1
|
Timpmann K, Linnanto JM, Yadav D, Kangur L, Freiberg A. Hydrostatic High-Pressure-Induced Denaturation of LH2 Membrane Proteins. J Phys Chem B 2021; 125:9979-9989. [PMID: 34460261 DOI: 10.1021/acs.jpcb.1c05789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The denaturation of globular proteins by high pressure is frequently associated with the release of internal voids and/or the exposure of the hydrophobic protein interior to a polar aqueous solvent. Similar evidence with respect to membrane proteins is not available. Here, we investigate the impact of hydrostatic pressures reaching 12 kbar on light-harvesting 2 integral membrane complexes of purple photosynthetic bacteria using two types of innate chromophores in separate strategic locations: bacteriochlorophyll-a in the hydrophobic interior and tryptophan at both protein-solvent interfacial gateways to internal voids. The complexes from mutant Rhodobacter sphaeroides with low resilience against pressure were considered in parallel with the naturally robust complexes of Thermochromatium tepidum. In the former case, a firm correlation was established between the abrupt blue shift of the bacteriochlorophyll-a exciton absorption, a known indicator of the breakage of tertiary structure pigment-protein hydrogen bonds, and the quenching of tryptophan fluorescence, a supposed result of further protein solvation. No such effects were observed in the reference complex. While these data may be naively taken as supporting evidence of the governing role of hydration, the analysis of atomistic model structures of the complexes confirmed the critical part of the structure in the pressure-induced denaturation of the membrane proteins studied.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Juha Matti Linnanto
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Dheerendra Yadav
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia.,Estonian Academy of Sciences, Kohtu Str. 6, Tallinn 10130, Estonia
| |
Collapse
|
2
|
Suresh L, Vaghasiya JV, Nandakumar DK, Wu T, Jones MR, Tan SC. High-Performance UV Enhancer Molecules Coupled with Photosynthetic Proteins for Ultra-Low-Intensity UV Detection. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Knox PP, Korvatovskiy BN, Gorokhov VV, Goryachev SN, Mamedov MD, Paschenko VZ. Comparison of tryptophan fluorescence lifetimes in cyanobacterial photosystem I frozen in the light and in the dark. PHOTOSYNTHESIS RESEARCH 2019; 139:441-448. [PMID: 30353420 DOI: 10.1007/s11120-018-0595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The dependence on temperature of tryptophan fluorescence lifetime in trimeric photosystem I (PSI) complexes from cyanobacteria Synechocystis sp. PCC 6803 during the heating of pre-frozen to - 180 °C in the dark or in the light-activated preparations has been studied. Fluorescence lifetime in samples frozen in the light was longer than in samples frozen in the dark. For samples in 65% glycerol at λreg = 335 nm and at 20 °C, the lifetime of components were as follows: τ1 ≈ 1.2 ns, τ2 ≈ 4.9 ns, and τ3 ≈ 20 ns. The contribution of the first component was negligible. To analyze the contribution of components 2 and 3 derived from frozen-thawed samples, two temperature ranges from - 180 to - 90 °C and above - 90 °C are considered. In doing so, the contributions of these components appear antiphase course to each other. The dependence on temperature of these contributions is explained by the influence of the microconformational protein dynamics on the tryptophan fluorescence lifetime. In the present work, a comparative analysis of temperature-dependent conformational dynamics and electron transfer in cyanobacterial PSI (Schlodder et al., in Biochemistry 37:9466-9476, 1998) and Rhodobacter sphaeroides reaction center complexes (Knox et al., in J Photochem Photobiol B 180:140-148, 2018) was also carried out.
