1
|
Lv L, Yang X, Zhang Y, Ren X, Zeng S, Zhang Z, Wang Q, Lv J, Gao P, Dorf ME, Li S, Zhao L, Fu B. hnRNPAB inhibits Influenza A virus infection by disturbing polymerase activity. Antiviral Res 2024; 228:105925. [PMID: 38944160 DOI: 10.1016/j.antiviral.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Influenza A virus (IAV) continuously poses a considerable threat to global health through seasonal epidemics and recurring pandemics. IAV RNA-dependent RNA polymerases (FluPol) mediate the transcription of RNA and replication of the viral genome. Searching for targets that inhibit viral polymerase activity helps us develop better antiviral drugs. Here, we identified heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) as an anti-influenza host factor. hnRNPAB interacts with NP of IAV to inhibit the interaction between PB1 and NP, which is dependent on the 5-amino-acid peptide of the hnRNPAB C-terminal domain (aa 318-322). We further found that the 5-amino-acid peptide blocks the interaction between PB1 and NP to destroy the FluPol activity. In vivo studies demonstrate that hnRNPAB-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. These data demonstrate that hnRNPAB perturbs FluPol complex conformation to inhibit IAV infection, providing insights into anti-influenza defense mechanisms.
Collapse
Affiliation(s)
- Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Ren
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Jiaxi Lv
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Pengyue Gao
- Department of Immunology, Yangtze University Health Science Center, Jingzhou, 434023, China
| | - Martin E Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, 02115. USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Wang X, Lin L, Zhong Y, Feng M, Yu T, Yan Y, Zhou J, Liao M. Cellular hnRNPAB binding to viral nucleoprotein inhibits flu virus replication by blocking nuclear export of viral mRNA. iScience 2021; 24:102160. [PMID: 33681726 PMCID: PMC7918295 DOI: 10.1016/j.isci.2021.102160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) play critical roles in the nuclear export, splicing, and sensing of RNA. However, the role of heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) is poorly understood. In this study, we report that hnRNPAB cooperates with nucleoprotein (NP) to restrict viral mRNA nuclear export via inhibiting viral mRNA binding to ALY and NXF1. HnRNPAB restricts mRNA transfer from ALY to NXF1, inhibiting the mRNA nuclear export. Moreover, when cells are invaded by influenza A virus, NP interacts with hnRNPAB and interrupts the ALY-UAP56 interaction, leading to repression of ALY-viral mRNA binding, and then inhibits the viral mRNA binding to NXF1, leading to nuclear stimulation of viral mRNA. Collectively, these observations provide a new role of hnRNPAB to act as an mRNA nuclear retention factor, which is also effective for viral mRNA of influenza A virus, and NP cooperates with hnRNPAB to further restrict the viral mRNA nuclear export. HnRNPAB inhibits influenza A virus replication by repressing viral mRNA nuclear export HnRNPAB interrupts viral mRNA transferring from ALY to NXF1 NP cooperates with hnRNPAB to further restrict viral mRNA nuclear export The ALY-viral mRNA binding is restricted by NP-hnRNPAB complex
Collapse
Affiliation(s)
- Xingbo Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lulu Lin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yiye Zhong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Mingfang Feng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Tianqi Yu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, P.R. China
- Corresponding author
| | - Min Liao
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
- Corresponding author
| |
Collapse
|
3
|
Zhou JM, Jiang H, Yuan T, Zhou GX, Li XB, Wen KM. High hnRNP AB expression is associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2019; 18:6459-6468. [PMID: 31819776 PMCID: PMC6896405 DOI: 10.3892/ol.2019.11034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Heterogeneous ribonucleoprotein AB (hnRNP AB) is a member of the heterogeneous nuclear ribonucleoprotein family, which serves important functions in gene expression and signal transduction. However, the expression and clinicopathological significance of hnRNP AB in colorectal cancer (CRC) remain to be elucidated. To investigate the expression and clinical significance of hnRNP AB in CRC, hnRNP AB expression levels were analysed in two independent cohorts of patients with CRC. The results of reverse transcription-quantitative PCR, immunohistochemistry and western blot analysis demonstrated that hnRNP AB was upregulated in CRC tissues compared with the corresponding adjacent normal tissues. Immunohistochemical analyses indicated that a high expression of hnRNP AB was significantly associated with preoperative carcinoembryonic antigen (CEA; P<0.001) and carbohydrate antigen 19-9 (P=0.014) levels, tumour size (P=0.022) and infiltration (P=0.026), lymph node metastasis (P<0.001) and Tumour-Node-Metastasis stage (P<0.001). Univariate and multivariate Cox survival analyses revealed that hnRNP AB expression and preoperative CEA levels were significant independent factors affecting overall survival in patients with CRC (P<0.05). According to the Kaplan-Meier model, patients with CRC with high hnRNP AB expression exhibited significantly poorer prognosis compared with those with low hnRNP AB expression (P<0.001). In conclusion, the results of the present study demonstrated that hnRNP AB expression may serve an important role in the progression of CRC and that hnRNP AB may be considered a predictor of prognosis for patients with CRC.
Collapse
Affiliation(s)
- Jun-Min Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tao Yuan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guang-Xun Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiang-Bing Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
4
|
Neriec N, Percipalle P. Sorting mRNA Molecules for Cytoplasmic Transport and Localization. Front Genet 2018; 9:510. [PMID: 30459808 PMCID: PMC6232293 DOI: 10.3389/fgene.2018.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 01/03/2023] Open
Abstract
In eukaryotic cells, gene expression is highly regulated at many layers. Nascent RNA molecules are assembled into ribonucleoprotein complexes that are then released into the nucleoplasmic milieu and transferred to the nuclear pore complex for nuclear export. RNAs are then either translated or transported to the cellular periphery. Emerging evidence indicates that RNA-binding proteins play an essential role throughout RNA biogenesis, from the gene to polyribosomes. However, the sorting mechanisms that regulate whether an RNA molecule is immediately translated or sent to specialized locations for translation are unclear. This question is highly relevant during development and differentiation when cells acquire a specific identity. Here, we focus on the RNA-binding properties of heterogeneous nuclear ribonucleoproteins (hnRNPs) and how these mechanisms are believed to play an essential role in RNA trafficking in polarized cells. Further, by focusing on the specific hnRNP protein CBF-A/hnRNPab and its naturally occurring isoforms, we propose a model on how hnRNP proteins are capable of regulating gene expression both spatially and temporally throughout the RNA biogenesis pathway, impacting both healthy and diseased cells.
Collapse
Affiliation(s)
- Nathalie Neriec
- Biology Department, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Biology Department, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
6
|
Sinnamon JR, Waddell CB, Nik S, Chen EI, Czaplinski K. Hnrpab regulates neural development and neuron cell survival after glutamate stimulation. RNA (NEW YORK, N.Y.) 2012; 18:704-19. [PMID: 22332140 PMCID: PMC3312558 DOI: 10.1261/rna.030742.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The molecular mechanisms that govern the timing and fate of neural stem-cell differentiation toward the distinct neural lineages of the nervous system are not well defined. The contribution of post-transcriptional regulation of gene expression to neural stem-cell maintenance and differentiation, in particular, remains inadequately characterized. The RNA-binding protein Hnrpab is highly expressed in developing nervous tissue and in neurogenic regions of the adult brain, but its role in neural development and function is unknown. We raised a mouse that lacks Hnrpab expression to define what role, if any, Hnrpab plays during mouse neural development. We performed a genome-wide quantitative analysis of protein expression within the hippocampus of newborn mice to demonstrate significantly altered gene expression in mice lacking Hnrpab relative to Hnrpab-expressing littermates. The proteins affected suggested an altered pattern of neural development and also unexpectedly indicated altered glutamate signaling. We demonstrate that Hnrpab(-/-) neural stem and progenitor cells undergo altered differentiation patterns in culture, and mature Hnrpab(-/-) neurons demonstrate increased sensitivity to glutamate-induced excitotoxicity. We also demonstrate that Hnrpab nucleocytoplasmic distribution in primary neurons is regulated by developmental stage.
