1
|
Lu J, Tao X, Luo J, Zhu T, Jiao L, Sun P, Zhou Q, Tocher DR, Jin M. Dietary choline activates the Ampk/Srebp signaling pathway and decreases lipid levels in Pacific white shrimp ( Litopenaeus vannamei). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:58-70. [PMID: 37818178 PMCID: PMC10561004 DOI: 10.1016/j.aninu.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 10/12/2023]
Abstract
An 8-week feeding trial was conducted in Pacific white shrimp (Litopenaeus vannamei) to evaluate the effects of dietary choline supplementation on choline transport and metabolism, hepatopancreas histological structure and fatty acid profile, and regulation of lipid metabolism. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels of 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g/kg, respectively. A total of 960 shrimp (initial weight, 1.38 ± 0.01 g) were distributed randomly into twenty-four 250-L cylindrical fiber-glass tanks, with each diet assigned randomly to 4 replicate tanks. The results indicated that dietary choline significantly promoted the deposition of choline, betaine and carnitine (P < 0.05). The diameters and areas of R cells, total lipid and triglyceride contents in hepatopancreas, and triglyceride and non-esterified fatty acid contents in hemolymph were negatively correlated with dietary choline level. The contents of functional fatty acids in hepatopancreas, the activity of acetyl-CoA carboxylase (Acc), and the mRNA expression of fas, srebp and acc were highest in shrimp fed the diet containing 4.67 g/kg choline, and significantly higher than those fed the diet containing 2.91 g/kg, the lowest level of choline (P < 0.05). The number of R cells, content of very low-density lipoprotein (VLDL), activities of carnitine palmitoyl-transferase (Cpt1), lipoprotein lipase and hepatic lipase, and the mRNA expression levels of cpt1, fabp, fatp, ldlr, and ampk in hepatopancreas increased significantly as dietary choline increased (P < 0.05). In addition, hepatopancreas mRNA expression levels of ctl1, ctl2, oct1, badh, bhmt, ck, cept, and cct were generally up-regulated as dietary choline level increased (P < 0.01). In conclusion, dietary choline promoted the deposition of choline and its metabolites by up-regulating genes related to choline transport and metabolism. Moreover, appropriate dietary choline level promoted the development of hepatopancreas R cells and maintained the normal accumulation of lipids required for development, while high dietary choline not only promoted hepatopancreas lipid export by enhancing VLDL synthesis, but also promoted fatty acid β-oxidation and inhibited de novo fatty acid synthesis by activating the Ampk/Srebp signaling pathway. These findings provided further insight and understanding of the mechanisms by which dietary choline regulated lipid metabolism in L. vannamei.
Collapse
Affiliation(s)
- Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Douglas R. Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Morita SY, Ikeda Y. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem Pharmacol 2022; 206:115296. [DOI: 10.1016/j.bcp.2022.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
|
4
|
Li J, Mukiibi R, Wang Y, Plastow GS, Li C. Identification of candidate genes and enriched biological functions for feed efficiency traits by integrating plasma metabolites and imputed whole genome sequence variants in beef cattle. BMC Genomics 2021; 22:823. [PMID: 34781903 PMCID: PMC8591823 DOI: 10.1186/s12864-021-08064-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Feed efficiency is one of the key determinants of beef industry profitability and sustainability. However, the cellular and molecular background behind feed efficiency is largely unknown. This study combines imputed whole genome DNA variants and 31 plasma metabolites to dissect genes and biological functions/processes that are associated with residual feed intake (RFI) and its component traits including daily dry matter intake (DMI), average daily gain (ADG), and metabolic body weight (MWT) in beef cattle. RESULTS Regression analyses between feed efficiency traits and plasma metabolites in a population of 493 crossbred beef cattle identified 5 (L-valine, lysine, L-tyrosine, L-isoleucine, and L-leucine), 4 (lysine, L-lactic acid, L-tyrosine, and choline), 1 (citric acid), and 4 (L-glutamine, glycine, citric acid, and dimethyl sulfone) plasma metabolites associated with RFI, DMI, ADG, and MWT (P-value < 0.1), respectively. Combining the results of metabolome-genome wide association studies using 10,488,742 imputed SNPs, 40, 66, 15, and 40 unique candidate genes were identified as associated with RFI, DMI, ADG, and MWT (P-value < 1 × 10-5), respectively. These candidate genes were found to be involved in some key metabolic processes including metabolism of lipids, molecular transportation, cellular function and maintenance, cell morphology and biochemistry of small molecules. CONCLUSIONS This study identified metabolites, candidate genes and enriched biological functions/processes associated with RFI and its component traits through the integrative analyses of metabolites with phenotypic traits and DNA variants. Our findings could enhance the understanding of biochemical mechanisms of feed efficiency traits and could lead to improvement of genomic prediction accuracy via incorporating metabolite data.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Yining Wang
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Alberta, T4L 1W1, Lacombe, Canada
| | - Graham S Plastow
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada.
| | - Changxi Li
- Department of Agriculture, Food & Nutritional Science, University of Alberta, T6G 2P5, Edmonton, Alberta, Canada.
