the troponin complex are not expressed in smooth muscle. We have directly assayed for expression of troponin transcripts in mouse vascular smooth muscle and found that troponin sequences normally associated with fast twitch skeletal muscle (fTnT, fTnI, fTnC) were present at significant levels in the thoracic aorta. In situ hybridization experiments demonstrated that fTnT, fTnI and fTnC transcripts were expressed in the smooth muscle layer of mouse blood vessels of all sizes. Protein blot analysis using rat tissue showed that at least two members of the troponin complex, Troponin T and Troponin I, were translated in vascular smooth muscle of the aorta. Finally, immuno-fluorescence microscopy of rat aortic smooth muscle revealed that TnT and TnI are localized in a unique pattern, coincident with the distribution of tropomyosin. It seems likely therefore, that a complete troponin complex is expressed in vascular smooth muscle and is associated with the contractile machinery of the cell. These observations raise the possibility that troponins play a role in regulation of smooth muscle function.
Collapse
Affiliation(s)
- Carlos M Moran
- Department of Cell Biology and Anatomy, Molecular Cardiovascular Research Program, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
3
|
Kudryashov DS, Vorotnikov AV, Dudnakova TV, Stepanova OV, Lukas TJ, Sellers JR, Watterson DM, Shirinsky VP. Smooth muscle myosin filament assembly under control of a kinase-related protein (KRP) and caldesmon. J Muscle Res Cell Motil 2003; 23:341-51. [PMID: 12630709 DOI: 10.1023/a:1022086228770] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Kinase-related protein (KRP) and caldesmon are abundant myosin-binding proteins of smooth muscle. KRP induces the assembly of unphosphorylated smooth muscle myosin filaments in the presence of ATP by promoting the unfolded state of myosin. Based upon electron microscopy data, it was suggested that caldesmon also possessed a KRP-like activity (Katayama et al., 1995, J Biol Chem 270: 3919-3925). However, the nature of its activity remains obscure since caldesmon does not affect the equilibrium between the folded and unfolded state of myosin. Therefore, to gain some insight into this problem we compared the effects of KRP and caldesmon, separately, and together on myosin filaments using turbidity measurements, protein sedimentation and electron microscopy. Turbidity assays demonstrated that KRP reduced myosin filament aggregation, while caldesmon had no effect. Additionally, neither caldesmon nor its N-terminal myosin binding domain (N152) induced myosin polymerization at subthreshold Mg2+ concentrations in the presence of ATP, whereas the filament promoting action of KRP was enhanced by Mg2+. Moreover, the amino-terminal myosin binding fragment of caldesmon, like the whole protein, antagonizes Mg(2+)-induced myosin filament formation. In electron microscopy experiments, caldesmon shortened myosin filaments in the presence of Mg2+ and KRP, but N152 failed to change their appearance from control. Therefore, the primary distinction between caldesmon and KRP appears to be that caldesmon interacts with myosin to limit filament extension, while KRP induces filament propagation into defined polymers. Transfection of tagged-KRP into fibroblasts and overlay of fibroblast cytoskeletons with Cy3KRP demonstrated that KRP colocalizes with myosin structures in vivo. We propose a new model that through their independent binding to myosin and differential effects on myosin dynamics, caldesmon and KRP can, in concert, control the length and polymerization state of myosin filaments.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium-Binding Proteins/drug effects
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Calmodulin-Binding Proteins/drug effects
- Calmodulin-Binding Proteins/metabolism
- Cells, Cultured
- Chick Embryo
- Chickens
- Kinesins
- Magnesium/metabolism
- Magnesium/pharmacology
- Microscopy, Electron
- Models, Biological
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Proteins/drug effects
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/ultrastructure
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- Myosins/drug effects
- Myosins/metabolism
- Myosins/ultrastructure
- Polymers/metabolism
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Structure, Tertiary/physiology
- Transfection
Collapse
Affiliation(s)
- Dmitry S Kudryashov
- Laboratory of Cell Motility, Cardiology Research Center, 3rd Cherepkovskaya Street 15A, Moscow 121552, Russia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Krymsky MA, Chibalina MV, Shirinsky VP, Marston SB, Vorotnikov AV. Evidence against the regulation of caldesmon inhibitory activity by p42/p44erk mitogen-activated protein kinase in vitro and demonstration of another caldesmon kinase in intact gizzard smooth muscle. FEBS Lett 1999; 452:254-8. [PMID: 10386601 DOI: 10.1016/s0014-5793(99)00641-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of direct phosphorylation by recombinant p44erk1 mitogen-activated protein kinase on the inhibitory activity of caldesmon and its C-terminal fragment H1 was studied in vitro. Neither inhibition of actin-tropomyosin activated ATPase of heavy meromyosin by caldesmon or H1, nor inhibition of the actin-tropomyosin motility over heavy meromyosin by H1 was significantly affected by the phosphorylation while only a moderate effect on the actin-activated component of heavy meromyosin ATPase inhibition was observed. Phosphopeptide mapping of caldesmon immunoprecipitated from [32P]PO4-labelled intact gizzard strips revealed that it is predominantly phosphorylated at mitogen-activated protein kinase sites in unstimulated tissue and that it is stimulated for 1 h with phorbol 12,13-dibutyrate. We find that phorbol 12,13-dibutyrate also induces a transitory phosphorylation of caldesmon peaking at 15 min after addition and this phosphorylation is not attributed to mitogen-activated protein kinase, protein kinase C, Ca2+/calmodulin-dependent kinase II or casein kinase II. We suggest that a yet unidentified kinase, rather than mitogen-activated protein kinase, may be involved in regulation of the caldesmon function in vivo.
