1
|
Rollins J, Worthington T, Dransfield A, Whitney J, Stanford J, Hooke E, Hobson J, Wengler J, Hope S, Mizrachi D. Expression of Cell-Adhesion Molecules in E. coli: A High Throughput Screening to Identify Paracellular Modulators. Int J Mol Sci 2023; 24:9784. [PMID: 37372932 DOI: 10.3390/ijms24129784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-adhesion molecules (CAMs) are responsible for cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Claudins (CLDNs), occludin (OCLN), and junctional adhesion molecules (JAMs) are CAMs' components of the tight junction (TJ), the single protein structure tasked with safeguarding the paracellular space. The TJ is responsible for controlling paracellular permeability according to size and charge. Currently, there are no therapeutic solutions to modulate the TJ. Here, we describe the expression of CLDN proteins in the outer membrane of E. coli and report its consequences. When the expression is induced, the unicellular behavior of E. coli is replaced with multicellular aggregations that can be quantified using Flow Cytometry (FC). Our method, called iCLASP (inspection of cell-adhesion molecules aggregation through FC protocols), allows high-throughput screening (HTS) of small-molecules for interactions with CAMs. Here, we focused on using iCLASP to identify paracellular modulators for CLDN2. Furthermore, we validated those compounds in the mammalian cell line A549 as a proof-of-concept for the iCLASP method.
Collapse
Affiliation(s)
- Jay Rollins
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Tyler Worthington
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Allison Dransfield
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jordan Whitney
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jordan Stanford
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Emily Hooke
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Joseph Hobson
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jacob Wengler
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Dario Mizrachi
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
2
|
Leow HC, Fischer K, Leow YC, Braet K, Cheng Q, McCarthy J. Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in Escherichia coli. Prep Biochem Biotechnol 2019; 49:315-327. [DOI: 10.1080/10826068.2019.1566145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Herng C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katja Fischer
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yee C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Drug Resistance Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Improvement in the production of the human recombinant enzyme N-acetylgalactosamine-6-sulfatase (rhGALNS) in Escherichia coli using synthetic biology approaches. Sci Rep 2017; 7:5844. [PMID: 28724898 PMCID: PMC5517531 DOI: 10.1038/s41598-017-06367-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/20/2017] [Indexed: 01/16/2023] Open
Abstract
Previously, we demonstrated production of an active recombinant human N-acetylgalactosamine-6-sulfatase (rhGALNS) enzyme in Escherichia coli as a potential therapeutic alternative for mucopolysaccharidosis IVA. However, most of the rhGALNS produced was present as protein aggregates. Here, several methods were investigated to improve production and activity of rhGALNS. These methods involved the use of physiologically-regulated promoters and alternatives to improve protein folding including global stress responses (osmotic shock), overexpression of native chaperones, and enhancement of cytoplasmic disulfide bond formation. Increase of rhGALNS activity was obtained when a promoter regulated under σs was implemented. Additionally, improvements were observed when osmotic shock was applied. Noteworthy, overexpression of chaperones did not have any effect on rhGALNS activity, suggesting that the effect of osmotic shock was probably due to a general stress response and not to the action of an individual chaperone. Finally, it was observed that high concentrations of sucrose in conjunction with the physiological-regulated promoter proUmod significantly increased the rhGALNS production and activity. Together, these results describe advances in the current knowledge on the production of human recombinant enzymes in a prokaryotic system such as E. coli, and could have a significant impact on the development of enzyme replacement therapies for lysosomal storage diseases.
Collapse
|
4
|
Paetzel M. Structure and mechanism of Escherichia coli type I signal peptidase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1497-508. [PMID: 24333859 DOI: 10.1016/j.bbamcr.2013.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 12/16/2022]
Abstract
Type I signal peptidase is the enzyme responsible for cleaving off the amino-terminal signal peptide from proteins that are secreted across the bacterial cytoplasmic membrane. It is an essential membrane bound enzyme whose serine/lysine catalytic dyad resides on the exo-cytoplasmic surface of the bacterial membrane. This review discusses the progress that has been made in the structural and mechanistic characterization of Escherichia coli type I signal peptidase (SPase I) as well as efforts to develop a novel class of antibiotics based on SPase I inhibition. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
5
|
Auclair SM, Bhanu MK, Kendall DA. Signal peptidase I: cleaving the way to mature proteins. Protein Sci 2011; 21:13-25. [PMID: 22031009 DOI: 10.1002/pro.757] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 11/07/2022]
Abstract
Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.