Collapse
Affiliation(s)
- Peter P Knox
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Boris N Korvatovskiy
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir V Gorokhov
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey N Goryachev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir Z Paschenko
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
4
|
Ravi SK, Wu T, Udayagiri VS, Vu XM, Wang Y, Jones MR, Tan SC. Photosynthetic Bioelectronic Sensors for Touch Perception, UV-Detection, and Nanopower Generation: Toward Self-Powered E-Skins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802290. [PMID: 30101422 DOI: 10.1002/adma.201802290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Energy self-sufficiency is an inspirational design feature of biological systems that fulfills sensory functions. Plants such as the "touch-me-not" and "Venus flytrap" not only sustain life by photosynthesis, but also execute specialized sensory responses to touch. Photosynthesis enables these organisms to sustainably harvest and expend energy, powering their sensory abilities. Photosynthesis therefore provides a promising model for self-powered sensory devices like electronic skins (e-skins). While the natural sensory abilities of human skin have been emulated in man-made materials for advanced prosthetics and soft-robotics, no previous e-skin has incorporated phototransduction and photosensory functions that could extend the sensory abilities of human skin. A proof-of-concept bioelectronic device integrated with natural photosynthetic pigment-proteins is presented that shows the ability to sense not only touch stimuli (down to 3000 Pa), but also low-intensity ultraviolet radiation (down to 0.01 mW cm-2 ) and generate an electrical power of ≈260 nW cm-2 . The scalability of this device is demonstrated through the fabrication of flexible, multipixel, bioelectronic sensors capable of touch registration and tracking. The polysensory abilities, energy self-sufficiency, and additional nanopower generation exhibited by this bioelectronic system make it particularly promising for applications like smart e-skins and wearable sensors, where the photogenerated power can enable remote data transmission.
Collapse
Affiliation(s)
- Sai Kishore Ravi
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Tingfeng Wu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Vishnu Saran Udayagiri
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xuan Minh Vu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yanan Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
5
|
Knox PP, Gorokhov VV, Korvatovskiy BN, Lukashev EP, Goryachev SN, Paschenko VZ, Rubin AB. The effect of light and temperature on the dynamic state of Rhodobacter sphaeroides reaction centers proteins determined from changes in tryptophan fluorescence lifetime and P +Q A- recombination kinetics. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:140-148. [PMID: 29413697 DOI: 10.1016/j.jphotobiol.2018.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
The temperature dependencies of the rate of dark recombination of separated charges between the photoactive bacteriochlorophyll and the primary quinone acceptor (QA) in photosynthetic reaction centers (RCs) of the purple bacteria Rhodobacter sphaeroides (Rb. sphaeroides) were investigated. Measurements were performed in water-glycerol and trehalose environments after freezing to -180 °C in the dark and under actinic light with subsequent heating. Simultaneously, the RC tryptophanyl fluorescence lifetime in the spectral range between 323 and 348 nm was measured under these conditions. A correlation was found between the temperature dependencies of the functional and dynamic parameters of RCs in different solvent mixtures. For the first time, differences in the average fluorescence lifetime of tryptophanyl residues were measured between RCs frozen in the dark and in the actinic light. The obtained results can be explained by the RC transitions between different conformational states and the dynamic processes in the structure of the hydrogen bonds of RCs. We assumed that RCs exist in two main microconformations - "fast" and "slow", which are characterized by different rates of P+ and QA- recombination reactions. The "fast" conformation is induced in frozen RCs in the dark, while the "slow" conformation of RC occurs when the RC preparation is frozen under actinic light. An explanation of the temperature dependencies of tryptophan fluorescence lifetimes in RC proteins was made under the assumption that temperature changes affect mainly the electron transfer from the indole ring of the tryptophan molecule to the nearest amide or carboxyl groups.
