1
|
McCarthy SD, Tilbury MA, Masterson CH, MacLoughlin R, González HE, Laffey JG, Wall JG, O'Toole D. Aerosol Delivery of a Novel Recombinant Modified Superoxide Dismutase Protein Reduces Oxidant Injury and Attenuates Escherichia coli Induced Lung Injury in Rats. J Aerosol Med Pulm Drug Deliv 2023; 36:246-256. [PMID: 37638822 DOI: 10.1089/jamp.2022.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure syndrome with diverse etiologies characterized by increased permeability of alveolar-capillary membranes, pulmonary edema, and acute onset hypoxemia. During the ARDS acute phase, neutrophil infiltration into the alveolar space results in uncontrolled release of reactive oxygen species (ROS) and proteases, overwhelming antioxidant defenses and causing alveolar epithelial and lung endothelial injury. Objectives: To investigate the therapeutic potential of a novel recombinant human Cu-Zn-superoxide dismutase (SOD) fusion protein in protecting against ROS injury and for aerosolized SOD delivery to treat Escherichia coli induced ARDS. Methods: Fusion proteins incorporating human Cu-Zn-SOD (hSOD1), with (pep1-hSOD1-his) and without (hSOD1-his) a fused hyaluronic acid-binding peptide, were expressed in E. coli. Purified proteins were evaluated in in vitro assays with human bronchial epithelial cells and through aerosolized delivery to the lung of an E. coli-induced ARDS rat model. Results: SOD proteins exhibited high SOD activity in vitro and protected bronchial epithelial cells from oxidative damage. hSOD1-his and pep1-hSOD1-his retained SOD activity postnebulization and exhibited no adverse effects in the rat. Pep1-hSOD1-his administered through instillation or nebulization to the lung of an E. coli-induced pneumonia rat improved arterial oxygenation and lactate levels compared to vehicle after 48 hours. Static lung compliance was improved when the pep1-hSOD1-his protein was delivered by instillation. White cell infiltration to the lung was significantly reduced by aerosolized delivery of protein, and reduction of cytokine-induced neutrophil chemoattractant-1, interferon-gamma, and interleukin 6 pro-inflammatory cytokine concentrations in bronchoalveolar lavage was observed. Conclusions: Aerosol delivery of a novel recombinant modified SOD protein reduces oxidant injury and attenuates E. coli induced lung injury in rats. The results provide a strong basis for further investigation of the therapeutic potential of hSOD1 in the treatment of ARDS.
Collapse
Affiliation(s)
- Sean D McCarthy
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - Maura A Tilbury
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Claire H Masterson
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Héctor E González
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - John G Laffey
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| | - J Gerard Wall
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- SFI Centre for Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Discipline of Anaesthesia, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Zou X, Wang L, Li Z, Luo J, Wang Y, Deng Z, Du S, Chen S. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Med Res Rev 2017; 38:229-260. [PMID: 28295439 DOI: 10.1002/med.21439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Xuan Zou
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Lianrong Wang
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Zhiqiang Li
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Jie Luo
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Yunfu Wang
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Zixin Deng
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Shi Chen
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| |
Collapse
|
3
|
Abstract
Protein folding in the cell, long thought to be a spontaneous process, in fact often requires the assistance of molecular chaperones. This is thought to be largely because of the danger of incorrect folding and aggregation of proteins, which is a particular problem in the crowded environment of the cell. Molecular chaperones are involved in numerous processes in bacterial cells, including assisting the folding of newly synthesized proteins, both during and after translation; assisting in protein secretion, preventing aggregation of proteins on heat shock, and repairing proteins that have been damaged or misfolded by stresses such as a heat shock. Within the cell, a balance has to be found between refolding of proteins and their proteolytic degradation, and molecular chaperones play a key role in this. In this review, the evidence for the existence and role of the major cytoplasmic molecular chaperones will be discussed, mainly from the physiological point of view but also in relationship to their known structure, function and mechanism of action. The two major chaperone systems in bacterial cells (as