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Alberta, T4L 1W1, Lacombe, Canada.
| |
Collapse
|
5
|
Li J, Akanno EC, Valente TS, Abo-Ismail M, Karisa BK, Wang Z, Plastow GS. Genomic Heritability and Genome-Wide Association Studies of Plasma Metabolites in Crossbred Beef Cattle. Front Genet 2020; 11:538600. [PMID: 33193612 PMCID: PMC7542097 DOI: 10.3389/fgene.2020.538600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
Metabolites, substrates or products of metabolic processes, are involved in many biological functions, such as energy metabolism, signaling, stimulatory and inhibitory effects on enzymes and immunological defense. Metabolomic phenotypes are influenced by combination of genetic and environmental effects allowing for metabolome-genome-wide association studies (mGWAS) as a powerful tool to investigate the relationship between these phenotypes and genetic variants. The objectives of this study were to estimate genomic heritability and perform mGWAS and in silico functional enrichment analyses for a set of plasma metabolites in Canadian crossbred beef cattle. Thirty-three plasma metabolites and 45,266 single nucleotide polymorphisms (SNPs) were available for 475 animals. Genomic heritability for all metabolites was estimated using genomic best linear unbiased prediction (GBLUP) including genomic breed composition as covariates in the model. A single-step GBLUP implemented in BLUPF90 programs was used to determine SNP P values and the proportion of genetic variance explained by SNP windows containing 10 consecutive SNPs. The top 10 SNP windows that explained the largest genetic variation for each metabolite were identified and mapped to detect corresponding candidate genes. Functional enrichment analyses were performed on metabolites and their candidate genes using the Ingenuity Pathway Analysis software. Eleven metabolites showed low to moderate heritability that ranged from 0.09 ± 0.15 to 0.36 ± 0.15, while heritability estimates for 22 metabolites were zero or negligible. This result indicates that while variations in 11 metabolites were due to genetic variants, the majority are largely influenced by environment. Three significant SNP associations were detected for betaine (rs109862186), L-alanine (rs81117935), and L-lactic acid (rs42009425) based on Bonferroni correction for multiple testing (family wise error rate <0.05). The SNP rs81117935 was found to be located within the Catenin Alpha 2 gene (CTNNA2) showing a possible association with the regulation of L-alanine concentration. Other candidate genes were identified based on additive genetic variance explained by SNP windows of 10 consecutive SNPs. The observed heritability estimates and the candidate genes and networks identified in this study will serve as baseline information for research into the utilization of plasma metabolites for genetic improvement of crossbred beef cattle.
Collapse
Affiliation(s)
- Jiyuan Li
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Everestus C Akanno
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tiago S Valente
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Animal Science, Ethology and Animal Ecology Research Group, São Paulo State University, Jaboticabal, Brazil
| | - Mohammed Abo-Ismail
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Animal Science, College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Brian K Karisa
- Ministry of Agriculture and Forestry, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agriculture, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
McMaster CR. From yeast to humans - roles of the Kennedy pathway for phosphatidylcholine synthesis. FEBS Lett 2017; 592:1256-1272. [PMID: 29178478 DOI: 10.1002/1873-3468.12919] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
The major phospholipid present in most eukaryotic membranes is phosphatidylcholine (PC), comprising ~ 50% of phospholipid content. PC metabolic pathways are highly conserved from yeast to humans. The main pathway for the synthesis of PC is the Kennedy (CDP-choline) pathway. In this pathway, choline is converted to phosphocholine by choline kinase, phosphocholine is metabolized to CDP-choline by the rate-determining enzyme for this pathway, CTP:phosphocholine cytidylyltransferase, and cholinephosphotransferase condenses CDP-choline with diacylglycerol to produce PC. This Review discusses how PC synthesis via the Kennedy pathway is regulated, its role in cellular and biological processes, as well as diseases known to be associated with defects in PC synthesis. Finally, we present the first model for the making of a membrane via PC synthesis.
Collapse
|
7
|
Abstract
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.