Collapse
Affiliation(s)
- Sarah M Auclair
- Department of Pharmaceutical Sciences, The University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
6
|
Drew D, Fröderberg L, Baars L, de Gier JWL. Assembly and overexpression of membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:3-10. [PMID: 12586374 DOI: 10.1016/s0005-2736(02)00707-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The bacterium Escherichia coli is one of the most popular model systems to study the assembly of membrane proteins of the so-called helix-bundle class. Here, based on this system, we review and discuss what is currently known about the assembly of these membrane proteins. In addition, we will briefly review and discuss how E. coli has been used as a vehicle for the overexpression of membrane proteins.
Collapse
Affiliation(s)
- David Drew
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Paetzel M, Dalbey RE, Strynadka NC. The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 2000; 87:27-49. [PMID: 10924740 DOI: 10.1016/s0163-7258(00)00064-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type I signal peptidases are essential membrane-bound serine proteases that function to cleave the amino-terminal signal peptide extension from proteins that are translocated across biological membranes. The bacterial signal peptidases are unique serine proteases that utilize a Ser/Lys catalytic dyad mechanism in place of the classical Ser/His/Asp catalytic triad mechanism. They represent a potential novel antibiotic target at the bacterial membrane surface. This review will discuss the bacterial signal peptidases that have been characterized to date, as well as putative signal peptidase sequences that have been recognized via bacterial genome sequencing. We review the investigations into the mechanism of Escherichia coli and Bacillus subtilis signal peptidase, and discuss the results in light of the recent crystal structure of the E. coli signal peptidase in complex with a beta-lactam-type inhibitor. The proposed conserved structural features of Type I signal peptidases give additional insight into the mechanism of this unique enzyme.
Collapse
Affiliation(s)
- M Paetzel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
8
|
Paetzel M, Dalbey RE, Strynadka NC. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 1998; 396:186-90. [PMID: 9823901 DOI: 10.1038/24196] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The signal peptidase (SPase) from Escherichia coli is a membrane-bound endopeptidase with two amino-terminal transmembrane segments and a carboxy-terminal catalytic region which resides in the periplasmic space. SPase functions to release proteins that have been translocated into the inner membrane from the cell interior, by cleaving off their signal peptides. We report here the X-ray crystal structure of a catalytically active soluble fragment of E. coli SPase (SPase delta2-75). We have determined this structure at 1.9 A resolution in a complex with an inhibitor, a beta-lactam (5S,6S penem), which is covalently bound as an acyl-enzyme intermediate to the gamma-oxygen of a serine residue at position 90, demonstrating that this residue acts as the nucleophile in the hydrolytic mechanism of signal-peptide cleavage. The structure is consistent with the use by SPase of Lys 145 as a general base in the activation of the nucleophilic Ser90, explains the specificity requirement at the signal-peptide cleavage site, and reveals a large exposed hydrophobic surface which could be a site for an intimate association with the membrane. As enzymes that are essential for cell viability, bacterial SPases present a feasible antibacterial target: our determination of the SPase structure therefore provides a template for the rational design of antibiotic compounds.
Collapse
Affiliation(s)
- M Paetzel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
9
|
Page MD, Saunders NFW, Ferguson SJ. Disruption of the Pseudomonas aeruginosa dipZ gene, encoding a putative protein-disulfide reductase, leads to partial pleiotropic deficiency in c-type cytochrome biogenesis. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3111-3112. [PMID: 9353916 DOI: 10.1099/00221287-143-10-3111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Pseudomonas aeruginosa dipZ gene has been cloned and sequenced. Whereas disruption of Escherichia coli dipZ (dsbD), the hydrophilic C-terminal domain of which has been deduced to be periplasmic and to function as a protein-disulfide reductase, leads to the absence of c-type cytochromes, disruption of P. aeruginosa dipZ attenuated, but did not abolish, holo-c-type cytochrome biosynthesis. Comparison of the P. aeruginosa DipZ sequence with three other DipZ sequences indicated that there are not only two conserved cysteine residues in the C-terminal hydrophilic domain, but also two more in the central highly hydrophobic domain. The latter would be located toward the centre of two of the eight membrane-spanning alpha-helices predicted to compose the hydrophobic central domain of DipZ. Both these cysteine residues, plus other transmembrane helix residues, notably prolines and glycines, are also conserved in a group of membrane proteins, related to Bacillus subtilis CcdA, which lack the N- and C-terminal hydrophilic domains of the DipZ proteins. It is proposed that DipZ of P. aeruginosa and other organisms transfers reducing power from the cytoplasm to the periplasm through reduction and reoxidation of an intramembrane disulfide bond, or other mechanism involving these cysteine residues, and that this function can also be performed by B. subtilis CcdA and other CcdA-like proteins. The failure of dipZ disruption to abolish c-type cytochrome synthesis in P. aeruginosa suggests that, in contrast to the situation in E. coli, the absence of DipZ can be compensated for by one or more other proteins, for example a CcdA-like protein acting in tandem with one or more thioredoxin-like proteins.
