1
|
All-trans retinoic acid and protein kinase C α/β1 inhibitor combined treatment targets cancer stem cells and impairs breast tumor progression. Sci Rep 2021; 11:6044. [PMID: 33723318 PMCID: PMC7961031 DOI: 10.1038/s41598-021-85344-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/28/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. Blocking a single signaling pathway is often an ineffective therapy, especially in the case of aggressive or drug-resistant tumors. Since we have previously described the mechanism involved in the crosstalk between Retinoic Acid system and protein kinase C (PKC) pathway, the rationale of our study was to evaluate the effect of combining all-trans-retinoic acid (ATRA) with a classical PCK inhibitor (Gö6976) in preclinical settings. Employing hormone-independent mammary cancer models, Gö6976 and ATRA combined treatment induced a synergistic reduction in proliferative potential that correlated with an increased apoptosis and RARs modulation towards an anti-oncogenic profile. Combined treatment also impairs growth, self-renewal and clonogenicity potential of cancer stem cells and reduced tumor growth, metastatic spread and cancer stem cells frequency in vivo. An in-silico analysis of “Kaplan–Meier plotter” database indicated that low PKCα together with high RARα mRNA expression is a favorable prognosis factor for hormone-independent breast cancer patients. Here we demonstrate that a classical PKC inhibitor potentiates ATRA antitumor effects also targeting cancer stem cells growth, self-renewal and frequency.
Collapse
|
2
|
Singhal J, Yadav S, Nagaprashantha LD, Vatsyayan R, Singhal SS, Awasthi S. Targeting p53-null neuroblastomas through RLIP76. Cancer Prev Res (Phila) 2011; 4:879-89. [PMID: 21411502 DOI: 10.1158/1940-6207.capr-11-0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The search for p53-independent mechanism of cancer cell killing is highly relevant to pediatric neuroblastomas, where successful therapy is limited by its transformation into p53-mutant and a highly drug-resistant neoplasm. Our studies on the drug-resistant p53-mutant as compared with drug-resistant p53 wild-type neuroblastoma revealed a novel mechanism for resistance to apoptosis: a direct role of p53 in regulating the cellular concentration of proapoptotic alkenals by functioning as a specific and saturable allosteric inhibitor of the alkenal-glutathione conjugate transporter, RLIP76. The RLIP76-p53 complex was showed by both immunoprecipitation analyses of purified proteins and immunofluorescence analysis. Drug transport studies revealed that p53 inhibited both basal and PKCα-stimulated transport of glutathione conjugates of 4HNE (GSHNE) and doxorubicin. Drug resistance was significantly greater for p53-mutant as compared with p53 wild-type neuroblastoma cell lines, but both were susceptible to depletion of RLIP76 by antisense alone. In addition, inhibition of RLIP76 significantly enhanced the cytotoxicity of cisplatin. Taken together, these studies provide powerful evidence for a novel mechanism for drug and apoptosis resistance in p53-mutant neuroblastoma, based on a model of regulation of p53-induced apoptosis by RLIP76, where p53 is a saturable and specific allosteric inhibitor of RLIP76, and p53 loss results in overexpression of RLIP76; thus, in the absence of p53, the drug and glutathione-conjugate transport activities of RLIP76 are enhanced. Most importantly, our findings strongly indicate RLIP76 as a novel target for therapy of drug-resistant and p53-mutant neuroblastoma.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | | | | | |
Collapse
|
3
|
Wagner LM, Burger RA, Guichard SM, Raimondi SC, Santana VM, Furman WL, Barnette P, Danks MK. Pilot study to evaluate MYCN expression as a neuroblastoma cell marker to detect minimal residual disease by RT-PCR. J Pediatr Hematol Oncol 2006; 28:635-41. [PMID: 17023822 DOI: 10.1097/01.mph.0000212976.13749.8a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This pilot study was performed to determine whether MYCN expression warrants further investigation as a tumor marker to detect low levels of residual neuroblastoma (NB). Seven NB cell lines and 30 bone marrow (BM) samples from patients with high-risk NB were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) for MYCN expression, and for the established NB marker tyrosine hydroxylase. MYCN was expressed in all 7 NB cell lines, but not in normal peripheral blood, CD34 cells, or BM. In dilution studies using cell lines with or without DNA amplification of MYCN, 1 NB cell in 10 to 10 nucleated blood cells was detectable by RT-PCR. MYCN was identified in all 21 BM samples in which tumor cells were identified by histologic examination, including 4 samples in which tyrosine hydroxylase was not detected. Additionally, expression of both markers was detected in 5 samples that were negative by histology but presumably contained low levels of tumor cells, consistent with the greater sensitivity of RT-PCR compared with morphologic methods. Detection of MYCN RNA was independent of MYCN DNA amplification status. The selective expression of MYCN in tumor cells, and the sensitivity of detection of MYCN by RT-PCR noted in this and other studies, supports further evaluation of MYCN as a NB marker for molecular detection of minimal residual disease.