Collapse
Affiliation(s)
- Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Zaver M. Bhujwalla
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Sabrina M. Ronen
- Department of Radiology, University of California San Francisco School of Medicine, UCSF Mission Bay Campus, Byers Hall, San Francisco, California CA94158-2330, USA
| |
Collapse
|
8
|
Shah T, Wildes F, Penet MF, Winnard PT, Glunde K, Artemov D, Ackerstaff E, Gimi B, Kakkad S, Raman V, Bhujwalla ZM. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells. NMR IN BIOMEDICINE 2010; 23:633-42. [PMID: 20623626 PMCID: PMC3115627 DOI: 10.1002/nbm.1510] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A direct correlation exists between increased choline kinase (Chk) expression, and the resulting increase of phosphocholine levels, and histological tumor grade. To better understand the function of Chk and choline phospholipid metabolism in breast cancer we have stably overexpressed one of the two isoforms of Chk-alpha known to be upregulated in malignant cells, in non-invasive MCF-7 human breast cancer cells. Dynamic tracking of cell invasion and cell metabolism were studied with a magnetic resonance (MR) compatible cell perfusion assay. The MR based invasion assay demonstrated that MCF-7 cells overexpressing Chk-alpha (MCF-7-Chk) exhibited an increase of invasion relative to control MCF-7 cells (0.84 vs 0.3). Proton MR spectroscopy studies showed significantly higher phosphocholine and elevated triglyceride signals in Chk overexpressing clones compared to control cells. A test of drug resistance in MCF-7-Chk cells revealed that these cells had an increased resistance to 5-fluorouracil and higher expression of thymidylate synthase compared to control MCF-7 cells. To further characterize increased drug resistance in these cells, we performed rhodamine-123 efflux studies to evaluate drug efflux pumps. MCF-7-Chk cells effluxed twice as much rhodamine-123 compared to MCF-7 cells. Chk-alpha overexpression resulted in MCF-7 human breast cancer cells acquiring an increasingly aggressive phenotype, supporting the role of Chk-alpha in mediating invasion and drug resistance, and the use of phosphocholine as a biomarker of aggressive breast cancers.
Collapse
Affiliation(s)
- Tariq Shah
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Flonne Wildes
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Marie-France Penet
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul T. Winnard
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kristine Glunde
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Dmitri Artemov
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ellen Ackerstaff
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- Memorial Sloan-Kettering Cancer Center 1275 York Ave., New York, NY
| | - Barjor Gimi
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- 708 Vail, Dartmouth Medical School, Hanover, NH, 03755
| | - Samata Kakkad
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Venu Raman
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
- Correspondence to: Z. M. Bhujwalla, Department of Radiology, The Johns Hopkins University School of Medicine, 208C Traylor Bldg, 720 Rutland Ave, Baltimore, MD 21205, USA.,
| |
Collapse
|
9
|
Malito E, Sekulic N, Too WCS, Konrad M, Lavie A. Elucidation of human choline kinase crystal structures in complex with the products ADP or phosphocholine. J Mol Biol 2006; 364:136-51. [PMID: 17007874 PMCID: PMC1885479 DOI: 10.1016/j.jmb.2006.08.084] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/25/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
Choline kinase, responsible for the phosphorylation of choline to phosphocholine as the first step of the CDP-choline pathway for the biosynthesis of phosphatidylcholine, has been recognized as a new target for anticancer therapy. Crystal structures of human choline kinase in its apo, ADP and phosphocholine-bound complexes, respectively, reveal the molecular details of the substrate binding sites. ATP binds in a cavity where residues from both the N and C-terminal lobes contribute to form a cleft, while the choline-binding site constitutes a deep hydrophobic groove in the C-terminal domain with a rim composed of negatively charged residues. Upon binding of choline, the enzyme undergoes conformational changes independently affecting the N-terminal domain and the ATP-binding loop. From this structural analysis and comparison with other kinases, and from mutagenesis data on the homologous Caenorhabditis elegans choline kinase, a model of the ternary ADP.phosphocholine complex was built that reveals the molecular basis for the phosphoryl transfer activity of this enzyme.
Collapse
Affiliation(s)
- Enrico Malito
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607
| | - Nikolina Sekulic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607
| | - Wei Cun See Too
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, D-37077
| | - Manfred Konrad
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, D-37077
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607
| |
Collapse
|
10
|
Choubey V, Guha M, Maity P, Kumar S, Raghunandan R, Maulik PR, Mitra K, Halder UC, Bandyopadhyay U. Molecular characterization and localization of Plasmodium falciparum choline kinase. Biochim Biophys Acta Gen Subj 2006; 1760:1027-38. [PMID: 16626864 DOI: 10.1016/j.bbagen.2006.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/24/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The K(m) values for choline and ATP are found to be 145+/-20 microM and 2.5+/-0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the alpha and beta content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity.