Collapse
Affiliation(s)
- John R. Sinnamon
- Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794, USA
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | - Catherine B. Waddell
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sara Nik
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Emily I. Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
- Stony Brook University Proteomics Center, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kevin Czaplinski
- Center for Nervous Systems Disorders, Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
- Corresponding author.E-mail .
| |
Collapse
|
7
|
Regulation of alternative splicing within the supraspliceosome. J Struct Biol 2011; 177:152-9. [PMID: 22100336 DOI: 10.1016/j.jsb.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a fundamental feature in regulating the eukaryotic transcriptome, as ~95% of multi-exon human Pol II transcripts are subject to this process. Regulated splicing operates through the combinatorial interplay of positive and negative regulatory signals present in the pre-mRNA, which are recognized by trans-acting factors. All these RNA and protein components are assembled in a gigantic, 21 MDa, ribonucleoprotein splicing machine - the supraspliceosome. Because most alternatively spliced mRNA isoforms vary between different cell and tissue types, the ability to perform alternative splicing is expected to be an integral part of the supraspliceosome, which constitutes the splicing machine in vivo. Here we show that both the constitutively and alternatively spliced mRNAs of the endogenous human pol II transcripts: hnRNP A/B, survival of motor neuron (SMN) and ADAR2 are predominantly found in supraspliceosomes. This finding is consistent with our observations that the splicing regulators hnRNP G as well as all phosphorylated SR proteins are predominantly associated with supraspliceosomes. We further show that changes in alternative splicing of hnRNP A/B, affected by up regulation of SRSF5 (SRp40) or by treatment with C6-ceramide, occur within supraspliceosomes. These observations support the proposed role of the supraspliceosome in splicing regulation and alternative splicing.
Collapse
|
8
|
Taga Y, Miyoshi M, Okajima T, Matsuda T, Nadano D. Identification of heterogeneous nuclear ribonucleoprotein A/B as a cytoplasmic mRNA-binding protein in early involution of the mouse mammary gland. Cell Biochem Funct 2010; 28:321-8. [PMID: 20517897 DOI: 10.1002/cbf.1662] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Involution of the mammary gland is a regressive phase that occurs after lactation, and requires reprogramming of gene expression for the tissue to return to a pre-pregnant state. Although the transcriptome of the mammary gland demonstrates complex changes at the mRNA level, the molecular mechanisms governing post-transcriptional control remain obscure. In the present study, we isolated cytoplasmic mRNA-protein complexes (mRNPs) from the mouse mammary gland at the early involution stage using discontinuous sucrose density ultracentrifugation. mRNPs including untranslated mRNAs were then purified with oligo(dT) immobilized on cellulose or paramagnetic beads. Proteins in the purified complexes were subjected to one/two-dimensional gel electrophoresis followed by mass spectrometry. This identified heterogeneous nuclear ribonucleoprotein A/B (Hnrpab), along with three other heterogeneous nuclear ribonucleoproteins. Hnrpab in the mRNPs reproducibly increased within 48 h after weaning and became one of the major components. When a vector expressing Hnrpab was transfected into two different cell lines, their growth was suppressed, demonstrating that this protein has cytostatic activity. These results suggest that early involution can be used as a model for understanding the mechanism of post-transcriptional control of gene expression, responsible for modulation of cell function.
Collapse
Affiliation(s)
- Yuki Taga
- Department of Applied Molecular Biosciences, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
9
|
Takahashi J, Ishikawa A, Susa T, Kato T, Kato Y. Cloning and characterization of porcine CArG binding factor A expression in the anterior pituitary. J Reprod Dev 2008; 54:424-30. [PMID: 18762718 DOI: 10.1262/jrd.20065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CArG binding factor A (CBF-A) is a transcription factor first isolated from mouse C2 myogenic cells. Several lines of evidence indicate that CBF-A is also present in the anterior pituitary lobe and participates in the process of development and cell transformation. This study was performed to clone porcine CBF-A and to investigate its roles in the porcine anterior pituitary lobe. The predicted amino acid sequence of porcine CBF-A showed a unique insertion of five TG-repeats in the N-terminal region in comparison with those of other mammals, whereas the other regions appeared to be mostly conserved including two RNA recognition motifs in the middle region. Investigation of the expression of CBF-A gene during porcine pituitary development by RT-PCR showed an exclusive and temporary decrease in expression level shortly after birth in both sexes that was gradually but insufficiently restored. The expression of fluorescence protein-fused CBF-A in CHO cells demonstrated that CBF-A is located in the nuclei. We examined whether CBF-A regulates the expression of pituitary hormone genes in CHO cells and found that CBF-A significantly stimulated the promoter activity of growth hormone and prolactin by about 2-fold but did not stimulate the LHbeta gene. The specific DNA binding ability of porcine CBF-A was examined using serial oligonucleotides, CArG box and CC(W)0-6GG (W=A or T). As a result, porcine CBF-A was shown to have a high binding affinity for double- and single-stranded CC(W)6GG but no affinity for the known sequences of the CBF-A-target genes. Accordingly, this study demonstrated that porcine CBF-A may play a role in regulating at least two pituitary hormone genes, GH and PRL.
Collapse
Affiliation(s)
- Jun Takahashi
- Laboratory of Molecular Biology and Gene Regulation, Graduate School of Agriculture, Meiji University, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
10
|
Fan X, Messaed C, Dion P, Laganiere J, Brais B, Karpati G, Rouleau GA. HnRNP A1 and A/B interaction with PABPN1 in oculopharyngeal muscular dystrophy. Can J Neurol Sci 2003; 30:244-51. [PMID: 12945950 DOI: 10.1017/s0317167100002675] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive ptosis, dysphagia and proximal limb weakness. The autosomal dominant form of this disease is caused by short expansions of a (GCG)6 repeat to (GCG) in the PABPN1 gene. The mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminus of PABPN1. The mutated PABPN1 (mPABPN1) induces the formation of intranuclear filamentous inclusions that sequester poly(A) RNA and are associated with cell death. METHODS Human fetal brain cDNA library was used to look for PABPNI binding proteins using yeast two-hybrid screen. The protein interaction was confirmed by GST pull-down and co-immunoprecipitation assays. Oculopharyngeal muscular dystrophy cellular model and OPMD patient muscle tissue were used to check whether the PABPN1 binding proteins were involved in the formation of OPMD intranuclear inclusions. RESULTS We identify two PABPNI interacting proteins, hnRNP A1 and hnRNP A/B. When co-expressed with mPABPN1 in COS-7 cells, predominantly nuclear protein hnRNP A1 and A/B co-localize with mPABPN1 in the insoluble intranuclear aggregates. Patient studies showed that hnRNP A1 is sequestered in OPMD nuclear inclusions. CONCLUSIONS The hnRNP proteins are involved in mRNA processing and mRNA nucleocytoplasmic export, sequestering of hnRNPs in OPMD intranuclear aggregates supports the view that OPMD intranuclear inclusions are "poly(A) RNA traps", which would interfere with RNA export, and cause muscle cell death.