Collapse
Affiliation(s)
- Lars M Wagner
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Min JY, Park MH, Park MK, Park KW, Lee NW, Kim T, Kim HJ, Lee DH. Staurosporin induces neurite outgrowth through ROS generation in HN33 hippocampal cell lines. J Neural Transm (Vienna) 2006; 113:1821-6. [PMID: 16715208 DOI: 10.1007/s00702-006-0500-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 03/17/2006] [Indexed: 11/29/2022]
Abstract
Staurosporin, a specific inhibitor of PKC, is widely used in studies of signal transduction pathways. Previous studies have shown that staurosporin induces neurite outgrowth, but the underlying mechanisms remain unclear. Here we report that staurosporin induces neurite outgrowth in HN33 hippocampal cells. Two other PKC inhibitors, Go 6976 (specific for alpha- and beta-isoforms) and rotterlin (a selective inhibitor of PKC delta), have no neuritogenic effect. In addition, staurosporin specifically increases ROS generation. NAC, which inhibits the generation of ROS, suppresses the staurosporin-induced neurite outgrowth in HN33 cells. Further, H(2)O(2) causes neurite outgrowth. Taken together, these results confirm a neuritogenic effect of staurosporin and point to ROS as the signal mediator of staurosporin-induced neurite outgrowth in HN33 hippocampal cells. Theme: Development and regeneration Topic: Neurotrophic factors: receptors and cellular mechanisms.
Collapse
Affiliation(s)
- J Y Min
- Department of Obstetrics and Gynecology, Korea University Medical College, 516 Gojan-1-dong, Danwon-gu, Ansan-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
López-Andreo MJ, Torrecillas A, Conesa-Zamora P, Corbalán-García S, Gómez-Fernández JC. Retinoic acid as a modulator of the activity of protein kinase Calpha. Biochemistry 2005; 44:11353-60. [PMID: 16114872 DOI: 10.1021/bi0504862] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All-trans-retinoic acid (atRA) is a derivative of vitamin A and possesses antitumor activity. We demonstrate that atRA is able to modulate the activity of protein kinase C alpha (PKCalpha), which is related to tumor development. In vitro, it was found that atRA activated PKCalpha in the presence of Ca(2+) and in the absence of phosphatidylserine, although such activity is considerably inhibited in mutations affecting residues D246 and D248 and also residue N189, all of which are known to be essential for the interaction with Ca(2+) and phosphatidylserine in the C2 domain. It was concluded that atRA substitutes phosphatidylserine although with lower specific activities. However, atRA had a biphasic effect on PKCalpha activity in the presence of activating phospholipids, such as phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, yielding activation at low concentrations but inactivation at higher ones. This second inhibitory characteristic was not shown with K209 and K211 mutations (residues located in the Lys-rich cluster in the C2 domain) in PKCalpha. This interesting effect revealed the importance of phospholipid binding at this site to ensure maximum activity for the wild-type PKCalpha. The C1 domain was not related with the atRA effect on PKCalpha. It was concluded that whereas atRA may activate PKCalpha through the Ca(2+)-phosphatidylserine-binding site of the C2 domain, it may also inhibit the activity of this enzyme when displacing the phospholipid from the Lys-rich cluster also located in the C2 domain.
Collapse
Affiliation(s)
- María-José López-Andreo
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain
| | | | | | | | | |
Collapse
|
6
|
Marengo B, Raffaghello L, Pistoia V, Cottalasso D, Pronzato MA, Marinari UM, Domenicotti C. Reactive oxygen species: Biological stimuli of neuroblastoma cell response. Cancer Lett 2005; 228:111-6. [PMID: 15916847 DOI: 10.1016/j.canlet.2005.01.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species play a critical role in differentiation, proliferation and apoptosis acting as 'second messengers' able to regulate sulphydryl groups in signaling molecules as protein kinase C, a family of isoenzymes involved in many cellular responses and implicated in cell transformation. Neuroblastoma is characterised by the production of oxygen intermediates and L-buthionine-S,R-sulfoximine, a glutathione-depleting agent that has been tested in the clinics, exploits this biological peculiarity to induce cell death. The latter process is mediated by the oxidative activation of PKC delta which might be involved also in the production of reactive oxygen species, thus amplifying the apoptotic cascade.
Collapse
Affiliation(s)
- Barbara Marengo
- Department of Experimental Medicine, Section of General Pathology, University of Genova, Via L.B. Alberti, 2, 16132, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Ochoa WF, Torrecillas A, Fita I, Verdaguer N, Corbalán-García S, Gomez-Fernandez JC. Retinoic acid binds to the C2-domain of protein kinase C(alpha). Biochemistry 2003; 42:8774-9. [PMID: 12873138 DOI: 10.1021/bi034713g] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinase C(alpha) (PKC(alpha)) is a key enzyme regulating the physiology of cells and their growth, differentiation, and apoptosis. PKC activity is known to be modulated by all-trans retinoic acid (atRA), although neither the action mechanism nor even the possible binding to PKCs has been established. Crystals of the C2-domain of PKC(alpha), a regulatory module in the protein that binds Ca(2+) and acidic phospholipids, have now been obtained by cocrystallization with atRA. The crystal structure, refined at 2.0 A resolution, shows that RA binds to the C2-domain in two locations coincident with the two binding sites previously reported for acidic phospholipids. The first binding site corresponds to the Ca(2+)-binding pocket, where Ca(2+) ions mediate the interactions of atRA with the protein, as they do with acidic phospholipids. The second binding site corresponds to the conserved lysine-rich cluster localized in beta-strands three and four. These observations are strongly supported by [(3)H]-atRA-binding experiments combined with site-directed mutagenesis. Wild-type C2-domain binds 2 mol of atRA per mol of protein, while the rate reduces to one in the case of C2-domain variants, in which mutations affect either Ca(2+) coordination or the integrity of the lysine-rich cluster site. Competition between atRA and acidic phospholipids to bind to PKC is a possible mechanism for modulating PKC(alpha) activity.