Collapse
Affiliation(s)
- Vinay Choubey
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kent C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:53-66. [PMID: 15749057 DOI: 10.1016/j.bbalip.2004.12.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/14/2004] [Accepted: 12/17/2004] [Indexed: 12/22/2022]
Abstract
Phosphatidylcholine is a prominent constituent of eukaryotic and some prokaryotic membranes. This Perspective focuses on the two enzymes that regulate its biosynthesis, choline kinase and CTP:phosphocholine cytidylyltransferase. These enzymes are discussed with respect to their molecular properties, isoforms, enzymatic activities, and structures, and the possible molecular mechanisms by which they participate in regulation of phosphatidylcholine levels in the cell.
Collapse
|
12
|
Abstract
Choline kinase (CK) catalyzes the first phosphorylation reaction in the CDP-choline pathway for the biosynthesis of phosphatidylcholine (PC), yielding phosphocholine (P-Cho) from choline and ATP in the presence of Mg(2+). This enzyme exists in mammalian cells as at least three isoforms that are encoded by two separate genes termed ck-alpha and ck-beta. Each isoform is not active in its monomeric form. The active enzyme consists of either their homo- or hetero-dimeric (or oligomeric) forms. In recent years, the roles of CK in cell growth and cell stress/defense mechanisms have been intensely investigated. These functions of CK do not seem to be directly related to the net PC biosynthesis but predict another important role of this enzyme in certain cell physiology. This review summarizes briefly the recent progress of mammalian CK study which will include the gene structure of each isoform and its possible transcriptional regulation, the active configuration of the enzyme, induction of the particular isoform in chemically induced cell stress, and the possible role of this enzyme as well as of its reaction product, P-Cho, in cell growth and other cellular physiology.
Collapse
Affiliation(s)
- Chieko Aoyama
- Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyodaku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
13
|
Gee P, Kent C. Multiple isoforms of choline kinase from Caenorhabditis elegans: cloning, expression, purification, and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:33-42. [PMID: 12758145 DOI: 10.1016/s1570-9639(03)00106-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Choline kinase is the first enzymatic step in the CDP-choline pathway for phosphatidylcholine biosynthesis. The genome of the nematode, Caenorhabditis elegans, contains seven genes that appear likely to encode choline and/or ethanolamine kinases. We cloned five and expressed four of these genes, and purified or partially purified three of the encoded enzymes. All expressed proteins had choline kinase activity; those that most closely resemble the mammalian choline kinases were the most active. CKA-2, a very active form, was purified to near homogeneity. The K(m) values for CKA-2 were 1.6 and 2.4 mM for choline and ATP, respectively, and k(cat) was 74 s(-1). CKA-2 was predominantly a homodimer as assessed by glycerol gradient sedimentation and dynamic light scattering. CKB-2, which was less similar to mammalian choline kinases, had K(m) values for choline and ATP of 13 and 0.7 mM, and k(cat) was 3.8 s(-1). Both of these highly purified enzymes required magnesium, had very alkaline pH optima, and were much more active with choline as substrate than with ethanolamine. These results provide a foundation for future studies on the structure and function of choline kinases, as well as studies on the genetic analysis of the function of the multiple isoforms in this organism.
