1
|
Staali L, Colin DA. Bi-component HlgC/HlgB and HlgA/HlgB γ-hemolysins from S. aureus: Modulation of Ca 2+ channels activity through a differential mechanism. Toxicon 2021; 201:74-85. [PMID: 34411591 DOI: 10.1016/j.toxicon.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Staphylococcal bi-component leukotoxins known as *pore-forming toxins* induce upon a specific binding to membrane receptors, two independent cellular events in human neutrophils. First, they provoke the opening of pre-existing specific ionic channels including Ca2+ channels. Then, they form membrane pores specific to monovalent cations leading to immune cells death. Among these leukotoxins, HlgC/HlgB and HlgA/HlgB γ-hemolysins do act in synergy to induce the opening of different types of Ca2+ channels in the absence as in the presence of extracellular Ca2+. Here, we investigate the mechanism underlying the modulation of Ca2+-independent Ca2+ channels in response to both active leukotoxins in human neutrophils. In the absence of extracellular Ca2+, the Mn2+ has been used as a Ca2+ surrogate to determine the activity of Ca2+-independent Ca2+ channels. Our findings provide new insights about different mechanisms involved in the staphylococcal γ-hemolysins activity to regulate three different types of Ca2+-independent Ca2+ channels. We conclude that (i) HlgC/HlgB stimulates the opening of La3+-sensitive Ca2+ channels, through a cholera toxin-sensitive G protein, (ii) HlgA/HlgB stimulates the opening of Ca2+ channels not sensitive to La3+, through a G protein-independent process, and (iii) unlike HlgA/HlgB, HlgC/HlgB toxins prevent the opening of a new type of Ca2+ channels by phosphorylation/de-phosphorylation-dependent mechanisms.
Collapse
Affiliation(s)
- Leila Staali
- Bacteriology Institute of Medical Faculty, Louis Pasteur University, 3 rue Koeberlé, F-67000, Strasbourg, France.
| | - Didier A Colin
- Bacteriology Institute of Medical Faculty, Louis Pasteur University, 3 rue Koeberlé, F-67000, Strasbourg, France
| |
Collapse
|
2
|
Barritt GJ, Litjens TL, Castro J, Aromataris E, Rychkov GY. Store-operated Ca2+ channels and microdomains of Ca2+ in liver cells. Clin Exp Pharmacol Physiol 2009; 36:77-83. [PMID: 19196257 DOI: 10.1111/j.1440-1681.2008.05095.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Oscillatory increases in the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) play essential roles in the hormonal regulation of liver cells. Increases in [Ca(2+)](cyt) require Ca(2+) release from the endoplasmic reticulum (ER) and Ca(2+) entry across the plasma membrane. 2. Store-operated Ca(2+) channels (SOCs), activated by a decrease in Ca(2+) in the ER lumen, are responsible for maintaining adequate ER Ca(2+). Experiments using patch-clamp recording and the fluorescent Ca(2+) reporter fura-2 indicate there is only one type of SOC in rat liver cells. These SOCs have a high selectivity for Ca(2+) and properties essentially indistinguishable from those of Ca(2+) release-activated Ca(2+) (CRAC) channels. 3. Although Orai1, a CRAC channel pore protein, and stromal interaction molecule 1 (STIM1), a CRAC channel Ca(2+) sensor, are components of liver cell SOCs, the mechanism of activation of SOCs, and in particular the role of subregions of the ER, are not well understood. 4. Recent experiments have used the transient receptor potential vanilloid 1 (TRPV1) non-selective cation channel, ectopically expressed in liver cells, and a choleretic bile acid to deplete Ca(2+) from different ER subregions. The results of these studies have provided evidence that only a small component of the ER is required for STIM1 redistribution and the activation of SOCs. 5. It is concluded that different Ca(2+) microdomains in the ER and cytoplasmic space are important in both the activation of SOCs and in the signalling actions of Ca(2+) in liver cells. Future experiments will investigate the nature of these microdomains further.