Collapse
Affiliation(s)
- Peter P Knox
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir V Gorokhov
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris N Korvatovskiy
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene P Lukashev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey N Goryachev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Z Paschenko
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Andrew B Rubin
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Knox PP, Lukashev EP, Korvatovskii BN, Gorokhov VV, Grishanova NP, Seyfullina NK, Paschenko VZ, Rubin AB. A comparison of the temperature dependence of charge recombination in the ion-radical pair P870+QA - and tryptophan fluorescence in the photosynthetic reaction centers of Rhodobacter sphaeroides. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350916060191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Knox PP, Korvatovsky BN, Krasilnikov PM, Paschenko VZ, Seifullina NH, Grishanova NP, Rubin AB. Temperature dependence of protein fluorescence in Rb. sphaeroides reaction centers frozen to 80 K in the dark or on the actinic light as the indicator of protein conformational dynamics. DOKL BIOCHEM BIOPHYS 2016; 467:105-9. [PMID: 27193710 DOI: 10.1134/s1607672916020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/22/2022]
Abstract
The differences in the average fluorescence lifetime (τav) of tryptophanyls in photosynthetic reaction center (RC) of the purple bacteria Rb. sphaeroides frozen to 80 K in the dark or on the actinic light was found. This difference disappeared during subsequent heating at the temperatures above 250 K. The computer-based calculation of vibration spectra of the tryptophan molecule was performed. As a result, the normal vibrational modes associated with deformational vibrations of the aromatic ring of the tryptophan molecule were found. These deformational vibrations may be active during the nonradiative transition of the molecule from the excited to the ground state. We assume that the differences in τav may be associated with the change in the activity of these vibration modes due to local variations in the microenvironment of tryptophanyls during the light activation.
Collapse
Affiliation(s)
- P P Knox
- Biological Faculty, Moscow State University, Moscow, 119991, Russia.
| | - B N Korvatovsky
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - P M Krasilnikov
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - V Z Paschenko
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - N H Seifullina
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - N P Grishanova
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| | - A B Rubin
- Biological Faculty, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Palazzo G, Lopez F, Mallardi A. Effect of detergent concentration on the thermal stability of a membrane protein: The case study of bacterial reaction center solubilized by N,N-dimethyldodecylamine-N-oxide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:137-46. [DOI: 10.1016/j.bbapap.2009.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 11/29/2022]
|
9
|
Lin S, Katilius E, Haffa AL, Taguchi AK, Woodbury NW. Blue light drives B-side electron transfer in bacterial photosynthetic reaction centers. Biochemistry 2001; 40:13767-73. [PMID: 11705365 DOI: 10.1021/bi015612q] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The core of the photosynthetic reaction center from the purple non-sulfur bacterium Rhodobacter sphaeroides is a quasi-symmetric heterodimer, providing two potential pathways for transmembrane electron transfer. Past measurements have demonstrated that only one of the two pathways (the A-side) is used to any significant extent upon excitation with red or near-infrared light. Here, it is shown that excitation with blue light into the Soret band of the reaction center gives rise to electron transfer along the alternate or B-side pathway, resulting in a charge-separated state involving the anion of the B-side bacteriopheophytin. This electron transfer is much faster than normal A-side transfer, apparently occurring within a few hundred femtoseconds. At low temperatures, the B-side charge-separated state is stable for at least 1 ns, but at room temperature, the B-side bacteriopheophytin anion is short-lived, decaying within approximately 15 ps. One possible physiological role for B-side electron transfer is photoprotection, rapidly quenching higher excited states of the reaction center.
Collapse
Affiliation(s)
- S Lin
- Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | |
Collapse
|
10
|
Sau AK, Chen CA, Cowan JA, Mazumdar S, Mitra S. Steady-state and time-resolved fluorescence studies on wild type and mutant chromatium vinosum high potential iron proteins: holo- and apo-forms. Biophys J 2001; 81:2320-30. [PMID: 11566801 PMCID: PMC1301702 DOI: 10.1016/s0006-3495(01)75878-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Detailed circular dichroism (CD), steady-state and time-resolved tryptophan fluorescence studies on the holo- and apo- forms of high potential iron protein (HiPIP) from Chromatium vinosum and its mutant protein have been carried out to investigate conformational properties of the protein. CD studies showed that the protein does not have any significant secondary structure elements in the holo- or apo- HiPIP, indicating that the metal cluster does not have any effect on formation of secondary structure in the protein. Steady-state fluorescence quenching studies however, suggested that removal of the iron-sulfur ([Fe(4)S(4)](3+)) cluster from the protein leads to an increase in the solvent accessibility of tryptophans, indicating change in the tertiary structure of the protein. CD studies on the holo- and apo- HiPIP also showed that removal of the metal prosthetic group drastically affects the tertiary structure of the protein. Time-resolved fluorescence decay of the wild type protein was fitted to a four-exponentials model and that of the W80N mutant was fitted to a three-exponentials model. The time-resolved fluorescence decay was also analyzed by maximum entropy method (MEM). The results of the MEM analysis agreed with those obtained from discrete exponentials model analysis. Studies on the wild type and mutants helped to assign the fast picosecond lifetime component to the W80 residue, which exhibits fast fluorescence energy transfer to the [Fe(4)S(4)](3+) cluster of the protein. Decay-associated fluorescence spectra of each tryptophan residues were calculated from the time-resolved fluorescence results at different emission wavelengths. The results suggested that W80 is in the hydrophobic core of the protein, but W60 and W76 are partially or completely exposed to the solvent.