Collapse
Affiliation(s)
- Wendy F Ochoa
- Instituto de Biología Molecular de Barcelona (CSIC), Jordi Girona Salgado 18-26, E-08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Mattei V, Garofalo T, Misasi R, Gizzi C, Mascellino MT, Dolo V, Pontieri GM, Sorice M, Pavan A. Association of cellular prion protein with gangliosides in plasma membrane microdomains of neural and lymphocytic cells. Neurochem Res 2002; 27:743-9. [PMID: 12374209 DOI: 10.1023/a:1020244621373] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this report we demonstrated that cellular prion protein is strictly associated with gangliosides in microdomains of neural and lymphocytic cells. We preliminarily investigated the protein distribution on the plasma membrane of human neuroblastoma cells, revealing the presence of large clusters. In order to evaluate its possible role in tyrosine signaling pathway triggered by GEM, we analyzed PrPc presence in microdomains and its association with gangliosides, using cholera toxin as a marker of GEM in neuroblastoma cells and anti-GM3 MoAb for identification of GEM in lymphoblastoid cells. In neuroblastoma cells scanning confocal microscopical analysis revealed a consistent colocalization between PrPc and GM1 despite an uneven distribution of both on the cell surface, indicating the existence of PrPc-enriched microdomains. In lymphoblastoid T cells PrPc molecules were mainly, but not exclusively, colocalized with GM3. In addition, PrPc was present in the Triton-insoluble fractions, corresponding to GEM of cell plasma membrane. Additional evidence for a specific PrPc-GM3 interaction in these cells was derived from the results of TLC analysis, showing that prion protein was associated with GM3 in PrPc immunoprecipitates. The physical association of PrPc with ganglioside GM3 within microdomains of lymphocytic cells strongly suggests a role for PrPc-GM3 complex as a structural component of the multimolecular signaling complex involved in T cell activation and other dynamic lymphocytic plasma membrane functions.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Dip. Medicina Sperimentale e Patologia, Università La Sapienza, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Watterson JM, Watson DG, Meyer EM, Lenox RH. A role for protein kinase C and its substrates in the action of valproic acid in the brain: implications for neural plasticity. Brain Res 2002; 934:69-80. [PMID: 11937071 DOI: 10.1016/s0006-8993(02)02362-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Valproic acid (VPA) is a broad-spectrum anticonvulsant with well-documented teratogenic effects, but whose mechanism of action is largely unknown. In the present study we have examined the effects of VPA on the expression of two prominent substrates for protein kinase C (PKC) in the brain, MARCKS and GAP-43, which have been implicated in actin-membrane plasticity and neurite outgrowth during neuronal differentiation, respectively, and are essential to normal brain development. Immortalized hippocampal HN33 cells exposed to VPA exhibited reduced MARCKS protein expression and demonstrated increased GAP-43 protein expression, with concomitant alterations in cellular morphology, including an increase in the number and length of neurites and accompanied by a reduction in cell growth rate. The effects of VPA were observed at clinically relevant concentrations following chronic (>1 day) VPA exposure. We also present evidence for a VPA-induced alteration in PKC activity, as well as temporal changes in individual PKC isozyme expression. Inhibition of PKC with the PKC-selective inhibitor, LY333531, prevented the VPA-induced down-regulation of membrane-associated MARCKS, but had no effect on the cytosolic MARCKS reduction or the GAP-43 up-regulation. Inhibition of PKC by LY333531 enhanced the differentiating effects of VPA; additionally, LY333531 alone induced greater neurite outgrowth in this cell line. Collectively, these data indicate that VPA induces neuronal differentiation, associated with a reduction in MARCKS expression and an increase in GAP-43 expression, consistent with the hypothesis that a reduction in MARCKS at the membrane may be permissive for cytoskeletal plasticity during neurite outgrowth.
Collapse
Affiliation(s)
- Jeannette M Watterson
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
10
|
Carter CA, Parham GP, Chambers T. Cytoskeletal reorganization induced by retinoic acid treatment of human endometrial adenocarcinoma (RL95-2) cells is correlated with alterations in protein kinase C-alpha. Pathobiology 2000; 66:284-92. [PMID: 9769475 DOI: 10.1159/000028035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have shown previously that treatment of human endometrial adenocarcinoma (RL95-2) cells with either 13-cis or all-trans retinoic acid results in reorganization of actin filaments, indicating reversion to a stationary phenotype. In the present study, we investigated the role of protein kinase C (PKC) in this process. Treatment of cells with PKC inhibitors (staurosporine, bisindolylmaleimide, or G¿6976) resulted in morphological alterations and reorganization of actin filaments similar to retinoic-acid-treated cells. For example, RL95-2 cells treated with staurosporine flattened, exhibited cell surface extensions and some actin filaments. Bisindolylmaleimide-treated cells flattened, and actin filaments reorganized similar to retinoic-acid-treated cells. RL95-2 cells treated with G¿6976, which inhibits only PKC, alpha, beta and gamma, exhibited many cell surface extensions and some actin filament reorganization. We then investigated whether retinoic acid affected the subcellular localization of PKC-alpha. In control cells, PKC-alpha was mainly evident as diffuse cytoplasmic immunostaining, with a small percentage of total PKC-alpha also evident in the plasma membrane. Retinoic acid treatment dramatically altered PKC-alpha localization, since a more distinct cytoplasmic and perinuclear staining pattern was apparent. Western blot analysis confirmed these results, since the amount of cytosolic PKC-alpha increased following retinoic acid treatment. Thus, retinoic-acid-induced endometrial differentiation may be associated with alterations in PKC-alpha localization and signaling.