Collapse
Affiliation(s)
- Patricia Gee
- Department of Biological Chemistry, 4417 Medical Science I, University of Michigan Medical Center, 1301 Catherine Road, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
14
|
Vance JE. Molecular and cell biology of phosphatidylserine and phosphatidylethanolamine metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:69-111. [PMID: 14604010 DOI: 10.1016/s0079-6603(03)75003-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the pathways for phosphatidylserine (PS) and phosphatidylethanolamine (PE) biosynthesis, as well as the genes and proteins involved in these pathways, are described in mammalian cells, yeast, and prokaryotes. In mammalian cells, PS is synthesized by a base-exchange reaction in which phosphatidylcholine or PE is substrate for PS synthase-1 or PS synthase-2, respectively. Isolation of Chinese hamster ovary cell mutants led to the cloning of cDNAs and genes encoding these two PS synthases. In yeast and prokaryotes PS is produced by a biosynthetic pathway completely different from that in mammals: from a reaction between CDP-diacylglycerol and serine. The major route for PE synthesis in cultured cells is from the mitochondrial decarboxylation of PS. Alternatively, PE can be synthesized in the endoplasmic reticulum (ER) from the CDP-ethanolamine pathway. Genes and/or cDNAs encoding all the enzymes in these two pathways for PE synthesis have been isolated and characterized. In mammalian cells, PS is synthesized on the ER and/or mitochondria-associated membranes (MAM). PS synthase-1 and -2 are highly enriched in MAM compared to the bulk of ER. Since MAM are a region of the ER that appears to be in close juxtaposition to the mitochondrial outer membrane, it has been proposed that MAM act as a conduit for the transfer of newly synthesized PS into mitochondria. A similar pathway appears to operate in yeast. The use of yeast mutants has led to identification of genes involved in the interorganelle transport of PS and PE in yeast, but so far none of the corresponding genes in mammalian cells has been identified. PS and PE do not act solely as structural components of membranes. Several specific functions have been ascribed to these two aminophospholipids. For example, cell-surface exposure of PS during apoptosis is thought to be the signal by which apoptotic cells are recognized and phagocytosed. Translocation of PS from the inner to outer leaflet of the plasma membrane of platelets initiates the blood-clotting cascade, and PS is an important activator of several enzymes, including protein kinase C. Recently, exposure of PE on the cell surface was identified as a regulator of cytokinesis. In addition, in Escherichia coli, PE appears to be involved in the correct folding of membrane proteins; and in Drosophila, PE regulates lipid homeostasis via the sterol response element-binding protein.
Collapse
Affiliation(s)
- Jean E Vance
- Canadian Institutes for Health Research Group on Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, 332 HMRC, Edmonton, AB, Canada T6G 2S2
| |
Collapse
|
15
|
Yu Y, Sreenivas A, Ostrander DB, Carman GM. Phosphorylation of Saccharomyces cerevisiae choline kinase on Ser30 and Ser85 by protein kinase A regulates phosphatidylcholine synthesis by the CDP-choline pathway. J Biol Chem 2002; 277:34978-86. [PMID: 12105205 DOI: 10.1074/jbc.m205316200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae CKI-encoded choline kinase is phosphorylated on a serine residue and stimulated by protein kinase A. We examined the hypothesis that amino acids Ser(30) and Ser(85) contained in a protein kinase A sequence motif in choline kinase are target sites for protein kinase A. The synthetic peptides SQRRHSLTRQ (V(max)/K(m) = 10.8 microm(-1) nmol min(-1) mg(-1)) and GPRRASATDV (V(max)/K(m) = 0.15 microm(-1) nmol min(-1) mg(-1)) containing the protein kinase A motif for Ser(30) and Ser(85), respectively, within the choline kinase protein were substrates for protein kinase A. Choline kinase with Ser(30) to Ala (S30A) and Ser(85) to Ala (S85A) mutations were constructed alone and in combination by site-directed mutagenesis and expressed in a cki1Delta eki1Delta double mutant that lacks choline kinase activity. The mutant enzymes were expressed normally, but the specific activity of choline kinase in cells expressing the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 44, 8, and 60%, respectively, when compared with the control. In vivo labeling experiments showed that the extent of phosphorylation of the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 70, 17, and 83%, respectively. Phosphorylation of the S30A, S85A, and S30A,S85A mutant enzymes by protein kinase A in vitro was reduced by 60, 7, and 96%, respectively, and peptide mapping analysis of the mutant enzymes confirmed the phosphorylation sites in the enzyme. The incorporation of (3)H-labeled choline into phosphocholine and phosphatidylcholine in cells bearing the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 56, 27, and 81%, respectively, and by 58, 33, and 84%, respectively, when compared with control cells. These data supported the conclusion that phosphorylation of choline kinase on Ser(30) and Ser(85) by protein kinase A regulates PC synthesis by the CDP-choline pathway.