Collapse
Affiliation(s)
- Xueping Fan
- Center for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Fomenkov A, Huang YP, Topaloglu O, Brechman A, Osada M, Fomenkova T, Yuriditsky E, Trink B, Sidransky D, Ratovitski E. P63 alpha mutations lead to aberrant splicing of keratinocyte growth factor receptor in the Hay-Wells syndrome. J Biol Chem 2003; 278:23906-14. [PMID: 12692135 DOI: 10.1074/jbc.m300746200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p63, a p53 family member, is required for craniofacial and limb development as well as proper skin differentiation. However, p63 mutations associated with the ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (Hay-Wells syndrome) were found in the p63 carboxyl-terminal region with a sterile alpha-motif. By two-hybrid screen we identified several proteins that interact with the p63alpha carboxyl terminus and its sterile alpha-motif, including the apobec-1-binding protein-1 (ABBP1). AEC-associated mutations completely abolished the physical interaction between ABBP1 and p63alpha. Moreover the physical association of p63alpha and ABBP1 led to a specific shift of FGFR-2 alternative splicing toward the K-SAM isoform essential for epithelial differentiation. We thus propose that a p63alpha-ABBP1 complex differentially regulates FGFR-2 expression by supporting alternative splicing of the K-SAM isoform of FGFR-2. The inability of mutated p63alpha to support this splicing likely leads to the inhibition of epithelial differentiation and, in turn, accounts for the AEC phenotype.
Collapse
Affiliation(s)
- Alexey Fomenkov
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fan X, Rouleau GA. Progress in understanding the pathogenesis of oculopharyngeal muscular dystrophy. Can J Neurol Sci 2003; 30:8-14. [PMID: 12619777 DOI: 10.1017/s0317167100002365] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and proximal limb weakness. The autosomal dominant form of this disease is caused by expansions of a (GCG)6 repeat to (GCG)8-13 in the PABPN1 gene. These mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminal domain of PABPN1. Mutated PABPN1 (mPABPN1) induces the formation of muscle intranuclear inclusions that are thought to be the hallmark of this disease. In this review, we discuss: 1) OPMD genetics and PABPN I function studies; 2) diseases caused by polyalanine expansions and cellular polyalanine toxicity; 3) mPABPN1-induced intranuclear inclusion toxicity; 4) role of oligomerization of mPABPNI in the formation and toxicity of OPMD intranuclear inclusions and; 5) recruitment of subcellular components to the OPMD inclusions. We present a potential molecular mechanism for OPMD pathogenesis that accounts for these observations.
Collapse
Affiliation(s)
- Xueping Fan
- Center for Research in Neuroscience, McGill University, and the McGill University Health Center, Montreal, Quebec, Canada
| | | |
Collapse
|
13
|
Dean JLE, Sully G, Wait R, Rawlinson L, Clark AR, Saklatvala J. Identification of a novel AU-rich-element-binding protein which is related to AUF1. Biochem J 2002; 366:709-19. [PMID: 12086581 PMCID: PMC1222842 DOI: 10.1042/bj20020402] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2002] [Revised: 06/20/2002] [Accepted: 06/27/2002] [Indexed: 01/18/2023]
Abstract
The AU-rich element (ARE) is an important instability determinant for a large number of early-response-gene mRNAs. AREs also mediate the stabilization of certain pro-inflammatory mRNAs, such as tumour necrosis factor (TNF)-alpha and cyclo-oxygenase-2 (COX-2), in response to inflammatory stimuli. To understand how AREs control mRNA stability, it is necessary to identify trans-acting factors. We have purified a new ARE-binding protein and identified it as CArG box-binding factor-A (CBF-A). The amino acid sequence of CBF-A is highly similar to that of the ARE-binding protein AUF1. Recombinant CBF-A bound the COX-2 and TNF-alpha AREs, but not a non-specific control RNA. In contrast, in an electrophoretic-mobility-shift assay (EMSA) of crude RAW 264.7 macrophage-like cell extracts, an antiserum that recognizes both AUF1 and CBF-A failed to supershift complexes formed on the TNF-alpha ARE, but did supershift a complex specific for the COX-2 ARE. CBF-A exists as two isoforms, p37 and p42, that differ by a 47-amino-acid insertion close to the C-terminus. By expressing epitope-tagged isoforms of CBF-A it was shown that the p42 isoform binds the COX-2 ARE in EMSA of crude cell extracts. In a HeLa-cell tetracycline-regulated reporter system, overexpression of the p42 CBF-A isoform resulted in stabilization of a COX-2 ARE reporter mRNA. Epitope-tagged p42 CBF-A expressed in HeLa cells co-immunoprecipitated with endogenous COX-2 mRNA, but not glyceraldehyde-3-phosphate dehydrogenase mRNA, as shown by reverse-transcription PCR. The similarity between CBF-A and AUF1 suggests that CBF-A could be re-named AUF2.
Collapse
Affiliation(s)
- Jonathan L E Dean
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith, London W6 8LH, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Weisman-Shomer P, Cohen E, Fry M. Distinct domains in the CArG-box binding factor A destabilize tetraplex forms of the fragile X expanded sequence d(CGG)n. Nucleic Acids Res 2002; 30:3672-81. [PMID: 12202751 PMCID: PMC137428 DOI: 10.1093/nar/gkf506] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of hairpin or tetraplex structures of the FMR1 gene d(CGG)n sequence triggers its expansion, setting off fragile X syndrome. In searching for proteins that destabilize d(CGG)n secondary structures we purified from rat liver quadruplex telomeric DNA binding protein 42 (qTBP42) that disrupts G'2 bimolecular tetraplex d(CGG)n while paradoxically stabilizing the G'2 structure of the telomeric sequence d(TTAGGG)n. Based on peptide sequence homology of qTBP42 and mouse CArG-box binding factor A (CBF-A), we provide direct evidence that recombinant CBF-A protein is physically and immunochemically indistinguishable from qTBP42 and that it too destabilizes G'2 d(CGG)n while stabilizing G'2 d(TTAGGG)n. We inquired whether CBF-A employs the same or different domains to differentially interact with G'2 d(CGG)n and G'2 d(TTAGGG)n. Mutant CBF-A proteins that lack each or combinations of its five conserved motifs: RNP1(1), RNP1(2), RNP2(1), RNP2(2) and ATP/GTP-binding box were tested for their G'2 d(CGG)n destabilization and G'2 d(TTAGGG)n stabilization activities. We find that either RNP1(1) or the ATP/GTP motifs are necessary and sufficient for G'2 d(CGG)n destabilization whereas RNP2(1) suppresses destabilization by either one of these two motifs. Neither RNP1(1) nor the ATP/GTP motif are required for G'2 d(TTAGGG)n stabilization. Hence, CBF-A employs different domains to destabilize G'2 d(CGG)n or stabilize G'2 d(TTAGGG)n.
Collapse
Affiliation(s)
- Pnina Weisman-Shomer
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
15
|
Li J, Kinoshita T, Pandey S, Ng CKY, Gygi SP, Shimazaki KI, Assmann SM. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 2002; 418:793-7. [PMID: 12181571 DOI: 10.1038/nature00936] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases are involved in stress signalling in both plant and animal systems. The hormone abscisic acid mediates the responses of plants to stresses such as drought, salinity and cold. Abscisic-acid-activated protein kinase (AAPK -- found in guard cells, which control stomatal pores -- has been shown to regulate plasma membrane ion channels. Here we show that AAPK-interacting protein 1 (AKIP1), with sequence homology to heterogeneous nuclear RNA-binding protein A/B, is a substrate of AAPK. AAPK-dependent phosphorylation is required for the interaction of AKIP1 with messenger RNA that encodes dehydrin, a protein implicated in cell protection under stress conditions. AAPK and AKIP1 are present in the guard-cell nucleus, and in vivo treatment of such cells with abscisic acid enhances the partitioning of AKIP1 into subnuclear foci which are reminiscent of nuclear speckles. These results show that phosphorylation-regulated RNA target discrimination by heterogeneous nuclear RNA-binding proteins may be a general phenomenon in eukaryotes, and implicate a plant hormone in the regulation of protein dynamics during rapid subnuclear reorganization.