Collapse
Affiliation(s)
- C A Carter
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
11
|
Radominska-Pandya A, Chen G, Czernik PJ, Little JM, Samokyszyn VM, Carter CA, Nowak GD. Direct interaction of all-trans-retinoic acid with protein kinase C (PKC). Implications for PKC signaling and cancer therapy. J Biol Chem 2000; 275:22324-30. [PMID: 10748087 DOI: 10.1074/jbc.m907722199] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC) regulates fundamental cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. All-trans-retinoic acid (atRA) modulates PKC activity, but the mechanism of this regulation is unknown. Amino acid alignments and crystal structure analysis of retinoic acid (RA)-binding proteins revealed a putative atRA-binding motif in PKC, suggesting existence of an atRA binding site on the PKC molecule. This was supported by photolabeling studies showing concentration- and UV-dependent photoincorporation of [(3)H]atRA into PKCalpha, which was effectively protected by 4-OH-atRA, 9-cis-RA, and atRA glucuronide, but not by retinol. Photoaffinity labeling demonstrated strong competition between atRA and phosphatidylserine (PS) for binding to PKCalpha, a slight competition with phorbol-12-myristate-13-acetate, and none with diacylglycerol, fatty acids, or Ca(2+). At pharmacological concentrations (10 micrometer), atRA decreased PKCalpha activity through the competition with PS but not phorbol-12-myristate-13-acetate, diacylglycerol, or Ca(2+). These results let us hypothesize that in vivo, pharmacological concentrations of atRA may hamper binding of PS to PKCalpha and prevent PKCalpha activation. Thus, this study provides the first evidence for direct binding of atRA to PKC isozymes and suggests the existence of a general mechanism for regulation of PKC activity during exposure to retinoids, as in retinoid-based cancer therapy.
Collapse
Affiliation(s)
- A Radominska-Pandya
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mohan DR, Nagarathna R, Krishna M, Jagtap JC, Shastry P. Differential responses of staurosporine on protein kinase C activity and proliferation in two murine neuroblastoma cell lines. Cancer Lett 1999; 139:137-43. [PMID: 10395170 DOI: 10.1016/s0304-3835(99)00021-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the effect of staurosporine (SSP), a broad-spectrum protein kinase inhibitor, on the levels of protein kinase C (PKC) activity and proliferation in two murine neuroblastoma cell lines, Neuro2a and its clone NB41A3. The PKC activity was examined in whole cell lysate, cytosolic and particulate fractions. A differential response to SSP treatment in the enzyme activity in whole cell lysate and particulate fractions was demonstrated in the two cell lines. The data on proliferation indicated that Neuro2a cells were more sensitive to the SSP treatment with significant inhibition in DNA synthesis in a time course study. Our findings suggest that the data on basal levels of PKC activity in tumors will be of significance in studies using PKC inhibitors as an approach for therapeutic intervention.
Collapse
Affiliation(s)
- D R Mohan
- National Centre for Cell Science, (An Autonomous Institution, Department of Biotechnology, Government of India), GaneshKhind, Pune
| | | | | | | | | |
Collapse
|
13
|
Pulido-Cejudo G, Slack R, Hébert RL, Proulx P. Effect of retinoic acid on Nm/23 nucleoside diphosphate kinase and components of cyclic adenosine monophosphate-dependent signalling in human neuroblastoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:201-6. [PMID: 7742387 DOI: 10.1016/0167-4889(94)00244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of retinoic acid on components of the cAMP-dependent signalling system were examined in two related human neuroblastoma cell lines SK-N-SH-F (SHF) and SK-N-SH-N (SHN). Retinoid treatment for a week significantly increased the concentration of intracellular cAMP and the levels of activity of protein kinase A and adenylate cyclase in both cell lines. Retinoic acid treatment also caused a very marked translocation of nucleoside diphosphate kinase from the cytosol to the membrane fraction. The increases in cyclic nucleotide and protein kinase A activity were observed to occur as early as within 1 and 2 days respectively and preceded or were concurrent with the onset of observable morphological differentiation. Results also indicated that agents which elevated intracellular cAMP caused neuronal differentiation and blunted retinoic acid-induced melanocytic differentiation in SHF cells. However, increases in cAMP brought about by treatment of SHF cells with retinoic acid alone were several-fold smaller and thus insufficient to induce neuritogenesis in these cells. The results as a whole indicate that one overall effect of retinoic acid treatment is to upgrade the activity of components of the cAMP-dependent signalling system in both neuroblastoma cell lines. However, retinoic acid causes the SH-F and SH-N cell lines to differentiate along different routes which means that the upgrading responses may be related to more general aspects of differentiation rather than to specific phenotype expression.