Collapse
Affiliation(s)
- Ying Yu
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
16
|
Lykidis A, Wang J, Karim MA, Jackowski S. Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine pathway. J Biol Chem 2001; 276:2174-9. [PMID: 11044454 DOI: 10.1074/jbc.m008794200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanolamine kinase (EKI) is the first committed step in phosphatidylethanolamine (PtdEtn) biosynthesis via the CDP-ethanolamine pathway. We identify a human cDNA encoding an ethanolamine-specific kinase EKI1 and the structure of the EKI1 gene located on chromosome 12. EKI1 overexpression in COS-7 cells results in a 170-fold increase in ethanolamine kinase-specific activity and accelerates the rate of [3H]ethanolamine incorporation into PtdEtn as a function of the ethanolamine concentration in the culture medium. Acceleration of the CDP-ethanolamine pathway does not result in elevated cellular PtdEtn levels, but rather the excess PtdEtn is degraded to glycerophosphoethanolamine. EKI1 has negligible choline kinase activity in vitro and does not influence phosphatidylcholine biosynthesis. Acceleration of the CDP-ethanolamine pathway also does not change the rate of PtdEtn formation via the decarboxylation of phosphatidylserine. The data demonstrate the existence of separate ethanolamine and choline kinases in mammals and show that ethanolamine kinase can be a rate-controlling step in PtdEtn biosynthesis.
Collapse
Affiliation(s)
- A Lykidis
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
17
|
Lykidis A, Jackowski S. Regulation of mammalian cell membrane biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:361-93. [PMID: 11008493 DOI: 10.1016/s0079-6603(00)65010-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This review explores current information on the interrelationship between phospholipid biochemistry and cell biology. Phosphatidylcholine is the most abundant phospholipid and it biosynthesis has been studied extensively. The choline cytidylyltransferase regulates phosphatidylcholine production, and recent advances in our understanding of the mechanisms that govern cytidylyltransferase include the discovery of multiple isoforms and a more complete understanding of the lipid regulation of enzyme activity. Similarities between phosphatidylcholine formation and the phosphatidylethanolamine and phosphatidylinositol biosynthetic pathways are discussed, together with current insight into control mechanisms. Membrane phospholipid doubling during cell cycle progression is a function of periodic biosynthesis and degradation. Membrane homeostasis is maintained by a phospholipase A-mediated degradation of excess phospholipid, whereas insufficient phosphatidylcholine triggers apoptosis in cells.
Collapse
Affiliation(s)
- A Lykidis
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
18
|
Chung T, Huang JS, Mukherjee JJ, Crilly KS, Kiss Z. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I. Cell Signal 2000; 12:279-88. [PMID: 10822168 DOI: 10.1016/s0898-6568(00)00065-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.
Collapse
Affiliation(s)
- T Chung
- Department of Biochemistry, Yeungnam University, Keongsan, South Korea
| | | | | | | | | |
Collapse
|
19
|
Structure and characterization of the genes for murine choline/ethanolamine kinase isozymes α and β. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)34484-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Kim KH, Carman GM. Phosphorylation and regulation of choline kinase from Saccharomyces cerevisiae by protein kinase A. J Biol Chem 1999; 274:9531-8. [PMID: 10092638 DOI: 10.1074/jbc.274.14.9531] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CKI1-encoded choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) from Saccharomyces cerevisiae was phosphorylated in vivo on multiple serine residues. Activation of protein kinase A activity in vivo resulted in a transient increase in the phosphorylation of choline kinase. This phosphorylation was accompanied by a stimulation in choline kinase activity. In vitro, protein kinase A phosphorylated choline kinase on a serine residue with a stoichiometry (0.44 mol of phosphate/mol of choline kinase) consistent with one phosphorylation site/choline kinase subunit. The major phosphopeptide derived from the enzyme phosphorylated in vitro by protein kinase A was common to one of the major phosphopeptides derived from the enzyme phosphorylated in vivo. Protein kinase A activity was dose- and time-dependent and dependent on the concentrations of ATP (Km 2.1 microM) and choline kinase (Km 0.12 microM). Phosphorylation of choline kinase with protein kinase A resulted in a stimulation (1.9-fold) in choline kinase activity whereas alkaline phosphatase treatment of choline kinase resulted in a 60% decrease in choline kinase activity. The mechanism of the protein kinase A-mediated stimulation in choline kinase activity involved an increase in the apparent Vmax values with respect to ATP (2.6-fold) and choline (2.7-fold). Overall, the results reported here were consistent with the conclusion that choline kinase was regulated by protein kinase A phosphorylation.
Collapse
Affiliation(s)
- K H Kim
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
21
|
Abstract
Many recent observations implicate choline and ethanolamine kinases as well as phosphatidylcholine-specific phospholipase C in the regulation of mitogenesis and carcinogenesis. For example, human cancers generally contain high concentrations of phosphoethanolamine and phosphocholine, and in different cell lines various growth factors, cytokines, oncogenes and chemical carcinogens were all shown to stimulate the formation of phosphocholine and phosphoethanolamine. In addition, other reports have appeared showing that both extracellular and intracellular phosphocholine as well as ethanolamine and its derivatives can regulate cell growth. This area of research has clearly arrived at a stage when it becomes important to examine critically the feasibility of water-soluble phospholipid intermediates serving as potential regulators of cell growth in vivo. Accordingly, the goal of this review is to summarise available information relating to the formation and mitogenic actions of intracellular and extracellular phosphocholine as well as ethanolamine and its derivatives.