Collapse
Affiliation(s)
- A K Sau
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | | | | | | | | |
Collapse
|
11
|
Linke D, Frank J, Holzwarth JF, Soll J, Boettcher C, Fromme P. In vitro reconstitution and biophysical characterization of OEP16, an outer envelope pore protein of pea chloroplasts. Biochemistry 2000; 39:11050-6. [PMID: 10998242 DOI: 10.1021/bi001034m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
More than 30% of all proteins in the living cell are membrane proteins; most of them occur in the native membranes only in very low amounts, which hinders their functional and structural investigation. Here we describe the in vitro reconstitution of overexpressed Outer Envelope Protein 16 (OEP16) from pea chloroplasts, a cation-selective channel, which has been purified from E. coli inclusion bodies. Reconstitution in detergent micelles was monitored by CD and fluorescence spectroscopy. Electron microscopy showed a homogeneous size distribution of the reconstituted protein, and differential scanning calorimetry gave an estimate of the enthalpy of protein folding. First protein crystals were obtained that have to be further refined for X-ray structural analysis. The described methods of membrane protein reconstitution and biophysical analysis might prove helpful in the study of other membrane proteins.
Collapse
Affiliation(s)
- D Linke
- Max Volmer Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Maity H, Maiti NC, Jarori GK. Time-resolved fluorescence of tryptophans in yeast hexokinase-PI: effect of subunit dimerization and ligand binding. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 55:20-6. [PMID: 10877063 DOI: 10.1016/s1011-1344(00)00019-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved and steady-state fluorescence measurements have been performed on monomeric and dimeric forms of yeast hexokinase-PI. Observation of similar emission spectra and fluorescence decay parameters for both the forms of the enzyme suggests that tryptophan residue(s) are not likely to be present at the subunit-subunit interface and the process of dimerization does not perturb the local environment of tryptophan(s). The fluorescence decay of tryptophans in enzyme could be fitted to a bi-exponential function with two lifetime components, tau1 approximately 2.2 ns and tau2 approximately 3.9 ns. Binding of glucose, which is known to convert the 'open' conformation of the enzyme to a 'closed' active conformation, results in approximately 30% reduction in emission intensity and a selective decrease in tau1 from approximately 2.2 to approximately 1.1 ns. These effects can be reversed by the addition of trehalose 6-phosphate (an inhibitor of yeast hexokinase), suggesting that the trehalose 6-phosphate inhibits the enzyme by binding to its 'open' inactive conformation rather than competing with glucose to bind to the 'closed' active conformation. Binding of nucleotide ligands (ATP, ADP and adenyl-(beta,gamma-methylene)-diphosphate (AMPPCP)) to the monomeric or dimeric form of enzyme quenched the steady-state fluorescence by approximately 4-8%, but had no measurable effect on the distribution of lifetimes or on their magnitudes. Addition of nucleotides to the enzyme-glucose complex also did not produce any further change in fluorescence decay parameters. These results indicate that it is highly unlikely that the formation of a ternary enzyme-glucose-nucleotide complex from the binary enzyme-glucose complex is accompanied by a large conformational change in the enzyme, as has been surmised in some earlier studies.