Collapse
|
14
|
Tonini GP, Fabretti G, Kuznicki J, Massimo L, Scaruffi P, Brisigotti M, Mazzocco K. Gene expression and protein localisation of calcyclin, a calcium-binding protein of the S-100 family in fresh neuroblastomas. Eur J Cancer 1995; 31A:499-504. [PMID: 7576953 DOI: 10.1016/0959-8049(95)00043-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcyclin gene, a Ca(2+)-binding protein with homology to S-100, has been found to be expressed at different levels in leukaemic cells and in other tumour cells. We recently reported the expression of the gene in human neuroblastoma (NB) cell lines, and suggested a possible role of calcyclin in cell differentiation. To extend our findings, we investigated the expression of the gene in NB cells induced to differentiate by retinoic acid (RA), using the reverse transcriptase-polymerase chain reaction (RT-PCR) technique. Time-course experiments employing LA-N-5 cells showed that calcyclin mRNA appeared 2 h after RA treatment, long before the cells were blocked in the G1 cell-cycle phase and before the neurite-like structures outgrew from the cell bodies. This suggests the involvement of the gene in the early phase of cell differentiation. Furthermore, we investigated mRNA expression in a series of fresh neuroblastomas. NB tumours showed a heterogeneous pattern of calcyclin expression, although calcyclin seemed to be expressed more frequently in cases with a favourable Shimada histology. We also studied the expression of the protein in formalin fixed and paraffin embedded tissues, by using a specific anticalcyclin antibody. The protein was detected in stromal cells which characterise a more mature histological type, and in nerve sheaths, whereas neuroblasts were negative. The tissue that expressed calcyclin protein showed a Schwann-like differentiation and, unlike S-100 protein, calcyclin was expressed in the perineurium.
Collapse
Affiliation(s)
- G P Tonini
- Laboratory of Oncology, Advanced Biotechnologies Center, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Qian J, Wang HY, Fischer I, Friedman E, Levitt P. Involvement of protein kinase C in the axonal growth-promoting effect on spinal cord neurons by target-derived astrocytes. JOURNAL OF NEUROBIOLOGY 1994; 25:1593-612. [PMID: 7861122 DOI: 10.1002/neu.480251211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Astroglial cells participate in a variety of developmental events during neuronal morphogenesis. We have shown that axonal, but not dendritic, outgrowth of spinal cord neurons can be promoted by a diffusible factor or factors secreted from target region-derived cerebellar astroglia in vitro in comparison with spinal astroglia. In the present study, we examined the involvement of protein kinase C (PKC) in the axon-promoting effect by astroglia. The inhibition of PKC by sphingosine or by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) at high concentration greatly reduced the mean axonal length of spinal neurons cultured in medium conditioned by cerebellar astroglia (SCn-CBg), while activation of PKC by TPA at low concentration, or by retinoic acid, was not additive to the glial effect. The activation of PKC by TPA or retinoic acid promoted axon growth of spinal neurons cultured in medium conditioned by spinal astroglia (SCn-SCg), which otherwise would not be as supportive for axon growth as cerebellar astroglia. Western blotting and PKC activity assays showed that there was a trend for increased PKC activity and protein levels (in particular, PKC beta) in SCn-CBg cultures, which correlated with enhanced axon growth. Inhibition of PKC by sphingosine appeared to decrease protein levels, especially PKC beta, which correlated with suppressed axon outgrowth. In SCn-SCg cultures, phorbol ester activation of PKC increased both activity and protein levels of both PKC alpha and PKC beta. This activation correlated with stimulated axonal outgrowth. These results suggest that the glial signaling that regulates specific axonal outgrowth by target astroglia is mediated in part by the PKC second messenger system.
Collapse
Affiliation(s)
- J Qian
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19129
| | | | | | | | | |
Collapse
|
16
|
Todo T, Fahlbusch R. Involvement of protein kinase C in growth regulation of human meningioma cells. Acta Neurochir (Wien) 1994; 131:282-8. [PMID: 7754836 DOI: 10.1007/bf01808628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to investigate the possible role of protein kinase C (PKC)-mediated signal pathways in growth regulation of meningiomas, we examined the effect of two PKC-activating phorbol esters, 12-O-tetradecanoyl-13-phorbol acetate (TPA) and phorbol 12, 13-dibutyrate (PDBu), and PKC inhibitor, staurosporine, on cell proliferation using low-passage human meningioma cells in culture. TPA (0.1 to 100 ng/ml) caused a dose-dependent stimulation of cell proliferation in six of eight meningioma cultures. At optimal concentrations of TPA, the cell growth ranged from 113% to 251% versus control. In contrast, PDBu (0.1 to 100 ng/ml) caused a significant inhibition of cell proliferation in three of five meningioma cultures. At optimal concentrations of PDBu, the cell growth ranged from 52% to 79% of control. Staurosporine exhibited a stimulation of cell proliferation (135% to 178%) in three of four meningioma cultures studied at a concentration of 10(-10) to 10(-9)M, although a tendency of growth inhibition was observed at a lower concentration. A time course of DNA synthesis in response to TPA, assessed by [3H] thymidine incorporation studies, revealed a time- and dose-dependent stimulation and/or inhibition which further depended on the serum concentration of the growth medium used. The overall results indicate that PKC-mediated signal pathways are closely involved in growth regulation of human meningioma cells. The results further suggest that the signalling processes consist of complex mechanisms which await to be elucidated.