Collapse
Affiliation(s)
- M Dudley Page
- The Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil F W Saunders
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- The Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT, UK
| |
Collapse
|
10
|
Andersson H, Nilsson I, von Heijne G. Calnexin can interact with N-linked glycans located close to the endoplasmic reticulum membrane. FEBS Lett 1996; 397:321-4. [PMID: 8955372 DOI: 10.1016/s0014-5793(96)01207-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calnexin is a central component of the 'quality control' system in the endoplasmic reticulum (ER). Calnexin binds to monoglycosylated oligosaccharides on incompletely folded soluble and membrane proteins in the lumen of the ER and prevents exit from the organelle. We have previously found that the oligosaccharide transferase enzyme can add glycosyl moieties to a membrane protein when the acceptor site is as close as 12-13 residues away from the nearest transmembrane segment (J. Biol. Chem. 268, 5798). We now show that calnexin can bind to oligosaccharides located this close to the membrane, suggesting that its binding site is held at a similar distance from the membrane as is the active site of the oligosaccharide transferase. We further show that calnexin can bind efficiently to glycosylated but not to non-glycosylated forms of a bacterial inner membrane protein, suggesting that it does not have a general affinity for non-glycosylated proteins.
Collapse
Affiliation(s)
- H Andersson
- Department of Biochemistry, Stockholm University, Sweden
| | | | | |
Collapse
|
11
|
Luz JM, Lennarz WJ. Protein disulfide isomerase: a multifunctional protein of the endoplasmic reticulum. EXS 1996; 77:97-117. [PMID: 8856971 DOI: 10.1007/978-3-0348-9088-5_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein disulfide isomerase (PDI) is a resident enzyme of the endoplasmic reticulum (ER) that was discovered over three decades ago. Contemporary biochemical and molecular biology techniques have revealed that it is present in all eukaryotic cells studied and retained in the ER via a -KDEL or -HDEL sequence at its C-terminus. However, evidence is accumulating that in certain cell types, PDI can be found in other subcellular compartments, despite possessing an intact retention sequence. A wide range of studies has established that in presence of a redox pair, PDI acts catalytically to both form and reduce disulfide bonds, therefore acting as a disulfide isomerase. Recent studies have focused on the mechanism of the isomerization process and the precise role of the two active site sequences (-CGHC-) in the process. In addition, prokaryotes have been shown to possess a set of proteins that function in a similar fashion, being able to generate disulfide bonds on polypeptides translocated into the periplasmic space. Following the recent discovery that PDI binds peptides, coupled with earlier findings that PDI is a subunit of at least two enzymatic complexes (prolyl 4-hydroxylase and microsomal triglyceride transfer protein), it seems that it may serve functions other than merely that of a disulfide isomerase. In fact, it is now clear that PDI can facilitate protein folding independently of its disulfide isomerase activity. A major challenge for the future is to define mechanistically how it accomplishes isomerization and the relationship between this process and the protein folding steps that culminate in the final, fully mature protein.
Collapse
Affiliation(s)
- J M Luz
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA
| | | |
Collapse
|
12
|
Abstract
The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One form, Nostoc commune, encompasses a number of the features that appear to be critical to the withstanding of a long-term water deficit, including the elaboration of a conspicuous extracellular glycan, synthesis of abundant UV-absorbing pigments, and maintenance of protein stability and structural integrity. There are indications of a growing technology for air-dried cells and enzymes. Paradoxically, desiccation tolerance of bacteria has virtually been ignored for the past quarter century. The present review considers what is known, and what is not known, about desiccation, a phenomenon that impinges upon every facet of the distributions and activities of prokaryotic cells.
Collapse
Affiliation(s)
- M Potts
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| |
Collapse
|
13
|
Abstract
Disulphides are often vital for the folding and stability of proteins. Dedicated enzymatic systems have been discovered that catalyse the formation of disulphides in the periplasm of prokaryotes. These discoveries provide compelling evidence for the actual catalysis of protein folding in vivo. Disulphide bond formation in Escherichia coli is catalysed by at least three 'Dsb' proteins; DsbA, -B and -C. The DsbA protein has an extremely reactive, oxidizing disulphide which it simply donates directly to other proteins. DsbB is required for the reoxidation of DsbA. DsbC is active in disulphide rearrangements and appears to work synergistically with DsbA. The relative rarity of disulphides in cytoplasmic proteins appears to be dependent upon a disulphide-destruction machine. One pivotal cog in this machine is thioredoxin reductase.
Collapse
Affiliation(s)
- J C Bardwell
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| |
Collapse
|