Collapse
Affiliation(s)
- Jiaxu Li
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 2001. [PMID: 11588182 DOI: 10.1523/jneurosci.21-20-08091.2001] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Musashi1 (Msi1) is a mammalian neural RNA-binding protein highly enriched in neural precursor cells that are capable of generating both neurons and glia during embryonic and postnatal CNS development. Here, we identified Musashi2 (Msi2), a novel mammalian RNA-binding protein that exhibits high sequence similarity to Msi1. The Msi2 transcript appeared to be distributed ubiquitously in a wide variety of tissues, consistent with the mRNA distribution of its Xenopus homolog, xrp1. However, the present study revealed cell type-specific and developmentally regulated expression of Msi2 in the mammalian CNS. Interestingly, Msi2 was expressed prominently in precursor cells in the ventricular zone and subventricular zone with the same pattern as Msi1 throughout CNS development. In the postnatal and adult CNS, this concurrent expression of Msi2 and Msi1 was seen in cells of the astrocyte lineage, including ependymal cells, a possible source for postnatal CNS stem cells. During neurogenesis, the expression of both Msi2 and Msi1 was lost in most postmitotic neurons, whereas Msi2 expression persisted in a subset of neuronal lineage cells, such as parvalbumin-containing GABA neurons in the neocortex and neurons in several nuclei of the basal ganglia. Msi2 may have a unique role that is required for the generation and/or maintenance of specific neuronal lineages. Furthermore, in vitro studies showed that Msi2 and Msi1 have similar RNA-binding specificity. These two RNA-binding proteins may exert common functions in neural precursor cells by regulating gene expression at the post-transcriptional level.
Collapse
|
17
|
Inoue A, Omori A, Ichinose S, Takahashi KP, Kinoshita Y, Mita S. S1 proteins C2 and D2 are novel hnRNPs similar to the transcriptional repressor, CArG box motif-binding factor A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3654-63. [PMID: 11432731 DOI: 10.1046/j.1432-1327.2001.02267.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
S1 proteins A-D are liberated from thoroughly washed nuclei by mild digestion with DNase I or RNase A, and extracted selectively at pH 4.9 from the reaction supernatants. Here, we characterized the S1 proteins, focusing on protein D2, the most abundant S1 protein in the rat liver, and on protein C2 as well. Using a specific antibody, McAb 351, they were shown to occur in the extranucleolar nucleoplasm, and to be extracted partly in the nuclear soluble fraction. We demonstrate that the S1 proteins in this fraction exist constituting heterogeneous nuclear ribonucleoproteins (hnRNPs), through direct binding to hnRNAs, as revealed by centrifugation on density gradients, immunoprecipitation, and UV cross-linking. In hnRNPs, protein D2 occurred at nuclease-hypersensitive sites and C2 in the structures that gave rise to 40 S RNP particles. By microsequencing, protein D2 was identified with a known protein, CArG box motif-binding factor A (CBF-A), which has been characterized as a transcriptional repressor, and C2 as its isoform protein. In fact, CBF-A expressed from its cDNA was indistinguishable from protein D2 in molecular size and immunoreactivity to McAb 351. Thus, the present results demonstrate that S1 proteins C2 and D2 are novel hnRNP proteins, and suggest that the proteins C2 and D2 act in both transcriptional and post-transcriptional processes in gene expression.
Collapse
Affiliation(s)
- A Inoue
- Department of Biochemistry, Osaka City University Medical School, Abenoku, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Lau PP, Chang BH, Chan L. Two-Hybrid Cloning Identifies an RNA-Binding Protein, GRY-RBP, as a Component of apobec-1 Editosome. Biochem Biophys Res Commun 2001; 282:977-83. [PMID: 11352648 DOI: 10.1006/bbrc.2001.4679] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ApoB mRNA editing is mediated by an editosome complex with apobec-1 as its catalytic component. By yeast two-hybrid cloning using apobec-1 as bait we identified a 69.6-kDa RNA binding protein, GRY-RBP, that contains 3 RNA-recognition motifs (RRMs) as a novel apobec-1 associating protein. GRY-RBP may be an alternatively spliced species of NASP1, a protein of known function. GRY-RBP was shown to bind to apobec-1, the catalytic component of apoB mRNA editosome, in vivo and in vitro. Immunodepletion using a monospecific rabbit antibody abolished editing in apobec-1 expressing HepG2 S-100 extracts. GRY-RBD interacted with apobec-1 through its C-terminus. It contains three RRM (RNA recognition motifs) domains that are homologous to those found in human ACF (apobec-1 complementation factor). Phylogeny analysis of the RRM domain-containing proteins indicates that GRY-RBP clusters with hnRNP-R, ACF, and ABBP-1 (another apobec-1 binding protein). In addition to its involvement with apobec-1 editosome, the suggested cellular functions of GRY-RBD and its structural homologues include RNA transport and RNA secondary structure stabilization.
Collapse
Affiliation(s)
- P P Lau
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
19
|
Yabuki T, Miyagi S, Ueda H, Saitoh Y, Tsutsumi K. A novel growth-related nuclear protein binds and inhibits rat aldolase B gene promoter. Gene 2001; 264:123-9. [PMID: 11245986 DOI: 10.1016/s0378-1119(00)00592-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The promoter of the rat aldolase B (AldB) gene that confers liver-specific transcription has an additional role. It functions in vivo as an origin region of DNA replication in the cells in which the gene is repressed (Zhao, Y., Tsutsumi, R., Yamaki, M., Nagatsuka, N., Ejiri, S., Tsutsumi, K., 1994. Initiation zone of DNA replication at the rat aldolase B locus encompasses transcription promoter region. Nucleic Acids Res. 22, 5385-5390). This promoter/origin region has multiple protein-binding sites and, thus, binding of a particular set of protein factors in AldB-expressing or non-expressing cells seems to correlate with functional switch of this promoter/origin region. In the present study, we characterized two closely related proteins, termed AlF-C1 and AlF-C2, which are assumed to be involved in repression of the AldB gene. These two proteins share an identical amino acid sequence except for a 47-residue-insertion in AlF-C1, and are members of a gene family including heterogeneous nuclear ribonucleoprotein (hnRNP) and CCAAT-binding factor subunit A (CBF-A) genes. Bacterially expressed AlF-C1 can bind sequence-specifically to the AldB gene promoter, whereas AlF-C2 can only weakly. Transfection experiments using mammalian expression vectors showed that AlF-C1 down-regulates the AldB gene promoter in rat hepatoma cells, while AlF-C2 had no or little effect. Expressions of mRNAs encoding these two proteins are enriched in fetal livers and in regenerating livers. These results implied that AlF-C1 and/or C2 is involved in growth-regulated repression of the AldB gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bacteria/genetics
- Binding, Competitive
- Blotting, Northern
- Cell Cycle Proteins
- Cloning, Molecular
- DNA/genetics
- DNA/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fructose-Bisphosphate Aldolase/genetics
- Fructose-Bisphosphate Aldolase/metabolism
- Gene Expression Regulation
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repressor Proteins
- Ribonucleoproteins
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Yabuki
- Cryobiosystem Research Center, Faculty of Agriculture, Iwate University, Ueda, Morioka, 020-8550, Iwate, Japan
| | | | | | | | | |
Collapse
|
20
|
Marsich E, Bandiera A, Tell G, Scaloni A, Manzini G. A chicken hnRNP of the A/B family recognizes the single-stranded d(CCCTAA)(n) telomeric repeated motif. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:139-48. [PMID: 11121114 DOI: 10.1046/j.1432-1327.2001.01860.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
With the aim of identifying proteins able to interact with the C-rich single-stranded telomeric repeated motif, three nuclear polypeptides, CBNP alpha, CBNP beta and CBNP gamma, with apparent mobilities in SDS/PAGE of 38, 44 and 55 kDa, respectively, were isolated from mature chicken erythrocytes by affinity chromatography. In situ UV-cross-linking experiments demonstrated that CBNP alpha and CBNP gamma interact directly with the telomeric d(CCCTAA)n repeat, whereas CBNP beta does not. Moreover, they provided information on the protein components responsible for each electrophoretic mobility-shift assay signal. Ion spray and matrix-assisted laser desorption ionization MS allowed us to identify CBNP alpha with single-stranded D-box-binding factor (ssDBF), a protein previously characterized as a transcription factor belonging to the A/B family of heterogeneous nuclear ribonucleoproteins, and CBNP beta with an isoform of this protein containing an extra exon. Similarly, CBNP gamma was shown to be probably the chicken homolog of hnRNP K, a ribonuclear protein able to bind to polyC oligonucleotides. The relation of CBNP alpha (i.e. ssDBF), CBNP beta and CBNP gamma to a number of similar proteins in the protein and nucleotide sequence databank is discussed. A rather diversified spectrum of functional roles has been assigned to some of these proteins despite the strong sequence homology among them.