Collapse
Affiliation(s)
- T Todo
- Department of Neurosurgery, International Medical Center of Japan, Tokyo
| | | |
Collapse
|
17
|
Frawley BP, Tien XY, Hartmann SC, Wali RK, Niedziela SM, Davidson NO, Sitrin MD, Brasitus TA, Bissonnette M. TPA causes divergent responses of Ca(2+)-dependent and Ca(2+)-independent isoforms of PKC in the nuclei of Caco-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1222:301-5. [PMID: 8031867 DOI: 10.1016/0167-4889(94)90182-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present studies were undertaken to examine the expression of PKC isoforms within the nucleus of Caco-2 cells, a cell line widely used to investigate intestinal cell growth and differentiation, in order to begin to explore their roles in modulating gene expression. Purified nuclei were, therefore, prepared from Caco-2 cells and found to contain PKC-zeta, but not -alpha. The phorbol ester, 12-O-tetradecanoyl phorbol 13-acetate (TPA) caused an acute redistribution of PKC-alpha to the nucleus, but did not change the distribution of PKC-zeta. Chronic treatment with TPA down-regulated total PKC-alpha, but not -zeta. Moreover, in contrast to acute TPA treatment, after chronic treatment, nuclear PKC-alpha was no longer detectable, whereas nuclear PKC-zeta was unchanged. These studies demonstrate for the first time the constitutive expression and divergent responses to TPA of the Ca(2+)-dependent and Ca(2+)-independent isoforms of PKC in the nuclei of Caco-2 cells and suggest that these specific isoforms may be involved in modulating gene expression.
Collapse
Affiliation(s)
- B P Frawley
- Department of Medicine, University of Chicago, IL 60637
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Körner M, Tarantino N, Pleskoff O, Lee LM, Debré P. Activation of nuclear factor kappa B in human neuroblastoma cell lines. J Neurochem 1994; 62:1716-26. [PMID: 8158122 DOI: 10.1046/j.1471-4159.1994.62051716.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nuclear factor kappa B (NF-kappa B) is a eukaryotic transcription factor. In B cells and macrophages it is constitutively present in cell nuclei, whereas in many other cell types, NF-kappa B translocates from cytosol to nucleus as a result of transduction by tumor necrosis factor alpha (TNF alpha), phorbol ester, and other polyclonal signals. Using neuroblastoma cell lines as models, we have shown that in neural cells NF-kappa B was present in the cytosol and translocated into nuclei as a result of TNF alpha treatment. The TNF alpha-activated NF-kappa B was transcriptionally functional. NF-kappa B activation by TNF alpha was not correlated with cell differentiation or proliferation. However, reagents such as nerve growth factor (NGF) and the phorbol ester phorbol 12-myristate 13-acetate (PMA), which induce phenotypical differentiation of the SH-SY5Y neuroblastoma cell line, activated NF-kappa B, but only in that particular cell line. In a NGF-responsive rat pheochromocytoma cell line, PC12, PMA activated NF-kappa B, whereas NGF did not. In other neuroblastoma cell lines, such as SK-N-Be(2), the lack of PMA induction of differentiation was correlated with the lack of NF-kappa B activation. We found, moreover, that in SK-N-Be(2) cells protein kinase C (PKC) enzymatic activity was much lower compared with that in a control cell line and that the low PKC enzymatic activity was due to low PKC protein expression. NF-kappa B was not activated by retinoic acid, which induced morphological differentiation of all the neuroblastoma cell lines used in the present study. Thus, NF-kappa B activation was not required for neuroblastoma cell differentiation. Furthermore, the results obtained with TNF alpha proved that NF-kappa B activation was not sufficient for induction of neuroblastoma differentiation.
Collapse
Affiliation(s)
- M Körner
- Laboratoire d'Immunologie Cellulaire et Tissulaire, CNRS URA 625, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Turner NA, Rumsby MG, Walker JH, McMorris FA, Ball SG, Vaughan PF. A role for protein kinase C subtypes alpha and epsilon in phorbol-ester-enhanced K(+)- and carbachol-evoked noradrenaline release from the human neuroblastoma SH-SY5Y. Biochem J 1994; 297 ( Pt 2):407-13. [PMID: 8297348 PMCID: PMC1137844 DOI: 10.1042/bj2970407] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein kinase C (PKC) consists of a family of closely related subtypes which differ in their localization and activation properties. Our previous studies have suggested a role for PKC in the regulation of noradrenaline (NA) release from the human neuroblastoma SH-SY5Y. Here we have used two approaches to characterize the PKC subtypes present in SH-SY5Y cells. Firstly, the PCR was used to show that SH-SY5Y cells contain mRNA encoding PKC subtypes alpha, beta, gamma, delta, epsilon and zeta. Secondly, immunoblotting showed that SH-SY5Y cells express PKC subtypes alpha, epsilon and zeta at the protein level. Prolonged (48 h) exposure of cells to the phorbol ester phorbol 12-myristate 13-acetate (PMA; 100 nM) resulted in a marked decrease in the amounts of PKC-alpha and PKC-epsilon, with no change in levels of PKC-zeta. Prolonged PMA treatment had no significant effect on K(+)-evoked NA release from SH-SY5Y cells, whereas carbachol-evoked release was increased 2.2-fold. However, prolonged exposure to PMA completely inhibited the ability of acute (12 min) PMA treatment to enhance both K(+)- and carbachol-evoked NA release. The specific PKC inhibitor RO 31-7459 (10 microM) was found to inhibit K(+)- and carbachol-evoked release by 27% and 68% respectively. RO 31-7549 also completely inhibited the ability of acute PMA treatment to enhance release. These data suggest that PKC-alpha and/or PKC-epsilon play an essential role in the regulation of PMA-enhanced K(+)- and carbachol-evoked NA release in SH-SY5Y cells.