Collapse
Affiliation(s)
- M A Krymsky
- Laboratory of Cell Motility, Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia
| | | | | | | | | |
Collapse
|
5
|
Birukov KG, Bardy N, Lehoux S, Merval R, Shirinsky VP, Tedgui A. Intraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture. Arterioscler Thromb Vasc Biol 1998; 18:922-7. [PMID: 9633932 DOI: 10.1161/01.atv.18.6.922] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different forms of mechanical stimulation are among the physiological factors constantly acting on the vessel wall. We previously demonstrated that subjecting vascular smooth muscle cells (VSMCs) in culture to cyclic stretch increased the expression of high-molecular-weight caldesmon, a marker protein of a differentiated, contractile, VSMC phenotype. In the present work the effects of mechanical factors, in the form of circumferential stress and shear stress, on the characteristics of SM contractile phenotype were studied in an organ culture of rabbit aorta. Application of an intralumininal pressure of 80 mm Hg to aortic segments cultured in Dulbecco's modified Eagle's medium containing 20% fetal calf serum for 3 days prevented the decrease in high-molecular-weight caldesmon content (70+/-4% of initial level in nonpressurized vessel, 116+/-17% at 80 mm Hg) and filamin content (80+/-5% in nonpressurized vessel, 100+/-2% at 80 mm Hg). SM myosin and low-molecular-weight caldesmon contents showed no dependence on vessel pressurization. Neither endothelial denudation nor alteration of intraluminal flow rates affected marker protein content in 3-day vessel culture, thus excluding the possibility of any shear or endothelial effects. Maintenance of high high-molecular-weight caldesmon and filamin levels in the organ cultures of pressurized and stretched vessels demonstrates the positive role of mechanical factors in the control of the VSMC differentiated phenotype.
Collapse
Affiliation(s)
- K G Birukov
- Laboratory of Molecular Endocrinology, Cardiology Research Center of the Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | |
Collapse
|
6
|
Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL. Tropomyosin isoforms in nonmuscle cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:1-38. [PMID: 9002235 DOI: 10.1016/s0074-7696(08)61619-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vertebrate nonmuscle cells, such as human and rat fibroblasts, express multiple isoforms of tropomyosin, which are generated from four different genes and a combination of alternative promoter activities and alternative splicing. The amino acid variability among these isoforms is primarily restricted to three alternatively spliced exon regions; an amino-terminal region, an internal exon, and a carboxyl-terminal exon. Recent evidence reveals that these variable exon regions encode amino acid sequences that may dictate isoform-specific functions. The differential expression of tropomyosin isoforms found in cell transformation and cell differentiation, as well as the differential localization of tropomyosin isoforms in some types of culture cells and developing neurons suggest a differential isoform function in vivo. Tropomyosin in striated muscle works together with the troponin complex to regulate muscle contraction in a Ca(2+)-dependent fashion. Both in vitro and in vivo evidence suggest that multiple isoforms of tropomyosin in nonmuscle cells may be required for regulating actin filament stability, intracellular granule movement, cell shape determination, and cytokinesis. Tropomyosin-binding proteins such as caldesmon, tropomodulin, and other unidentified proteins may be required for some of these functions. Strong evidence for the distinct functions carried out by different tropomyosin isoforms has been generated from genetic analysis of yeast and Drosophila tropomyosin mutants.
Collapse
Affiliation(s)
- J J Lin
- Department of Biological Sciences, University of Iowa, Iowa City 52242-1324, USA
| | | | | | | | | |
Collapse
|
7
|
Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ, Smirnov VN. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem 1995; 144:131-9. [PMID: 7623784 DOI: 10.1007/bf00944392] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The exertion of periodic dynamic strain on the arterial wall is hypothesized to be relevant to smooth muscle cell morphology and function. This study has investigated the effect of cyclic mechanical stretching on rabbit aortic smooth muscle cell proliferation and expression of contractile phenotype protein markers. Cells were cultured on flexible-bottomed dishes and cyclic stretch was applied (frequency 30 cycles/min, 15% elongation) using a Flexercell Strain unit. Cyclic stretch potentiated smooth muscle cell proliferation in serum-activated cultures but not in cultures maintained in 0.5% fetal calf serum. Stretching induced a serum-independent increase of h-caldesmon expression and this effect was reversible following termination of mechanical stimulation. Strain was without effect on smooth muscle myosin or calponin expression. In cells grown on laminin stretch-induced h-caldesmon expression was more prominent than in cells cultured on collagen types I and IV, poly-L-lysine and gelatin. These data suggest that cyclic mechanical stimulation possesses dual effect on vascular smooth muscle cell phenotype characteristics since it: 1) potentiates proliferation, an attribute of a dedifferentiated phenotype; and 2) increases expression of h-caldesmon considered a marker of a differentiated smooth muscle cell state.