Collapse
Affiliation(s)
- E Marsich
- Department of Biochemistry, Biophysics, and Macromolecular Chemistry, University of Trieste, Italy
| | | | | | | | | |
Collapse
|
21
|
Plomaritoglou A, Choli-Papadopoulou T, Guialis A. Molecular characterization of a murine, major A/B type hnRNP protein: mBx. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:54-62. [PMID: 10786617 DOI: 10.1016/s0167-4781(99)00054-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously identified a discrete hnRNP polypeptide of the A/B type, named mBx, as an abundant protein species in murine cells. The molecular characterization of this protein is now accomplished. From all evidence provided, mBx polypeptide represents a new gene product, distinct from the known members of the A/B family A1 and A2/B1. It is, instead, mostly related to a still hypothetical human protein of A/B type, as well as to the Xenopus hnRNPA3 protein species.
Collapse
Affiliation(s)
- A Plomaritoglou
- Laboratory of Molecular Biology, Institute of Biological Research and Biotechnology, The National Hellenic Research Foundation, Athens, Greece
| | | | | |
Collapse
|
22
|
Weisman-Shomer P, Naot Y, Fry M. Tetrahelical forms of the fragile X syndrome expanded sequence d(CGG)(n) are destabilized by two heterogeneous nuclear ribonucleoprotein-related telomeric DNA-binding proteins. J Biol Chem 2000; 275:2231-8. [PMID: 10636930 DOI: 10.1074/jbc.275.3.2231] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Formations of hairpin and tetrahelical structures by the trinucleotide repeat sequence d(CGG)(n) might contribute to its expansion in fragile X syndrome. Here we show that tetraplex structures of d(CGG)(n) are destabilized by two mammalian heterogeneous nuclear ribonucleoprotein-related tetraplex telomeric DNA-binding and -stabilizing proteins, quadruplex telomeric DNA-binding protein 42 (qTBP42) (Sarig, G., Weisman-Shomer, P., Erlitzki, R., and Fry, M. (1997) J. Biol. Chem. 272, 4474-4482) and unimolecular quadruplex telomeric DNA-binding protein 25 (uqTBP25) (Erlitzki, R., and Fry, M. (1997) J. Biol. Chem. 272, 15881-15890). Blunt-ended and 3'-tailed or 3'- and 5'-tailed bimolecular tetraplex structures of d(CGG)(n) and guanine-sparse 20-/46-mer partial DNA duplex were progressively destabilized by increasing amounts of qTBP42 or uqTBP25 in time-dependent and ATP- or Mg(2+)-independent reactions. By contrast, tetraplex structures of telomeric and IgG sequences or guanine-rich double-stranded DNA resisted destabilization by qTBP42 or uqTBP25. Increased stability of tetraplex d(CGG)(n) in the presence of K(+) or Na(+) ions or at lowered reaction temperature diminished the destabilizing activity of uqTBP25. The contrasting stabilization of tetraplex telomeric DNA and destabilization of tetraplex d(CGG)(n) by qTBP42 and uqTBP25 suggested that sequence or structural differences between these tetraplexes might serve as cues for the differential stabilizing/destabilizing activities.
Collapse
Affiliation(s)
- P Weisman-Shomer
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P. O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
23
|
Rushlow WJ, Rajakumar N, Flumerfelt BA, Naus CC. Characterization of CArG-binding protein A initially identified by differential display. Neuroscience 1999; 94:637-49. [PMID: 10579224 DOI: 10.1016/s0306-4522(99)00342-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While investigating differences in the pattern of gene expression in functionally distinct areas of the rat caudate-putamen employing differential display, we identified a gene that is highly enriched in tissue adjacent to the lateral ventricle. To characterize the gene, a complementary DNA containing the complete coding sequence was obtained and sequenced. In addition, radiolabelled DNA and riboprobes were generated to examine the expression levels and anatomical distribution of the identified gene in the brain. The sequencing data suggests that the identified gene is a member of the heterogeneous nuclear ribonucleoprotein family and likely represents the rat homolog of CArG-binding protein A initially isolated from mouse C2 myogenic cells. CArG-binding protein A is widely distributed and moderately expressed in the rat brain and present within both neurons and astrocytes. Since the CArG box motif forms the core of the serum response element and the serum response element is involved in immediate early gene regulation, the expression level of CArG-binding protein A was examined following treatment of PC12 cells with nerve growth factor and correlated with changes in c-fos and zif268 expression. The results show that CArG-binding protein A is up-regulated following nerve growth factor treatment and that the up-regulation of CArG-binding protein A can be correlated with the down-regulation of c-fos and zif268. The results of the current study leads us to suggest that CArG-binding protein A may be involved in brain development and the regulation of the serum response element.
Collapse
Affiliation(s)
- W J Rushlow
- Department of Anatomy and Cell Biology, The University of Western Ontario and The London Health Sciences Centre, Canada.
| | | | | | | |
Collapse
|
24
|
Kamei D, Tsuchiya N, Yamazaki M, Meguro H, Yamada M. Two forms of expression and genomic structure of the human heterogeneous nuclear ribonucleoprotein D-like JKTBP gene (HNRPDL). Gene X 1999; 228:13-22. [PMID: 10072754 DOI: 10.1016/s0378-1119(99)00020-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The human DNA- and RNA-binding protein JKTBP is a member of a 2xRNA-binding domain (RBD)-glycine family of heterogeneous nuclear ribonucleoproteins that are involved in mRNA biogenesis. Northern and Western blottings revealed that mRNAs of approx. 1.4 and 2.8kb and proteins of approx. 38 and 53kDa were present in HL-60 cells and various tissues. Cloning and characterization of a previously unknown cDNA for the 2.8kb mRNA indicated that the cDNA encodes a 420 amino acid JKTBP polypeptide. Isolation and characterization of the genomic DNA showed that the gene (HNRPDL) had nine exons and had two separate transcription start sites for the two transcripts. The features of the 5' flanking sequences of these sites showed that the gene is a housekeeping gene. Fluorescence in situ hybridization mapped the gene to 4q13-q21. From its gene organization, the JKTBP seems to be most closely related to hnRNP D/AUF1.