Collapse
Affiliation(s)
- H Maity
- Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
13
|
Khan KK, Mazumdar S, Modi S, Sutcliffe M, Roberts GC, Mitra S. Steady-state and picosecond-time-resolved fluorescence studies on the recombinant heme domain of Bacillus megaterium cytochrome P-450. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:361-70. [PMID: 9119001 DOI: 10.1111/j.1432-1033.1997.00361.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The conformational changes associated with the interaction of sodium laurate with the recombinant heme domain for cytochrome P-450BM3 have been investigated by steady-state and picosecond-time-resolved fluorescence spectroscopy. The steady-state quenching experiments show that while all the five tryptophan residues are accessible to acrylamide in the free enzyme as well as the enzyme x substrate complex, the number of tryptophan residues accessible to ionic quenchers decreases on interaction of the substrate with the enzyme. This indicates that some of the tryptophan residues move towards the core of the protein on interaction with the substrate. The number of tryptophan residues accessible to the solvent as determined by the calculation of the solvent-accessible area for the free enzyme agrees with the values obtained by the quenching experiments. The time-resolved fluorescence studies carried out by means of the time-correlated single-photon-counting technique show that the fluorescence-decay curve is best fitted to a three-exponential model (0.2, 1.0 and 5.4 ns). Lifetime distributions, as recovered by the maximum-entropy method, agree with the discrete exponential model. The binding of the substrate does not lead to any significant change in the lifetime components of the enzyme, indicating that the tryptophan residues are possibly away from the substrate-binding domain. The decay-associated emission spectra and the magnitudes of amplitude of different lifetimes indicate that the shortest lifetime component (tau1) originates from the three tryptophan residues that are completely or partially accessible to the solvent, and tau2 originates from the tryptophan residues that are buried in the core of the enzyme and not accessible to the solvent. X-ray crystallographic data and solvent-acessible-area calculations have been used to identify these residues.
Collapse
Affiliation(s)
- K K Khan
- Chemical Physics Group, Tata Institute of Fundamental Research, Bombay, India
| | | | | | | | | | | |
Collapse
|
14
|
Döring K, Beck W, Konermann L, Jähnig F. The use of a long-lifetime component of tryptophan to detect slow orientational fluctuations of proteins. Biophys J 1997; 72:326-34. [PMID: 8994617 PMCID: PMC1184321 DOI: 10.1016/s0006-3495(97)78671-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The membrane protein porin and a synthetic polypeptide of 21 hydrophobic residues were inserted into detergent micelles or lipid membranes, and the fluorescence of their single tryptophan residue was measured in the time-resolved and polarized mode. In all cases, the tryptophan fluorescence exhibits a long-lifetime component of about 20 ns. This long-lifetime component was exploited to detect slow orientational motions in the range of tens of nanoseconds via the anisotropy decay. For this purpose, the analysis of the anisotropy has to be extended to account for different orientations of the dipoles of the short- and long-lifetime components. This is demonstrated for porin and the polypeptide solubilized in micelles, in which the longest relaxation time reflects the rotational diffusion of the micelle. When the polypeptide is inserted into lipid membranes, it forms a membrane-spanning alpha-helix, and the slowest relaxation process is interpreted as reflecting orientational fluctuations of the helix.
Collapse
Affiliation(s)
- K Döring
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany.