Collapse
Affiliation(s)
- K G Birukov
- Laboratory of Molecular Endocrinology, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
8
|
Frid MG, Shekhonin BV, Koteliansky VE, Glukhova MA. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev Biol 1992; 153:185-93. [PMID: 1397676 DOI: 10.1016/0012-1606(92)90104-o] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Expression of the regulatory contractile proteins, heavy caldesmon (h-caldesmon) and calponin was studied in human aortic smooth muscle cells (SMCs) during development and compared with the expression of alpha-SM-actin and smooth muscle-myosin heavy chain (SM-MHCs). For this study, novel monoclonal antibodies specific to SM-MHCs, h-caldesmon, and calponin were developed and characterized. Aortic SMCs from fetuses of 8-10 and 20-22 weeks of gestation express alpha-SM-actin and SM-MHCs, but neither h-caldesmon nor calponin were expressed as demonstrated by immunoblotting and immunofluorescence techniques. In the adult aortic tunica media, SMCs contain all four markers. Thus, the expression of calponin, similar to the expression of alpha-SM-actin, SM-MHCs, and h-caldesmon, is developmentally regulated in aortic SMCs. In the adult aortic subendothelial (preluminal) part of tunica intima, numerous cells containing SM-MHCs, but lacking h-caldesmon and calponin, were found. These results illustrate the similarity of SMCs from intimal thickenings and immature (fetal) SMCs. Expression of contractile proteins in the developing SMCs is coordinately regulated; however, distinct groups of proteins appear to exist whose expression is regulated differently. Actin and myosin, being major contractile proteins, also play a structural role and appear rather early in development, whereas caldesmon and calponin, being involved in regulation of contraction, can serve as markers of higher SMC differentiation steps. In contrast, h-caldesmon and calponin were already present in visceral SMCs (trachea, esophagus) of the 10-week-old fetus. These results demonstrate that the time course of maturation of visceral SMCs is different from that of vascular SMCs.
Collapse
Affiliation(s)
- M G Frid
- Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
9
|
|
10
|
Affiliation(s)
- S B Marston
- Department of Cardiac Medicine, National Heart and Lung Institute, London, UK
| | | |
Collapse
|
11
|
Shirinsky VP, Birukov KG, Koteliansky VE, Glukhova MA, Spanidis E, Rogers JD, Campbell JH, Campbell GR. Density-related expression of caldesmon and vinculin in cultured rabbit aortic smooth muscle cells. Exp Cell Res 1991; 194:186-9. [PMID: 1902791 DOI: 10.1016/0014-4827(91)90352-u] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Quantitative immunoblotting techniques were used to study the effects of seeding density on the expression of caldesmon and vinculin variants, which are sensitive markers of vascular smooth muscle cell (SMC) phenotypic modulation in culture. Rabbit aortic SMC were seeded at different densities: 13 x 10(4) cells/cm2 (high density), 3 x 10(4) cells/cm2 (medium density), and 0.2 x 10(4) cells/cm2 (low density) and cultured in the presence of 5% fetal calf serum. Irrespective of cell density and growth phase, caldesmon150 was gradually and irreversibly substituted by caldesmon77, but at high seeding density this substitution proceeded at a slower rate. The fraction of meta-vinculin (smooth muscle variant of vinculin) was reduced after seeding SMC in culture, but was reestablished when the cells reached confluency. Thus, high SMC seeding density is essential but not sufficient to keep vascular SMC cultured in the presence of serum in the contractile phenotype.
Collapse
Affiliation(s)
- V P Shirinsky
- Cardiology Research Center, USSR Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Birukov KG, Shirinsky VP, Vorotnikov AV, Gusev NB. Competitive binding of the troponin T-specific pool of caldesmon antibodies and tropomyosin to skeletal troponin T and smooth muscle caldesmon. FEBS Lett 1990; 262:263-5. [PMID: 1692290 DOI: 10.1016/0014-5793(90)80206-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fraction of polyclonal caldesmon antibodies cross-reacting with rabbit skeletal troponin T are shown to compete with smooth muscle tropomyosin for caldesmon and troponin T, as revealed by ELISA method. The epitope recognized by these antibodies was also found in Mr 77 kDa non-muscle caldesmon. These results provide functional confirmation for the suggestion that the regions of amino acid sequence homology in caldesmon isoforms and troponin T belong to the tropomyosin binding sites.
Collapse
Affiliation(s)
- K G Birukov
- Institute of Experimental Cardiology, USSR Cardiology Research Center, USSR Academy of Medical Sciences, Moscow
| | | | | | | |
Collapse
|