Collapse
Affiliation(s)
- D Kamei
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | |
Collapse
|
25
|
Sarig G, Weisman-Shomer P, Fry M. Telomeric and tetraplex DNA binding properties of qTBP42: a homologue of the CArG box binding protein CBF-A. Biochem Biophys Res Commun 1997; 237:617-23. [PMID: 9299414 DOI: 10.1006/bbrc.1997.7198] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
qTBP42, a rat liver binding protein of telomeric and of guanine-rich single stranded or tetraplex DNA (Sarig, G., Weisman-Shomer, P., Erlitzki, R., and Fry, M. (1997) J. Biol. Chem. 272, 4474-4482), is identified here by its partial amino acid sequence as a homologue of the mouse muscle cell CArG box binding protein CBF-A. Complexes of qTBP42 with single stranded telomeric DNA or with double or single stranded CArG DNA are formed non-cooperatively and have a similar nanomolar-range dissociation constants, Kd. Double stranded telomeric or Plasmid DNA or poly d[(I-C)] are bound by qTBP42 less tightly. Analysis of the binding of tetramolecular quadruplex structures of the IgG switch sequence indicates that one molecule of qTBP42 associates with a single cluster of guanine quartets. The tight binding by qTBP42 of CArG box DNA, telomeric DNA and quadruplex DNA suggests that this protein may bind multiple targets in cellular DNA.
Collapse
Affiliation(s)
- G Sarig
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel
| | | | | |
Collapse
|
26
|
Sarig G, Weisman-Shomer P, Erlitzki R, Fry M. Purification and characterization of qTBP42, a new single-stranded and quadruplex telomeric DNA-binding protein from rat hepatocytes. J Biol Chem 1997; 272:4474-82. [PMID: 9020172 DOI: 10.1074/jbc.272.7.4474] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Telomeres of vertebrate chromosomes terminate with a short 5'-d(TTAGGG)-3' single-stranded overhang that can form in vitro tetrahelical structures. Here we describe a new protein from rat hepatocyte nuclei designated quadruplex telomere-binding protein 42 (qTBP42) that tightly binds 5'-d(TTAGGG)n-3' and 5'-d(CCCTAA)n-3' single-stranded and tetraplex forms of 5'd(TTAGGG)n-3'. The thermostable qTBP42 was isolated from boiled nuclear extracts and purified to near homogeneity by successive steps of column chromatography on DEAE-cellulose, phosphocellulose, and phenyl-Sepharose. A subunit molecular size of 42.0 +/- 2.0 kDa was determined for qTBP42 by Southwestern blotting and SDS-polyacrylamide gel electrophoresis of the protein and its UV cross-linked complex with labeled telomeric DNA. A native size of 53. 5 +/- 0.9 kDa, estimated by Superdex copyright 200 gel filtration, suggests that qTBP42 is a monomeric protein. Sequences of five tryptic peptides of qTBP42 contained motifs shared by a mammalian CArG box-binding protein, hnRNP A/B, hnRNP C, and a human single-stranded telomeric DNA-binding protein. Complexes of qTBP42 with each complementary strand of telomeric DNA and with quadruplex forms of the guanine-rich strand had 3.7-14.6 nM dissociation constants, Kd, whereas complexes with double-stranded telomeric DNA had up to 100-fold higher Kd values. By associating with tetraplex and single-stranded telomeric DNA, qTBP42 increased their heat stability and resistance to digestion by micrococcal nuclease.
Collapse
Affiliation(s)
- G Sarig
- Unit of Biochemistry, the Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, P.O. Box 9649, Haifa 31096 Israel
| | | | | | | |
Collapse
|
27
|
Lau PP, Zhu HJ, Nakamuta M, Chan L. Cloning of an Apobec-1-binding protein that also interacts with apolipoprotein B mRNA and evidence for its involvement in RNA editing. J Biol Chem 1997; 272:1452-5. [PMID: 8999813 DOI: 10.1074/jbc.272.3.1452] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Apolipoprotein (apo)B mRNA editing is mediated by a multiprotein editosome complex. Apobec-1 is the catalytic component of this complex, but other proteins involved in editing have not been identified. We used the yeast two-hybrid system to identify an apobec-1-interacting protein, ABBP-1. ABBP-1 contains 331 amino acid residues and is identical to a previously reported human type A/B hnRNP except for a 47-residue insertion at its C-terminal region. It contains typical RNP motifs at its N-terminal half and glycine-rich motifs in the C-terminal region. Northern blot analysis indicates that ABBP-1 mRNA is distributed in multiple human tissues. By deletion analysis, we mapped the apobec-1-binding region to the glycine-rich domain. ABBP-1 also binds to apoB mRNA transcripts around the editing site and can be UV-cross-linked to them in vitro. Immnodepletion of ABBP-1 from an active apoB mRNA editing tissue extract inhibits its editing activity. Down-regulation of ABBP-1 in an apobec-1-expressing HepG2 cell line by transfection with an antisense ABBP-1 cDNA construct leads to inhibition of endogenous apoB mRNA editing. We conclude that ABBP-1 is an apobec-1-interacting protein that may play an important role in apoB mRNA editing.
Collapse
Affiliation(s)
- P P Lau
- Departments of Cell Biology and Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
28
|
Dangli A, Plomaritoglou A, Boutou E, Vassiliadou N, Moutsopoulos HM, Guialis A. Recognition of subsets of the mammalian A/B-type core heterogeneous nuclear ribonucleoprotein polypeptides by novel autoantibodies. Biochem J 1996; 320 ( Pt 3):761-7. [PMID: 9003360 PMCID: PMC1217995 DOI: 10.1042/bj3200761] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structurally related A/B-type core heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptides of 34-39 kDa (A1, A2, B1 and B2) belong to a family of RNA-binding proteins that are major components of 40 S hnRNP complexes. By two-dimensional gel electrophoresis and peptide mapping analysis we compared each member of the A/B-type core proteins in the human and rat liver cells. This comparison revealed the unique presence in rat cells of major protein species, referred to as mBx polypeptides, that appeared as three charge isoforms at a position corresponding to the minor HeLa B1b protein spot. In addition, clear differences in the ratios of the A1 polypeptide to the A1b isoform were observed. The detection, in sera of patients with rheumatic autoimmune diseases, of two novel autoantibody specificities, one recognizing solely B2 protein and the second both the B2 and mBx polypeptides, helped to identify mBx proteins as new A/B-type hnRNP components, immunologically related to B2 protein. A common immunoreactive V8 protease peptide of approx. 17 kDa has been identified in B2 and mBx hnRNP polypeptides. mBx protein species are identified in cells of murine origin, and have a ubiquitous tissue distribution and developmental appearance.