Collapse
Affiliation(s)
- Greg J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
3
|
Ca(2+) -permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:651-72. [PMID: 18291110 DOI: 10.1016/j.bbamcr.2008.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 01/24/2023]
Abstract
Hepatocytes are highly differentiated and spatially polarised cells which conduct a wide range of functions, including intermediary metabolism, protein synthesis and secretion, and the synthesis, transport and secretion of bile acids. Changes in the concentrations of Ca(2+) in the cytoplasmic space, endoplasmic reticulum (ER), mitochondria, and other intracellular organelles make an essential contribution to the regulation of these hepatocyte functions. While not yet fully understood, the spatial and temporal parameters of the cytoplasmic Ca(2+) signals and the entry of Ca(2+) through Ca(2+)-permeable channels in the plasma membrane are critical to the regulation by Ca(2+) of hepatocyte function. Ca(2+) entry across the hepatocyte plasma membrane has been studied in hepatocytes in situ, in isolated hepatocytes and in liver cell lines. The types of Ca(2+)-permeable channels identified are store-operated, ligand-gated, receptor-activated and stretch-activated channels, and these may vary depending on the animal species studied. Rat liver cell store-operated Ca(2+) channels (SOCs) have a high selectivity for Ca(2+) and characteristics similar to those of the Ca(2+) release activated Ca(2+) channels in lymphocytes and mast cells. Liver cell SOCs are activated by a decrease in Ca(2+) in a sub-region of the ER enriched in type1 IP(3) receptors. Activation requires stromal interaction molecule type 1 (STIM1), and G(i2alpha,) F-actin and PLCgamma1 as facilitatory proteins. P(2x) purinergic channels are the only ligand-gated Ca(2+)-permeable channels in the liver cell membrane identified so far. Several types of receptor-activated Ca(2+) channels have been identified, and some partially characterised. It is likely that TRP (transient receptor potential) polypeptides, which can form Ca(2+)- and Na(+)-permeable channels, comprise many hepatocyte receptor-activated Ca(2+)-permeable channels. A number of TRP proteins have been detected in hepatocytes and in liver cell lines. Further experiments are required to characterise the receptor-activated Ca(2+) permeable channels more fully, and to determine the molecular nature, mechanisms of activation, and precise physiological functions of each of the different hepatocyte plasma membrane Ca(2+) permeable channels.
Collapse
|
4
|
Martinez-Pinna J, Gurung IS, Vial C, Leon C, Gachet C, Evans RJ, Mahaut-Smith MP. Direct voltage control of signaling via P2Y1 and other Galphaq-coupled receptors. J Biol Chem 2004; 280:1490-8. [PMID: 15528188 DOI: 10.1074/jbc.m407783200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests that Ca2+ release evoked by certain G-protein-coupled receptors can be voltage-dependent; however, the relative contribution of different components of the signaling cascade to this response remains unclear. Using the electrically inexcitable megakaryocyte as a model system, we demonstrate that inositol 1,4,5-trisphosphate-dependent Ca2+ mobilization stimulated by several agonists acting via Galphaq-coupled receptors is potentiated by depolarization and that this effect is most pronounced for ADP. Voltage-dependent Ca2+ release was not induced by direct elevation of inositol 1,4,5-trisphosphate, by agents mimicking diacylglycerol actions, or by activation of phospholipase Cgamma-coupled receptors. The response to voltage did not require voltage-gated Ca2+ channels as it persisted in the presence of nifedipine and was only weakly affected by the holding potential. Strong predepolarizations failed to affect the voltage-dependent Ca2+ increase; thus, an alteration of G-protein betagamma subunit binding is also not involved. Megakaryocytes from P2Y1(-/-) mice lacked voltage-dependent Ca2+ release during the application of ADP but retained this response after stimulation of other Galphaq-coupled receptors. Although depolarization enhanced Ca2+ mobilization resulting from GTPgammaS dialysis and to a lesser extent during AlF4- or thimerosal, these effects all required the presence of P2Y1 receptors. Taken together, the voltage dependence to Ca2+ release via Galphaq-coupled receptors is not due to control of G-proteins or down-stream signals but, rather, can be explained by a voltage sensitivity at the level of the receptor itself. This effect, which is particularly robust for P2Y1 receptors, has wide-spread implications for cell signaling.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Diphosphate/pharmacology