typified by Escherichia coli) are the GroE and DnaK chaperones, and the contrasting roles and mechanisms of these chaperones will be presented. The GroE chaperone machine acts by providing a protected environment in which protein folding of individual protein molecules can proceed, whereas the DnaK chaperones act by binding and protecting exposed regions on unfolded or partially folded protein chains. DnaK chaperones interact with trigger factor in protein translation and with ClpB in reactivating proteins which have become aggregated after heat shock. The nature of the other cytoplasmic chaperones in the cell will also be reviewed, including those for which a clear function has not yet been determined, and those where an in vivo chaperone function has still to be proven, such as the small heat shock proteins IbpA and IbpB. The regulation of expression of the genes of the heat shock response will also be discussed, particularly in the light of the signals that are needed to induce the response. The major signals for induction of the heat shock response are elevated temperature and the presence of unfolded protein within the cell, but these are sensed and transduced differently by different bacteria. The best characterized example is the sigma 32 subunit of RNA polymerase from E. coli, which is both more efficiently translated and also transiently stabilized following heat shock. The DnaK chaperones modulate this effect. However, a more widely conserved system appears to be typified by the HrcA repressor in Bacillus subtilis, the activity of which is modulated by the GroE chaperone machine. Other examples of regulation of molecular chaperones will also be discussed. Finally, the likely future research directions for molecular chaperone biology in the post-genomic era will be briefly evaluated.
Collapse
Affiliation(s)
- P A Lund
- School of BioSciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Battistoni A, Mazzetti AP, Rotilio G. In vivo formation of Cu,Zn superoxide dismutase disulfide bond in Escherichia coli. FEBS Lett 1999; 443:313-6. [PMID: 10025954 DOI: 10.1016/s0014-5793(98)01725-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have found that the in vivo folding of periplasmic Escherichia coli Cu,Zn superoxide dismutase is assisted by DsbA, which catalyzes the efficient formation of its single disulfide bond, whose integrity is essential to ensure full catalytic activity to the enzyme. In line with these findings, we also report that the production of recombinant Xenopus laevis Cu,Zn superoxide dismutase is enhanced when the enzyme is exported in the periplasmic space or is expressed in thioredoxin reductase mutant strains. Our data show that inefficient disulfide bond oxidation in the bacterial cytoplasm inhibits Cu,Zn superoxide dismutase folding in this cellular compartment.
Collapse
Affiliation(s)
- A Battistoni
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | | |
Collapse
|
5
|
In vitro incorporation of different transition metal ions into a cambialistic superoxide dismutase from Propionibacterium shermanii. J Inorg Biochem 1998. [DOI: 10.1016/s0162-0134(98)00014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Thomas JG, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold. Appl Biochem Biotechnol 1997; 66:197-238. [PMID: 9276922 DOI: 10.1007/bf02785589] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The high-level expression of recombinant gene products in the gram-negative bacterium Escherichia coli often results in the misfolding of the protein of interest and its subsequent degradation by cellular proteases or its deposition into biologically inactive aggregates known as inclusion bodies. It has recently become clear that in vivo protein folding is an energy-dependent process mediated by two classes of folding modulators. Molecular chaperones, such as the DnaK-DnaJ-GrpE and GroEL-GroES systems, suppress off-pathway aggregation reactions and facilitate proper folding through ATP-coordinated cycles of binding and release of folding intermediates. On the other hand, folding catalysts (foldases) accelerate rate-limiting steps along the protein folding pathway such as the cis/trans isomerization of peptidyl-prolyl bonds and the formation and reshuffling of disulfide bridges. Manipulating the cytoplasmic folding environment by increasing the intracellular concentration of all or specific folding modulators, or by inactivating genes encoding these proteins, holds great promise in facilitating the production and purification of heterologous proteins. Purified folding modulators and artificial systems that mimic their mode of action have also proven useful in improving the in vitro refolding yields of chemically denatured polypeptides. This review examines the usefulness and limitations of molecular chaperones and folding catalysts in both in vivo and in vitro folding processes.