Collapse
Affiliation(s)
- A Dangli
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | |
Collapse
|
29
|
Kajita Y, Nakayama J, Aizawa M, Ishikawa F. The UUAG-specific RNA binding protein, heterogeneous nuclear ribonucleoprotein D0. Common modular structure and binding properties of the 2xRBD-Gly family. J Biol Chem 1995; 270:22167-75. [PMID: 7673195 DOI: 10.1074/jbc.270.38.22167] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human cDNA clones encoding the UUAG-binding heterogeneous nuclear ribonucleoprotein (hnRNP) D0 protein have been isolated and expressed. The protein has two RNA-binding domains (RBDs) in the middle part of the protein and an RGG box, a region rich in glycine and arginine residues, in the C-terminal part ("2xRBD-Gly" structure). The hnRNP A1, A2/B1, and D0 proteins, all possess common features of the 2xRBD-Gly structure and binding specificity toward RNA. Together, they form a subfamily of RBD class RNA binding proteins (the 2xRBD-Gly family). One of the structural characteristics shared by these proteins is the presence of several isoforms presumably resulting from alternative splicing. Filter binding assays, using the recombinant hnRNP D0 proteins that have one of the two RBDs, indicated that one RBD specifically binds to the UUAG sequence. However, two isoforms with or without a 19-amino acid insertion at the N-terminal RBD showed different preference toward mutant RNA substrates. The 19-amino acid insertion is located in the N-terminal end of the first RBD. This result establishes the participation of the N terminus of RBD in determining the sequence specificity of binding. A similar insertion was also reported with the hnRNP A2/B1 proteins. Thus, it might be possible that this type of insertion with the 2xRBD-Gly type RNA binding proteins plays a role in "fine tuning" the specificity of RNA binding. RBD is supposed to bind with RNA in general and sequence-specific manners. These two discernible binding modes are proposed to be performed by different regions of the RBD. A structural model of these two binding sites is presented.
Collapse
Affiliation(s)
- Y Kajita
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
30
|
Smidt MP, Russchen B, Snippe L, Wijnholds J, Ab G. Cloning and characterisation of a nuclear, site specific ssDNA binding protein. Nucleic Acids Res 1995; 23:2389-95. [PMID: 7630716 PMCID: PMC307042 DOI: 10.1093/nar/23.13.2389] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Estradiol inducible, liver-specific expression of the apoVLDL II gene is mediated through the estrogen receptor and a variety of other DNA-binding proteins. In the present study we report the cloning and characterisation of a single-strand DNA binding protein that interacts with the lower strand of a complex regulatory site, which includes the major estrogen responsive element and a site that resembles the rat albumin site D (apoVLDL II site D). Based on its binding specificity determined with electro-mobility shift assays, the protein is named single-strand D-box binding factor (ssDBF). Analysis of the deduced 302 amino acid sequence revealed that the protein belongs to the heteronuclear ribonucleoprotein A/B family (hnRNP A/B) and resembles other known eukaryotic single-strand DNA binding proteins. Transient transfection experiments in a chicken liver cell-line showed that the protein represses estrogen-induced transcription. A protein with similar binding characteristics is present in liver nuclear extract. The relevance of the occurrence of this protein to the expression of the apoVLDL II gene is discussed.
Collapse
Affiliation(s)
- M P Smidt
- Laboratory of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Ou SH, Wu F, Harrich D, García-Martínez LF, Gaynor RB. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 1995; 69:3584-96. [PMID: 7745706 PMCID: PMC189073 DOI: 10.1128/jvi.69.6.3584-3596.1995] [Citation(s) in RCA: 572] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) gene expression is modulated by both viral and cellular factors. A regulatory element in the HIV-1 long terminal repeat known as TAR, which extends from nucleotides -18 to +80, is critical for the activation of gene expression by the transactivator protein, Tat. RNA transcribed from TAR forms a stable stem-loop structure which serves as the binding site for both Tat and cellular factors. Although TAR RNA is critical for Tat activation, the role that TAR DNA plays in regulating HIV-1 gene expression is not clear. Several studies have demonstrated that TAR DNA can bind cellular proteins, such as UBP-1/LBP-1, which repress HIV-1 gene expression and other factors which are involved in the generation of short, nonprocessive transcripts. In an attempt to characterize additional cellular factors that bind to TAR DNA, a lambda gt11 expression cloning strategy involving the use of a portion of TAR DNA extending from -18 to +28 to probe a HeLa cDNA library was used. We identified a cDNA, designated TAR DNA-binding protein (TDP-43), which encodes a cellular factor of 43 kDa that binds specifically to pyrimidine-rich motifs in TAR. Antibody to TDP-43 was used in gel retardation assays to demonstrate that endogenous TDP-43, present in HeLa nuclear extract, also bound to TAR DNA. Although TDP-43 bound strongly to double-stranded TAR DNA via its ribonucleoprotein protein-binding motifs, it did not bind to TAR RNA extending from +1 to +80. To determine the function of TDP-43 in regulating HIV-1 gene expression, in vitro transcription analysis was performed. TDP-43 repressed in vitro transcription from the HIV-1 long terminal repeat in both the presence and absence of Tat, but it did not repress transcription from other promoters such as the adenovirus major late promoter. In addition, transfection of a vector which expressed TDP-43 resulted in the repression of gene expression from an HIV-1 provirus. These results indicate that TDP-43 is capable of modulating both in vitro and in vivo HIV-1 gene expression by either altering or blocking the assembly of transcription complexes that are capable of responding to Tat.
Collapse
Affiliation(s)
- S H Ou
- Department of Medicine, University of Texas Southwestern Medical Center at Dallas 75235, USA
| | | | | | | | | |
Collapse
|
32
|
Cvekl A, McDermott JB, Piatigorsky J. cDNA encoding a chicken protein (CRP1) with homology to hnRNP type A/B. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:290-2. [PMID: 7711075 DOI: 10.1016/0167-4781(95)00021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sequence of a cDNA encoding a putative chicken RNA-binding protein is reported. The C-terminal portion of the predicted protein is similar to a family of nucleic acid binding proteins that includes murine CArG box-binding factor CBF-A, human hnRNP A/B, hepatitis B enhancer-binding protein E2BP, and AU-rich RNA-binding protein AUF1. These proteins all have two consecutive RNA recognition motifs. However, the N-terminal 72 amino acids of this deduced chicken protein show no relation to the N-terminal sequences of the other proteins. We call this protein chicken ribonucleoprotein, CRP1.
Collapse
Affiliation(s)
- A Cvekl
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-2730, USA
| | | | | |
Collapse
|
33
|
Smidt MP, Wijnholds J, Snippe L, van Keulen G, Ab G. Binding of a bZip protein to the estrogen-inducible apoVLDL II promoter. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:115-20. [PMID: 8086448 DOI: 10.1016/0167-4781(94)90253-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activation of the very low density apolipoprotein II (apoVLDL II) gene in chicken liver by estrogen results in the binding of a variety of nuclear proteins including members of the steroid receptor superfamily and the bZip superfamily to the immediate 5' flanking region. In the present study, we have identified a bZip protein from chicken liver as one of the potential binding activities. Its cognate cDNA was cloned from an expression library using a recognition site DNA probe corresponding to part of the apoVLDL II promoter region. By footprinting and gel shift analysis with the recombinant protein from a prokaryotic expression system we have established that the protein binds to at least three different sites in the apoVLDLII promoter region. One of these sites partially overlaps with the major estrogen response element of the gene. Despite the proximity of their binding sites, the estrogen receptor and the bZip protein can bind simultaneously to the very region. Possible implications of this intimate arrangement of binding sites for the activation of the apoVLDL II promoter are discussed.
Collapse
Affiliation(s)
- M P Smidt
- Laboratory of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Nakamura M, Okano H, Blendy JA, Montell C. Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 1994; 13:67-81. [PMID: 8043282 DOI: 10.1016/0896-6273(94)90460-x] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A family of neural RNA-binding proteins has recently been described in both vertebrates and invertebrates. We have identified a new member of this family, the Drosophila musashi (msi) locus, which is required for development of adult external sensory organs (sensilla). In contrast with wild-type sensilla, which contain two outer support cells, the msi mutation typically results in the appearance of extra outer support cells. The msi putative RNA-binding protein is localized to the nucleus and appears to be expressed in all cells in each sensillum and predominantly in neurons during embryogenesis. We propose that the msi protein regulates sensillum development by controlling the expression of target genes at the posttranscriptional level.