Collapse
Affiliation(s)
- N A Turner
- Unit of Cardiovascular Studies, University of Leeds, U.K
| | | | | | | | | | | |
Collapse
|
20
|
Goodnight J, Mischak H, Mushinski JF. Selective involvement of protein kinase C isozymes in differentiation and neoplastic transformation. Adv Cancer Res 1994; 64:159-209. [PMID: 7879658 DOI: 10.1016/s0065-230x(08)60838-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Goodnight
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
21
|
Kurie JM, Younes A, Miller WH, Burchert M, Chiu CF, Kolesnick R, Dmitrovsky E. Retinoic acid stimulates the protein kinase C pathway before activation of its beta-nuclear receptor during human teratocarcinoma differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1179:203-7. [PMID: 8218362 DOI: 10.1016/0167-4889(93)90142-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We previously reported that protein kinase C (PKC) stimulation through phorbol ester (TPA) treatment enhances the effects of all-trans retinoic acid (RA) on immunophenotypic differentiation and RA nuclear receptor (RAR) activation in the multipotential human teratocarcinoma (TC) cell line NTera-2/clone D1 (abbreviated NT2/D1). This study extends prior work in NT2/D1 cells by demonstrating that PKC pathway activation is an early effect of RA treatment which regulates RAR transcriptional activity. RA activated the PKC pathway prior to induction of RAR-beta expression at 6 h, which is an established early marker of RAR activation in NT2/D1 cells. RA caused a transient 1.3-fold increase in intracellular diacylglycerol (DG) at 2 min and a translocation of the gamma isozyme of PKC (PKC-gamma) within 5 min. Transient co-transfection studies provided evidence that PKC pathway activation plays a role in the regulation of RAR-beta expression. In these studies a constitutively active PKC-gamma augmented the RA-mediated transactivation of a luciferase reporter containing the native RAR-beta promoter which has a retinoic-acid-response element (RARE). These findings reveal that PKC pathway activation is an early step in RA-mediated human TC differentiation and that PKC-gamma can potentiate the effects of RA on RAR transcriptional activation.
Collapse
Affiliation(s)
- J M Kurie
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | | | | | | | | | | | | |
Collapse
|
22
|
Ponzoni M, Lucarelli E, Corrias MV, Cornaglia-Ferraris P. Protein kinase C isoenzymes in human neuroblasts. Involvement of PKC epsilon in cell differentiation. FEBS Lett 1993; 322:120-4. [PMID: 8482377 DOI: 10.1016/0014-5793(93)81550-j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although neuronal cells are a major target of phorbol ester action, the activity of the various protein kinase C (PKC) isoenzymes have not been studied in detail in human neuroblasts. Differentiation of the LAN-5 human neuroblastoma cell line by interferon-gamma (IFN-gamma) is accompanied by a twofold increase in PKC activity. Since PKC is a multigene family, we investigated which isoforms were expressed in control and differentiated cells, and which of these isoenzymes is involved in neuronal differentiation. We found that: (1) PKC activity is higher in differentiated than in undifferentiated cells; (2) RT-PCR analysis showed the expression of mRNA for PKC alpha, -gamma, -delta, -epsilon and -zeta and the absence of mRNA for beta in untreated LAN-5 cells; (3) Western blot evaluation with PKC isoform-specific antibodies showed the same pattern of PKC expression in non-differentiated cells; (4) Expression of PKC epsilon mRNA was significantly enhanced by IFN-gamma-induced differentiation, while the other isoforms were not affected; (5) Differentiation of LAN-5 cells with IFN-gamma or retinoic acid induced overexpression of the PKC epsilon protein, while inhibition of cell proliferation by fetal calf serum starvation was without effect. These findings suggest that expression of PKC epsilon isoform is tightly coupled with neuronal differentiation and may play a role in the maintenance of the differentiated state.
Collapse
Affiliation(s)
- M Ponzoni
- Pediatric Oncology Laboratory, G. Gaslini Children's Hospital, Genoa, Italy
| | | | | | | |
Collapse
|
23
|
Leli U, Shea TB, Cataldo A, Hauser G, Grynspan F, Beermann ML, Liepkalns VA, Nixon RA, Parker PJ. Differential expression and subcellular localization of protein kinase C alpha, beta, gamma, delta, and epsilon isoforms in SH-SY5Y neuroblastoma cells: modifications during differentiation. J Neurochem 1993; 60:289-98. [PMID: 8417148 DOI: 10.1111/j.1471-4159.1993.tb05850.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A decrease in protein kinase C activity caused either by treatment with inhibitors, such as staurosporine or H-7, or by prolonged exposure to phorbol diesters has been proposed to be involved in the early events of SH-SY5Y neuroblastoma cell differentiation. Because eight distinct isoforms of protein kinase C with discrete subcellular and tissue distributions have been described, we determined which isoforms are present in SH-SY5Y cells and studied their modifications during differentiation. The alpha, beta 1, delta, and epsilon isoforms were present in SH-SY5Y cells, as well as in rat brain. Protein kinase C-alpha and -beta 1 were the most abundant isoforms in SH-SY5Y cells, and immunoreactive protein kinase C-delta and -epsilon were present in much smaller amounts than in rat brain. Subcellular fractionation and immunocytochemistry demonstrated that all four isoforms are distributed bimodally in the cytoplasm and the membranes. Immunocytochemical analysis showed that the alpha isoform is associated predominantly with the plasma membrane and the processes extended during treatment with 12-tetradecanoyl-13-acetyl-beta-phorbol or staurosporine, and that protein kinase C-epsilon is predominantly membrane-bound. Its localization did not change during differentiation. Western blots of total SH-SY5Y cell extracts and of subcellular fractions probed with isoform-specific polyclonal antibodies showed that when SH-SY5Y cells acquired a morphologically differentiated phenotype, protein kinase C-alpha and -epsilon decreased, and protein kinase C-beta 1 did not change. These data suggest distinct roles for the different protein kinase C isoforms during neuronal differentiation, as well as possible involvement of protein kinase alpha and epsilon in neuritogenesis.