| | | | | | | |
Collapse
|
15
|
Time-Resolved Fluorescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996. [DOI: 10.1007/978-1-4613-0381-7_117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Das TK, Mazumdar S. pH-induced conformational perturbation in horseradish peroxidase. Picosecond tryptophan fluorescence studies on native and cyanide-modified enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:823-8. [PMID: 7867643 DOI: 10.1111/j.1432-1033.1995.tb20207.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fluorescence-decay characteristics of the single tryptophan present in horseradish peroxidase (HRP) have been studied using dye-laser pulses and single-photon counting techniques. The decay was found to be dominated by a picosecond-lifetime component, with small contributions from two other lifetime components in the nanosecond range. The distance of the tryptophan residue was estimated from the fluorescence-energy transfer to the heme moiety using Förster's theory. The tryptophan residue was found to be approximately 1.2 nm from the heme moiety at neutral pH. Detailed analysis of the fluorescence-decay profiles using the maximum-entropy method (MEM) has been carried out. The results of the MEM analysis also showed a maximum amplitude peak at approximately 45 ps (at pH approximately 7) with a very small (< 5%) contribution from two other components. Similar results were obtained with the cyanide derivative of the enzyme (HRPCN) where the major lifetime component was found to be 58 ps at neutral pH. The picosecond component of fluorescence lifetimes of native HRP as well as of HRPCN were found to increase with decrease in pH in the range pH 6-3.5. Moreover, the native enzyme showed significant increase in the magnitude of this fast lifetime component at pH above 8. Such increase in the major lifetime component possibly indicated a conformational perturbation caused by pH change in the enzyme. However, the pH dependence of HRPCN, which is devoid of alkaline transition, showed that the shortest lifetime component remains almost unchanged over the pH range 6-11. This result showed that the alkaline transition in native HRP is associated with a structural change in the distal region of the heme center, which is absent in the cyanide-ligated enzyme. The results have been discussed with respect to understanding the pH-induced effects associated with salt bridge and hydrogen-bonding network in HRP.
Collapse
Affiliation(s)
- T K Das
- Chemical Physics Group, Tata Institute of Fundamental Research, Bombay, India
| | | |
Collapse
|
17
|
Das TK, Mazumdar S. Conformational change due to reduction of cytochrome-c oxidase in lauryl maltoside: picosecond time-resolved tryptophan fluorescence studies on the native and heat modified enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1209:227-37. [PMID: 7811695 DOI: 10.1016/0167-4838(94)90189-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Detailed fluorescence studies on bovine heart cytochrome-c oxidase (CcO) has been carried out in lauryl maltoside solution. Steady-state fluorescence of the tryptophan residues of the enzyme showed that the fluorophores are embedded deep inside the hydrophobic protein cavity. Time resolved studies of tryptophan fluorescence of native and heat treated CcO have been carried out in both reduced and oxidised forms using synchronously pumped pulsed picosecond dye laser and single photon counting technique. Decay of the tryptophan fluorescence have been fitted using discrete four exponential model. Amplitude distribution of lifetimes also showed four distinct regions in the analysis of the decay profiles by maximum entropy method (MEM). The results indicate that controlled heat treatment of CcO affects the conformation of the enzyme near the active centers which makes it incapable of active proton pumping while the electron transfer property is still conserved. Reduction of the native CcO is associated with a large conformation change in lauryl maltoside near the active centers which is not observed in case of CcO encapsulated in vesicles. Reduction of the heat treated enzyme was found to have a conformation different from the reduced native CcO.
Collapse
Affiliation(s)
- T K Das
- Chemical Physics Group, Tata Institute of Fundamental Research, Colaba, Bombay, India
| | | |
Collapse
|
18
|
Das TK, Mazumdar S. Time-resolved study of tryptophan fluorescence in vesicle reconstituted cytochrome oxidase. Effect of redox transition. FEBS Lett 1993; 336:211-4. [PMID: 8262232 DOI: 10.1016/0014-5793(93)80805-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Time-resolved study of fluorescence decay of the tryptophan residue in bovine cytochrome c oxidase in phospholipid vesicles is reported for the first time. The effect of the redox state of the protein on its conformation has been investigated using time-resolved decay of tryptophan fluorescence in the oxidised and reduced protein. The fluorescence decay was best fitted using a discrete three exponential model. Amplitude distribution of lifetimes also showed three distinct regions in the analysis of decay profiles by the maximum entropy method (MEM). Results of the time resolved studies showed that the amplitudes as well as the lifetimes of the tryptophan fluorescence remain the same for the oxidised and the reduced states of cytochrome c oxidase, indicating that the environment around tryptophan residues remains more or less unaltered on reduction of the protein. The results suggest that there is no global conformational change in the protein on electron transfer and support the possibility of the existence of local fluctuations in the protein during the redox cycle.
Collapse
Affiliation(s)
- T K Das
- Chemical Physics Group, Tata Institute of Fundamental Research, Bombay, India
| | | |
Collapse
|