1
|
Bosch M, Cayla X, Hoof C, Hemmings BA, Ozon R, Merlevede W, Goris J. The PR55 and PR65 Subunits of Protein Phosphatase 2A from Xenopus laevis. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.1037g.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Becchetti A, Malik B, Yue G, Duchatelle P, Al-Khalili O, Kleyman TR, Eaton DC. Phosphatase inhibitors increase the open probability of ENaC in A6 cells. Am J Physiol Renal Physiol 2002; 283:F1030-45. [PMID: 12372779 DOI: 10.1152/ajprenal.00011.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the cellular phosphatase inhibitors okadaic acid (OKA), calyculin A, and microcystin on the epithelial sodium channel (ENaC) in A6 renal cells. OKA increased the amiloride-sensitive current after approximately 30 min with maximal stimulation at 1-2 h. Fluctuation analysis of cell-attached patches containing a large number of ENaC yielded power spectra with corner frequencies in untreated cells almost two times as large as in cells pretreated for 30 min with OKA, implying an increase in single channel open probability (P(o)) that doubled after OKA. Single channel analysis showed that, in cells pretreated with OKA, P(o) and mean open time approximately doubled. Two other phosphatase inhibitors, calyculin A and microcystin, had similar effects on P(o) and mean open time. An analog of OKA, okadaone, that does not inhibit phosphatases had no effect. Pretreatment with 10 nM OKA, which blocks protein phosphatase 2A (PP2A) but not PP1 in mammalian cells, had no effect even though both phosphatases are present in A6 cells. Several proteins were differentially phosphorylated after OKA, but ENaC subunit phosphorylation did not increase. We conclude that, in A6 cells, there is an OKA-sensitive phosphatase that suppresses ENaC activity by altering the phosphorylation of a regulatory molecule associated with the channel.
Collapse
Affiliation(s)
- A Becchetti
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001; 353:417-39. [PMID: 11171037 PMCID: PMC1221586 DOI: 10.1042/0264-6021:3530417] [Citation(s) in RCA: 936] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon.
Collapse
Affiliation(s)
- V Janssens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
4
|
Paillard L, Maniey D, Lachaume P, Legagneux V, Osborne HB. Identification of a C-rich element as a novel cytoplasmic polyadenylation element in Xenopus embryos. Mech Dev 2000; 93:117-25. [PMID: 10781945 DOI: 10.1016/s0925-4773(00)00279-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During Xenopus early development, the length of the poly(A) tail of maternal mRNAs is a key element of translational control. Several sequence elements (cytoplasmic polyadenylation elements) localized in 3' untranslated regions have been shown to be responsible for the cytoplasmic polyadenylation of certain maternal mRNAs. Here, we demonstrate that the mRNA encoding the catalytic subunit of phosphatase 2A is polyadenylated after fertilization of Xenopus eggs. This polyadenylation is mediated by the additive effects of two cis elements, one being similar to already described cytoplasmic polyadenylation elements and the other consisting of a polycytosine motif. Finally, a candidate specificity factor for polycytosine-mediated cytoplasmic polyadenylation has been purified and identified as the Xenopus homologue of human alpha-CP2.
Collapse
Affiliation(s)
- L Paillard
- CNRS UPR 41, Université de Rennes I, Faculté de Médecine, Léon Bernard, CS 34317, 35043, Rennes, France.
| | | | | | | | | |
Collapse
|
5
|
Pérez-Callejón E, Casamayor A, Pujol G, Camps M, Ferrer A, Ariño J. Molecular cloning and characterization of two phosphatase 2A catalytic subunit genes from Arabidopsis thaliana. Gene 1998; 209:105-12. [PMID: 9524239 DOI: 10.1016/s0378-1119(98)00013-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The plant Arabidopsis thaliana contains five isoforms of the catalytic subunit of protein phosphatase 2A (PP2A) that can be grouped into two families, one composed by isoforms PP2A-1, -2 and -5 and the other composed by isoforms PP2A-3 and PP2A-4. An Arabidopsis genomic library was screened and several clones corresponding to genes PP2A-3 and PP2A-4 were isolated and analysed. Both genes span over approximately 4.5kbp and are composed of 11 exons and 10 introns that show identical organization. Their untranslated regions are also highly conserved, suggesting that the two genes derive from a common ancestral gene. However, the position of intron/exon junctions completely differs from that of the human PP2A genes. Two transcription start sites have been found in the PP2A-3 gene, the major one mapping at nucleotide position -188 from the translation start codon, whereas only one is observed in PP2A-4 (-145). Functional gene promoter analysis reveals that elements required for transient expression of PP2A-3 and PP2A-4 on a protoplast system are contained within a region of about 600bp upstream from the transcription start sites. This is the first report on the cloning and characterization of genes encoding catalytic subunits of Ser/Thr protein phosphatases 2A in higher plants.