Collapse
Affiliation(s)
- Z Kiss
- The Hormel Institute, University of Minnesota, Austin 55912, USA.
| |
Collapse
|
22
|
Kim KH, Voelker DR, Flocco MT, Carman GM. Expression, purification, and characterization of choline kinase, product of the CKI gene from Saccharomyces cerevisiae. J Biol Chem 1998; 273:6844-52. [PMID: 9506987 DOI: 10.1074/jbc.273.12.6844] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) is the product of the CKI gene. Choline kinase catalyzes the committed step in the synthesis of phosphatidylcholine by the CDP-choline pathway. The yeast enzyme was overexpressed 106-fold in Sf-9 insect cells and purified 71.2-fold to homogeneity from the cytosolic fraction by chromatography with concanavalin A, Affi-Gel Blue, and Mono Q. The N-terminal amino acid sequence of purified choline kinase matched perfectly with the deduced sequence of the CKI gene. The minimum subunit molecular mass (73 kDa) of purified choline kinase was in good agreement with the predicted size (66.3 kDa) of the CKI gene product. Native choline kinase existed in oligomeric structures of dimers, tetramers, and octomers. The amounts of the tetrameric and octomeric forms increased in the presence of the substrate ATP. Antibodies were raised against the purified enzyme and were used to identify choline kinase in insect cells and in S. cerevisiae. Maximum choline kinase activity was dependent on Mg2+ ions (10 mM) at pH 9.5 and at 30 degrees C. The equilibrium constant (0.2) for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 6.26 kcal/mol, and the enzyme was labile above 30 degrees C. Choline kinase exhibited saturation kinetics with respect to choline and positive cooperative kinetics with respect to ATP (n = 1.4-2.3). Results of the kinetic experiments indicated that the enzyme catalyzes a sequential Bi Bi reaction. The Vmax for the reaction was 138.7 micromol/min/mg, and the Km values for choline and ATP were 0.27 mM and 90 microM, respectively. The turnover number per choline kinase subunit was 153 s-1. Ethanolamine was a poor substrate for the purified choline kinase, and it was also poor inhibitor of choline kinase activity. ADP inhibited choline kinase activity (IC50 = 0.32 mM) in a positive cooperative manner (n = 1.5), and the mechanism of inhibition with respect to ATP and choline was complex. The regulation of choline kinase activity by ATP and ADP may be physiologically relevant.
Collapse
Affiliation(s)
- K H Kim
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | |
Collapse
|
23
|
Aoyama C, Nakashima K, Matsui M, Ishidate K. Complementary DNA sequence for a 42 kDa rat kidney choline/ethanolamine kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:1-7. [PMID: 9487136 DOI: 10.1016/s0005-2760(97)00177-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
By means of peptide sequence information, several cDNA clones encoding a 42 kDa choline/ethanolamine kinase were isolated from a rat kidney cDNA library. Eight clones were sequenced with all of them resulting in identical overlapping nucleotide sequences. Four of them possessed entire open reading frame which could encode 394 amino acids with a calculated molecular size of 45 100. The predicted amino acid sequence contained all of the internal peptide fragment sequences derived from the purified 42 kDa enzyme. When the open reading frame was introduced into pGEX-2T vector and transfected into E. coli cells, a significant choline/ethanolamine kinase activity did appear in the cell lysate. A homology comparison with the previously reported choline kinase cDNAs (CKR1 and CKR2) from rat liver showed 66%-68% in entire nucleotide sequences and 57%-59% in amino acid sequences, indicating that the cloned cDNA here must be a novel CK/EK gene product. (c) 1998 Elsevier Science B. V.