Collapse
Affiliation(s)
- M Nakamura
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
35
|
Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol 1994. [PMID: 8246982 DOI: 10.1128/mcb.13.12.7652] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The degradation of some proto-oncogene and lymphokine mRNAs is controlled in part by an AU-rich element (ARE) in the 3' untranslated region. It was shown previously (G. Brewer, Mol. Cell. Biol. 11:2460-2466, 1991) that two polypeptides (37 and 40 kDa) copurified with fractions of a 130,000 x g postribosomal supernatant (S130) from K562 cells that selectively accelerated degradation of c-myc mRNA in a cell-free decay system. These polypeptides bound specifically to the c-myc and granulocyte-macrophage colony-stimulating factor 3' UTRs, suggesting they are in part responsible for selective mRNA degradation. In the present work, we have purified the RNA-binding component of this mRNA degradation activity, which we refer to as AUF1. Using antisera specific for these polypeptides, we demonstrate that the 37- and 40-kDa polypeptides are immunologically cross-reactive and that both polypeptides are phosphorylated and can be found in a complex(s) with other polypeptides. Immunologically related polypeptides are found in both the nucleus and the cytoplasm. The antibodies were also used to clone a cDNA for the 37-kDa polypeptide. This cDNA contains an open reading frame predicted to produce a protein with several features, including two RNA recognition motifs and domains that potentially mediate protein-protein interactions. These results provide further support for a role of this protein in mediating ARE-directed mRNA degradation.
Collapse
|
36
|
Zhang W, Wagner BJ, Ehrenman K, Schaefer AW, DeMaria CT, Crater D, DeHaven K, Long L, Brewer G. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol 1993; 13:7652-65. [PMID: 8246982 PMCID: PMC364837 DOI: 10.1128/mcb.13.12.7652-7665.1993] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The degradation of some proto-oncogene and lymphokine mRNAs is controlled in part by an AU-rich element (ARE) in the 3' untranslated region. It was shown previously (G. Brewer, Mol. Cell. Biol. 11:2460-2466, 1991) that two polypeptides (37 and 40 kDa) copurified with fractions of a 130,000 x g postribosomal supernatant (S130) from K562 cells that selectively accelerated degradation of c-myc mRNA in a cell-free decay system. These polypeptides bound specifically to the c-myc and granulocyte-macrophage colony-stimulating factor 3' UTRs, suggesting they are in part responsible for selective mRNA degradation. In the present work, we have purified the RNA-binding component of this mRNA degradation activity, which we refer to as AUF1. Using antisera specific for these polypeptides, we demonstrate that the 37- and 40-kDa polypeptides are immunologically cross-reactive and that both polypeptides are phosphorylated and can be found in a complex(s) with other polypeptides. Immunologically related polypeptides are found in both the nucleus and the cytoplasm. The antibodies were also used to clone a cDNA for the 37-kDa polypeptide. This cDNA contains an open reading frame predicted to produce a protein with several features, including two RNA recognition motifs and domains that potentially mediate protein-protein interactions. These results provide further support for a role of this protein in mediating ARE-directed mRNA degradation.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology and Immunology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157-1064
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nuclear proteins that bind the pre-mRNA 3' splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol Cell Biol 1993. [PMID: 8321232 DOI: 10.1128/mcb.13.7.4301] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HeLa cell nuclear proteins that bind to single-stranded d(TTAGGG)n, the human telomeric DNA repeat, were identified and purified by a gel retardation assay. Immunological data and peptide sequencing experiments indicated that the purified proteins were identical or closely related to the heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2-B1, D, and E and to nucleolin. These proteins bound to RNA oligonucleotides having r(UUAGGG) repeats more tightly than to DNA of the same sequence. The binding was sequence specific, as point mutation of any of the first 4 bases [r(UUAG)] abolished it. The fraction containing D and E hnRNPs was shown to bind specifically to a synthetic oligoribonucleotide having the 3' splice site sequence of the human beta-globin intervening sequence 1, which includes the sequence UUAGG. Proteins in this fraction were further identified by two-dimensional gel electrophoresis as D01, D02, D1*, and E0; intriguingly, these members of the hnRNP D and E groups are nuclear proteins that are not stably associated with hnRNP complexes. These studies establish the binding specificities of these D and E hnRNPs. Furthermore, they suggest the possibility that these hnRNPs could perhaps bind to chromosome telomeres, in addition to having a role in pre-mRNA metabolism.
Collapse
|
38
|
Ishikawa F, Matunis MJ, Dreyfuss G, Cech TR. Nuclear proteins that bind the pre-mRNA 3' splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol Cell Biol 1993; 13:4301-10. [PMID: 8321232 PMCID: PMC359985 DOI: 10.1128/mcb.13.7.4301-4310.1993] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
HeLa cell nuclear proteins that bind to single-stranded d(TTAGGG)n, the human telomeric DNA repeat, were identified and purified by a gel retardation assay. Immunological data and peptide sequencing experiments indicated that the purified proteins were identical or closely related to the heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2-B1, D, and E and to nucleolin. These proteins bound to RNA oligonucleotides having r(UUAGGG) repeats more tightly than to DNA of the same sequence. The binding was sequence specific, as point mutation of any of the first 4 bases [r(UUAG)] abolished it. The fraction containing D and E hnRNPs was shown to bind specifically to a synthetic oligoribonucleotide having the 3' splice site sequence of the human beta-globin intervening sequence 1, which includes the sequence UUAGG. Proteins in this fraction were further identified by two-dimensional gel electrophoresis as D01, D02, D1*, and E0; intriguingly, these members of the hnRNP D and E groups are nuclear proteins that are not stably associated with hnRNP complexes. These studies establish the binding specificities of these D and E hnRNPs. Furthermore, they suggest the possibility that these hnRNPs could perhaps bind to chromosome telomeres, in addition to having a role in pre-mRNA metabolism.
Collapse
Affiliation(s)
- F Ishikawa
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | | | | | |
Collapse
|
39
|
Kamada S, Miwa T. A protein binding to CArG box motifs and to single-stranded DNA functions as a transcriptional repressor. Gene 1992; 119:229-36. [PMID: 1398104 DOI: 10.1016/0378-1119(92)90276-u] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A CArG box motif [CC(A+T-rich)6GG] is one of the DNA elements required for muscle-specific gene transcription. Nuclear factors in mouse C2 myogenic cells strongly bind to the CArG box in the first intron of the gene (Sm alpha-A) encoding human smooth muscle alpha-actin. To clone cDNAs of the CArG box-binding factor (CBF), lambda gt11 cDNA expression libraries from C2 cells were screened for in situ DNA binding specific for this CArG box sequence. The 1.6-kb cDNA (CBF-A) encoding 285 amino acids (aa) was obtained, and a beta-galactosidase fusion protein, bacterially produced from the cDNA, bound to DNA fragments containing several CArG boxes. When the expression level of CBF-A in C2 cells increased by transfection of CBF-A expression plasmids, Sm alpha-A transcription was repressed. The deduced aa sequence of CBF-A is similar to some single-stranded (ss) nucleic acid-binding proteins. The fusion protein could bind to ssDNA, whereas CBF in C2 cell nuclear extracts could not. From these results, CBF-A is a novel CArG box-, ssDNA- and RNA-binding protein, as well as a repressive transcriptional factor.
Collapse
Affiliation(s)
- S Kamada
- Department of Oncogene Research, Osaka University, Japan
| | | |
Collapse
|