Collapse
Affiliation(s)
- U Leli
- Ralph Lowell Laboratories, McLean Hospital, Belmont, Massachusetts 02178
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lea MA. Action of exogenous differentiating agents on gene expression in cancer cells. Crit Rev Oncol Hematol 1992; 13:189-214. [PMID: 1476653 DOI: 10.1016/1040-8428(92)90090-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M A Lea
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey Medical School, Newark 07103
| |
Collapse
|
25
|
Parrow V, Nånberg E, Heikkilä J, Hammerling U, Påhlman S. Protein kinase C remains functionally active during TPA induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. J Cell Physiol 1992; 152:536-44. [PMID: 1506412 DOI: 10.1002/jcp.1041520313] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SH-SY5Y human neuroblastoma cells can be induced to differentiate into a neuronal phenotype by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). In other cell systems, TPA treatment frequently leads to down-regulation of protein kinase C (PKC). However, we now report that TPA-treated and non-treated SH-SY5Y cells express PKC-alpha, but not PKC-beta and PKC-gamma, mRNA. Furthermore, only a slight down-regulation of the PKC-alpha protein could be seen during prolonged treatment with 16 nM TPA, the concentration giving optimal differentiation. In contrast, a higher concentration of TPA (1.6 microM) results in a poor neuronal differentiation and a complete down-regulation of PKC-alpha. PKC-alpha was rapidly translocated to the particulate fraction and remained membrane bound for at least 4 days during treatment with 16 nM TPA. In such cells a sustained increased level of the phosphorylated form of a 80,000 Dalton PKC-substrate was found. In addition to this sustained augmented phosphorylation, administration of fresh TPA at day 4 caused a small but reproducible further increased level of phosphorylated substrate. When the PKC activity was measured by the histone phosphorylation assay a substantial fraction of the initial enzyme activity could still be detected after 4 days of TPA treatment. Taken together, the data demonstrate that PKC remains functionally active during TPA induced differentiation of SH-SY5Y cells, which may suggest a continuous role for the enzyme during the differentiation process.
Collapse
Affiliation(s)
- V Parrow
- Department of Pathology, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
26
|
Sakai T, Okano Y, Nozawa Y, Oka N. Different protein kinase C isozymes could modulate bradykinin-induced extracellular calcium-dependent and -independent increases in osteoblast-like MC3T3-E1 cells. Cell Calcium 1992; 13:329-40. [PMID: 1320458 DOI: 10.1016/0143-4160(92)90068-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Effects of protein kinase C (PKC) on bradykinin (BK)-induced intracellular calcium mobilization, consisting of rapid Ca2+ release from internal stores and a subsequent sustained Ca2+ inflow, were examined in Fura-2-loaded osteoblast-like MC3T3-E1 cells. The sustained Ca2+ inflow as inferred with Mn2+ quench method was blocked by Ni2+ and a receptor-operated Ca2+ channel blocker SK&F 96365, but not by nifedipine. The short-term pretreatment with phorbol 12-myristate 13-acetate (PMA), inhibited BK-stimulated Ca2+ inflow, and the prior treatment with PKC inhibitors, H-7 or staurosporine, enhanced the initial internal release and reversed the PMA effect. Moreover, 6 h pretreatment with PMA caused similar effect on the BK-induced inflow to that obtained with PKC inhibitors, whereas 24 h pretreatment was necessary to affect the internal release. On the other hand, the translocation and down-regulation of PKC isozymes were examined after PMA treatment of MC3T3-E1 cells by immunoblot analyses of PKCs with the isozyme-specific antibodies. 6 h treatment with PMA induced down-regulation of PKC beta, whereas longer treatment was needed for down-regulation of PKC alpha. Taken together, it was suggested that the BK-induced initial Ca2+ peak and the sustained Ca2+ inflow through the activation of a receptor-operated Ca2+ channel, are differentially regulated by PKC isozymes alpha and beta, respectively, in osteoblast-like MC3T3-E1 cells.
Collapse
Affiliation(s)
- T Sakai
- Department of Oral and Maxillo-Facial Surgery, Gifu University School of Medicine, Japan
| | | | | | | |
Collapse
|
27
|
Leli U, Parker PJ, Shea TB. Intracellular delivery of protein kinase C-alpha or -epsilon isoform-specific antibodies promotes acquisition of a morphologically differentiated phenotype in neuroblastoma cells. FEBS Lett 1992; 297:91-4. [PMID: 1312952 DOI: 10.1016/0014-5793(92)80334-d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protein kinase C (PKC) family participates in a ubiquitous cell signalling system utilizing increased turnover of phosphoinositides. Because down-regulation of total PKC activity has been implicated in the acquisition of a morphologically differentiated phenotype in SH-SY5Y neuroblastoma cells, we aimed to identify the specific PKC isoforms in this process. Here we report that intracellular delivery of PKC-alpha and -epsilon, but not -beta, -gamma or -delta isoform-specific antibodies is sufficient to induce acquisition of a morphologically differentiated phenotype in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- U Leli
- Ralph Lowell Laboratories, McLean Hospital, Belmont, MA 02178
| | | | | |
Collapse
|