Collapse
Affiliation(s)
- C Aoyama
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Chiyodaku, Tokyo 101, Japan
| | | | | | | |
Collapse
|
24
|
Ishidate K. Choline/ethanolamine kinase from mammalian tissues. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1348:70-8. [PMID: 9370318 DOI: 10.1016/s0005-2760(97)00118-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K Ishidate
- Medical Research Institute, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
25
|
Abstract
Choline kinase, the initial enzyme of the CDP-choline pathway, mediates the conversion of choline to phosphorylcholine and is localized in the supernatant fraction of cells. The enzyme also catalyzes the phosphorylation of ethanolamine, functioning as the initial enzyme of the CDP-ethanolamine pathway as well. Yeast choline kinase is encoded by a single structural gene, CKI, which was cloned by the genetic complementation of the choline kinase mutation cki. The deduced sequence comprises 582 amino acid residues with a molecular mass of 66316 Da and bears local sequence similarity to various protein kinases and bacterial antibiotic phosphotransferases. The expression of yeast choline kinase is transcriptionally repressed by myo-inositol and choline in a coordinate manner with other phospholipid-synthesizing enzymes in yeast.
Collapse
Affiliation(s)
- S Yamashita
- Department of Biochemistry, Gunma University School of Medicine, Maebashi, Japan.
| | | |
Collapse
|
26
|
Affiliation(s)
- P C Choy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
27
|
Nakashima A, Hosaka K, Nikawa J. Cloning of a human cDNA for CTP-phosphoethanolamine cytidylyltransferase by complementation in vivo of a yeast mutant. J Biol Chem 1997; 272:9567-72. [PMID: 9083101 DOI: 10.1074/jbc.272.14.9567] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CTP-phosphoethanolamine cytidylyltransferase (ET) is the enzyme that catalyzes the formation of CDP-ethanolamine in the phosphatidylethanolamine biosynthetic pathway from ethanolamine. We constructed a Saccharomyces cerevisiae mutant of which the ECT1 gene, putatively encoding ET, was disrupted. This mutant showed a growth defect on ethanolamine-containing medium and a decrease of ET activity. A cDNA clone was isolated from a human glioblastoma cDNA expression library by complementation of the yeast mutant. Introduction of this cDNA into the yeast mutant clearly restored the formation of CDP-ethanolamine and phosphatidylethanolamine in cells. ET activity in transformants was higher than that in wild-type cells. The deduced protein sequence exhibited homology with the yeast, rat, and human CTP-phosphocholine cytidylyltransferases, as well as yeast ET. The cDNA gene product was expressed as a fusion with glutathione S-transferase in Escherichia coli and shown to have ET activity. These results clearly indicate that the cDNA obtained here encodes human ET.
Collapse
Affiliation(s)
- A Nakashima
- Department of Biochemical Engineering and Science, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820, Japan
| | | | | |
Collapse
|
28
|
The CDP-ethanolamine pathway in mammalian cells. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1874-5245(97)80013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Nishida I, Swinhoe R, Slabas AR, Murata N. Cloning of Brassica napus CTP: phosphocholine cytidylyltransferase cDNAs by complementation in a yeast cct mutant. PLANT MOLECULAR BIOLOGY 1996; 31:205-211. [PMID: 8756587 DOI: 10.1007/bf00021784] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
CTP:phosphocholine cytidylyltransferase is a rate-limiting enzyme in biosynthesis of phosphatidylcholine in plant cells. We have isolated four cDNAs for the cytidylyltransferase from a root cDNA library of Brassica napus by complementation in a yeast cct mutant. The deduced amino-acid sequences of the B. napus enzymes resembled rat and yeast enzymes in the central domain. Although all cytidylyltransferases ever cloned from B. napus and other organisms were predicted to be structurally hydrophilic, the yeast cct mutant transformed with one of the B. napus cDNA clones restored the cytidylyltransferase activity in the microsomal fraction as well as in the soluble fraction. These results are consistent with a recent view that yeast cells contained a machinery for targeting the yeast cytidylyltransferase to membranes, and may indicate that the B. napus enzyme was compatible with the machinery.
Collapse
Affiliation(s)
- I Nishida
- National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
30
|
Pavlidis P, Ramaswami M, Tanouye MA. The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell 1994; 79:23-33. [PMID: 7923374 DOI: 10.1016/0092-8674(94)90397-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have characterized easily shocked (eas), a Drosophila "band-sensitive" paralytic mutant. Electrophysiological recordings from flight muscles in the giant fiber pathway of adult eas flies reveal that induction of paralysis with electrical stimulation results in a brief seizure, followed by a failure of the muscles to respond to giant fiber stimulation. Molecular cloning, germline transformation, and biochemical experiments show that eas mutants are defective in the gene for ethanolamine kinase, which is required for a pathway of phosphatidylethanolamine synthesis. Assays of phospholipid composition reveal that total phosphatidylethanolamine is decreased in eas mutants. The data suggest that eas bang sensitivity is due to an excitability defect caused by altered membrane phospholipid composition.
Collapse
Affiliation(s)
- P Pavlidis
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|