Collapse
Affiliation(s)
- E Pérez-Callejón
- Unitat de Bioquímica, Facultat de Farmacia, Universitat de Barcelona, Pça. Pius XII s/n, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Yatzkan E, Yarden O. Inactivation of a single-2A phosphoprotein phosphatase is lethal in Neurospora crassa. Curr Genet 1995; 28:458-66. [PMID: 8575020 DOI: 10.1007/bf00310816] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A PCR approach, employing the use of degenerate oligonucleotide mixtures, was used to isolate pph-1, a type-2A protein phosphatase (catalytic subunit)-encoding gene, from Neurospora crassa. The isolated single copy gene is 1327 nucleotides in length, contains four putative introns and encodes a 310 amino-acid polypeptide. pph-1 is located between pdx-1 and col-4 on the right arm of N.crassa linkage group IV. pph-1 transcript levels are highest during the first hours of conidial germination. Failure to obtain viable progeny in which pph-1 had been inactivated via the repeat-induced point (RIP) mutation process, and evidence that nuclei harboring a disrupted pph-1 gene could only be maintained in a heterokaryon, indicated that a functional pph-1 gene is essential for fungal growth. This is the first report providing evidence that inactivation of a single-type-2A protein phosphatase gene results in a lethal phenotype in fungi.
Collapse
Affiliation(s)
- E Yatzkan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
7
|
Bosch M, Cayla X, Van Hoof C, Hemmings BA, Ozon R, Merlevede W, Goris J. The PR55 and PR65 subunits of protein phosphatase 2A from Xenopus laevis. molecular cloning and developmental regulation of expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1037-45. [PMID: 7601134 DOI: 10.1111/j.1432-1033.1995.tb20653.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
cDNA clones encoding the 65-kDa (PR65) and 55-kDa (PR55) regulatory subunits of protein phosphatase 2A from Xenopus laevis were isolated by homology screening with the corresponding human cDNAs, and used to analyze the developmental expression patterns of these genes. The PR65 subunit was found to be encoded by two genes, termed XPR65 alpha and XPR65 beta. The open reading frames of the alpha and beta cDNAs both span 1767 bp, and predict proteins of 64.4 kDa and 65.3 kDa, respectively, that are 87% identical. The predicted amino acid sequence of XPR65 alpha showed 95% and 84% identity with human PR65 alpha and PR65 beta proteins, respectively, whereas the identity of XPR65 beta with the same proteins was 87% and 86.5%, respectively. Only one type of Xenopus PR55 (XPR55) was isolated that showed 93% and 84% similarity to human PR55 alpha and PR55 beta, respectively. Analysis of the N-terminal region of XPR55 with the same regions of human PR55 alpha and PR55 beta, indicates that the XPR55 is the Xenopus homolog of the human PR55 alpha isoform. Despite the overall similarity with PR55 from other species, XPR55 has an N-terminal extention of at least 24 amino acids. In the ovary, a transcript of 2.8 kb, encoding the XPR65 beta, was predominantly expressed and these XPR65 beta mRNAs are present at a constant level during oogenesis until late embryogenesis. Expression of the 2.4-kb XPR65 alpha was low until the larval stage, then dramatically increased. In all adult tissues except ovary, the 2.4-kb alpha-specific mRNA was more abundant than the 2.8-kb beta transcript. Two transcripts of 2.4 kb and 2.5 kb, encoding the XPR55 subunit, were detected at a constant level throughout Xenopus oogenesis and during embryogenesis. Both transcripts were also expressed at similar levels in all adult tissues, but in a tissue-specific manner. Analysis of the XPR55 and XPR65 proteins using antibodies to recombinant proteins revealed that the overall levels of the two proteins were constant, in good agreement with mRNA data.
Collapse
Affiliation(s)
- M Bosch
- Afdeling Biochemie, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Casamayor A, Pérez-Callejón E, Pujol G, Ariño J, Ferrer A. Molecular characterization of a fourth isoform of the catalytic subunit of protein phosphatase 2A from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1994; 26:523-528. [PMID: 7948902 DOI: 10.1007/bf00039564] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have recently reported the existence of multiple isoforms of the catalytic subunit of protein phosphatase 2A (PP2A) in Arabidopsis thaliana and the molecular cloning of cDNAs encoding three of these proteins (PP2A-1, PP2A-2, PP2A-3). The reported cDNA encoding PP2A-3 was truncated at the 5' terminus, lacking a short fragment of the N-terminal coding sequence. We have now isolated a near full-length cDNA encoding the entire PP2A-3 protein (313 residues). The clone includes 188 nucleotides of 5'-untranslated region, where a 44 bp long poly(GA) track is found. We also describe the cloning of a cDNA encoding a fourth isoform of PP2A (PP2A-4). The polypeptide contains 313 residues being 98% identical to PP2A-3 and only 80% identical to both PP2A-1 and PP2A-2. The mRNA for PP2A-4 is 1.4 kb in length and, although predominantly expressed in roots, it is also found in other organs. It is concluded that in A. thaliana the isoforms of PP2A can be grouped in two extremely conserved subfamilies.