Collapse
Affiliation(s)
- J G Thomas
- University of Washington, Department of Chemical Engineering, Seattle 98195-1750, USA
| | | | | |
Collapse
|
7
|
Abstract
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- S C Makrides
- Department of Molecular Biology, T Cell Sciences, Inc., Needham, Massachusetts 02194, USA
| |
Collapse
|
8
|
Carri MT, Battistoni A, Polizio F, Desideri A, Rotilio G. Impaired copper binding by the H46R mutant of human Cu,Zn superoxide dismutase, involved in amyotrophic lateral sclerosis. FEBS Lett 1994; 356:314-6. [PMID: 7805862 DOI: 10.1016/0014-5793(94)01295-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several point mutations in the gene coding for human Cu,Zn superoxide dismutase have been reported as being responsible for familial amyotrophic lateral sclerosis (FALS). However, no direct demonstration has been provided for a correlation between total superoxide dismutase activity and severity of the FALS pathology. In order to get a better insight into the mechanism(s) underlying the FALS phenotype, we have investigated the activity and the copper binding properties of the single mutant H46R, which is associated with a Japanese form of FALS. We have shown that this mutant is structurally stable but lacks significant enzyme activity and has impaired capability of binding catalytic copper. The mutant protein can be fully reconstituted with copper in vitro but its ESR spectrum displays an axial shape quite different from that of the wild-type.
Collapse
Affiliation(s)
- M T Carri
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | |
Collapse
|
9
|
Hill C, Gärtner W, Towner P, Braslavsky SE, Schaffner K. Expression of phytochrome apoprotein from Avena sativa in Escherichia coli and formation of photoactive chromoproteins by assembly with phycocyanobilin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:69-77. [PMID: 8033910 DOI: 10.1111/j.1432-1033.1994.tb18967.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phytochrome DNAs from oat (Avena sativa L.) encoding the full-length 124-kDa polypeptide, a 118-kDa fragment lacking the first 65 amino acids, and two N-terminal fragments of 65 kDa and 45 kDa were subcloned and expressed in Escherichia coli. Reducing the temperature to 25 degrees C during cell growth and the coexpression of chaperones improved the folding into a functional conformation for most of the polypeptides, and in one case the yield of polypeptides was also enhanced. A maximum yield of reconstitutable apoprotein was obtained by expressing the 65-kDa fragment consisting of 595 amino acids. The apoproteins could be assembled in the dark with phycocyanobilin into photoreversible chromoproteins. The yield of photoreversible pigment could be further increased by far-red/red irradiation cycles, indicating that the presence of the chromophore promotes the correct folding of the binding site. The chromoproteins with an intact N-terminal domain exhibit Pr and Pfr absorption bands, which are blue-shifted relative to the corresponding bands of native phytochrome due to the particular phycocyanobilin structure. The 118-kDa fragment, only lacking the 6-kDa N-terminus, exhibits a strong Pr band, but only a weak Pfr absorbance. This indicates an essential role of the front 6-kDa region of the protein in the formation of the far-red absorbing chromophore-protein complex. Otherwise, the C-terminal region seems to be less important for photoreversibility as indicated by the function of the shorter fragments.
Collapse
Affiliation(s)
- C Hill
- Max-Planck-Institut für Strahlenchemic, Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
10
|
Abstract
Recent advances in protein expression in E. coli have focused primarily on the enhancement of protein quality. Problems in mRNA translation such as inefficient initiation, mistranslation, frame-shifting and frame-hopping can often be addressed by altering heterologous gene-coding sequences. Fusion technology can also be used to address problems in translational initiation, the authenticity of amino-terminal amino acids, in vivo protein activity and protein purification. Accessory molecules, such as chaperones, are increasingly used to enhance protein quality in vivo and in vitro. E. coli has recently gained wide use as a host both for the engineering of proteins with altered activities and for the creation of multi-functional hybrids.
Collapse
Affiliation(s)
- P O Olins
- Monsanto Corporate Research, Monsanto Company, St. Louis, Missouri 63198
| | | |
Collapse
|