Collapse
Affiliation(s)
- A Casamayor
- Department de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
9
|
Amons R, Guerrucci MA, Karssies RH, Morales J, Cormier P, Möller W, Bellé R. The leucine-zipper in elongation factor EF-1 delta, a guanine-nucleotide exchange protein, is conserved in Artemia and Xenopus. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:346-50. [PMID: 8049261 DOI: 10.1016/0167-4781(94)90187-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Elongation factor 1, a complex involved in protein biosynthesis, contains two guanine-nucleotide-exchange proteins EF-1 beta and EF-1 delta. The sequence of EF-1 delta of Artemia was determined with the purified protein. When compared to EF-1 delta from Xenopus, a high degree of identify (80%) was found in the C-terminal domains of the proteins, which contain the guanine-nucleotide-exchange activity. The N-terminal domains share only 23% of the amino acids at identical positions, and therefore they were further analysed for less obvious types of homology. To this end, a published approach for sequence analysis, which can detect peculiar amino acid patterns in proteins was applied. In this way, a weak albeit unmistakable similarity between the two EF-1 delta proteins was demonstrated in the region of the leucine-zippers, apart from the leucine repeat itself. Apparently, they display a common structural pattern in their N-terminal domains, which so far has been observed mainly in transcription factors.
Collapse
Affiliation(s)
- R Amons
- Department of Medical Biochemistry, Sylvius Laboratories, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Jessus C, Ozon R. Regulation of cell divisions during oogenesis of vertebrates: The Xenopus oocyte paradigm. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0300-9629(93)90236-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ariño J, Pérez-Callejón E, Cunillera N, Camps M, Posas F, Ferrer A. Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1993; 21:475-85. [PMID: 8382968 DOI: 10.1007/bf00028805] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Two DNA fragments, AP-1 and AP-2, encoding amino acid sequences closely related to Ser/Thr protein phosphatases were amplified from Arabidopsis thaliana genomic DNA. Fragment AP-1 was used to screen A. thaliana cDNA libraries and several positive clones were isolated. Clones EP8a and EP14a were sequenced and found to encode almost identical proteins (97% identity). Both proteins are 306 amino acids in length and are very similar (79-80% identity) to the mammalian isotypes of the catalytic subunit of protein phosphatase 2A. Therefore, they have been designated PP2A-1 and PP2A-2. A third cDNA clone, EP7, was isolated and sequenced. The polypeptide encoded (308 amino acids, lacking the initial Met codon) is 80% identical with human phosphatases 2A and was named PP2A-3. The PP2A-3 protein is extremely similar (95% identity) to the predicted protein from a cDNA clone previously found in Brassica napus. Southern blot analysis of genomic DNA using AP-1 and AP-2 probes, as well as probes derived from clones EP7, EP8a and EP14a strongly indicates that at least 6 genes closely related to type 2A phosphatases are present in the genome of A. thaliana. Northern blot analysis using the same set of probes demonstrates that, at the seedling stage, the mRNA levels for PP2A-1, PP2A-3 and the gene containing the AP-1 sequence are much higher than those of PP2A-2 and AP-2. These results demonstrate that a multiplicity of type 2A phosphatases might be differentially expressed in higher plants.
Collapse
Affiliation(s)
- J Ariño
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinária, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Legagneux V, Bouvet P, Omilli F, Chevalier S, Osborne HB. Identification of RNA-binding proteins specific to Xenopus Eg maternal mRNAs: association with the portion of Eg2 mRNA that promotes deadenylation in embryos. Development 1992; 116:1193-202. [PMID: 1295736 DOI: 10.1242/dev.116.4.1193] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maternal Xenopus Eg mRNAs have been previously identified as transcripts that are specifically deadenylated after fertilization and degraded after the mid blastula transition. Destabilizing cis sequences were previously localised in the 3′ untranslated region of Eg2 mRNA. In order to characterize possible trans-acting factors which are involved in the post-transcriptional regulation of Eg mRNAs, gel-shift and u.v. cross-linking experiments were performed, which allowed the identification of a p53-p55 RNA-binding protein doublet specific for the 3′ untranslated regions of Eg mRNAs. These p53-p55 proteins do not bind to the 3′ untranslated regions of either ornithine decarboxylase or phosphatase 2Ac mRNAs, which remain polyadenylated in embryos. These novel RNA-binding proteins are distinct from the cytoplasmic polyadenylation element-binding protein that controls the polyadenylation of maternal mRNAs in maturing Xenopus oocytes, and from previously identified thermoresistant RNA-binding proteins present in oocyte mRNP storage particles. The p53-p55 bind a portion of the Eg2 mRNA 3′ untranslated region, distinct from the previously identified destabilizing region, that is able to confer the postfertilization deadenylation of CAT-coding chimeric mRNAs. This suggests that the p53-p55 RNA-binding proteins are good candidates for trans-acting factors involved in the deadenylation of Eg mRNAs in Xenopus embryos.
Collapse
Affiliation(s)
- V Legagneux
- Département de Biologie et Génétique du Développement, CNRS URA 256, Université de Rennes I, France
| | | | | | | | | |
Collapse
|