- Aluminum Compounds/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Diglycerides/metabolism
- Enzyme Activation/drug effects
- Fluorides/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Ion Channel Gating/drug effects
- Male
- Megakaryocytes/drug effects
- Megakaryocytes/metabolism
- Membrane Potentials/drug effects
- Mice
- Mice, Inbred C57BL
- Nifedipine/pharmacology
- Phospholipase C gamma
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Purinergic P2/deficiency
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Signal Transduction/drug effects
- Thimerosal/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Juan Martinez-Pinna
- Department of Physiology, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
5
|
Kilic G, Fitz JG. Heterotrimeric G-proteins activate Cl- channels through stimulation of a cyclooxygenase-dependent pathway in a model liver cell line. J Biol Chem 2002; 277:11721-7. [PMID: 11812774 DOI: 10.1074/jbc.m108631200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circulating hormones produce rapid changes in the Cl(-) permeability of liver cells through activation of plasma membrane receptors coupled to heterotrimeric G-proteins. The resulting effects on intracellular pH, membrane potential, and Cl(-) content are important contributors to the overall metabolic response. Consequently, the purpose of these studies was to evaluate the mechanisms responsible for G-protein-mediated changes in membrane Cl(-) permeability using HTC hepatoma cells as a model. Using patch clamp techniques, intracellular dialysis with 0.3 mm guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) increased membrane conductance from 10 to 260 picosiemens/picofarads due to activation of Ca(2+)-dependent Cl(-) currents that were outwardly rectifying and exhibited slow activation at depolarizing potentials. These effects were mimicked by intracellular AlF(4)(-) (0.03 mm) and inhibited by pertussis toxin (PTX), consistent with current activation through Galpha(i). Studies using defined agonists and inhibitors indicate that Cl(-) channel activation by GTPgammaS occurs through an indomethacin-sensitive pathway involving sequential activation of phospholipase C, mobilization of Ca(2+) from inositol 1,4,5-trisphosphate-sensitive stores, and stimulation of phospholipase A(2) and cyclooxygenase (COX). Accordingly, the conductance responses to GTPgammaS or to intracellular Ca(2+) were inhibited by COX inhibitors. These results indicate that PTX-sensitive G-proteins regulate the Cl(-) permeability of HTC cells through Ca(2+)-dependent stimulation of COX activity. Thus, receptor-mediated activation of Galpha(i) may be essential for hormonal regulation of liver transport and metabolism through COX-dependent opening of a distinct population of plasma membrane Cl(-) channels.
Collapse
Affiliation(s)
- Gordan Kilic
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
6
|
Tertyshnikova S, Fein A. Dual regulation of calcium mobilization by inositol 1,4, 5-trisphosphate in a living cell. J Gen Physiol 2000; 115:481-90. [PMID: 10736314 PMCID: PMC2233754 DOI: 10.1085/jgp.115.4.481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Changes in cytosolic free calcium ([Ca(2+)](i)) often take the form of a sustained response or repetitive oscillations. The frequency and amplitude of [Ca(2+)](i) oscillations are essential for the selective stimulation of gene expression and for enzyme activation. However, the mechanism that determines whether [Ca(2+)](i) oscillates at a particular frequency or becomes a sustained response is poorly understood. We find that [Ca(2+)](i) oscillations in rat megakaryocytes, as in other cells, results from a Ca(2+)-dependent inhibition of inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. Moreover, we find that this inhibition becomes progressively less effective with higher IP(3) concentrations. We suggest that disinhibition, by increasing IP(3) concentration, of Ca(2+)-dependent inhibition is a common mechanism for the regulation of [Ca(2+)](i) oscillations in cells containing IP(3)-sensitive Ca(2+) stores.
Collapse
Affiliation(s)
- Svetlana Tertyshnikova
- From the Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3505
| | - Alan Fein
- From the Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3505
| |
Collapse
|
7
|
Fernando KC, Gregory RB, Barritt GJ. Protein kinase A regulates the disposition of Ca2+ which enters the cytoplasmic space through store-activated Ca2+ channels in rat hepatocytes by diverting inflowing Ca2+ to mitochondria. Biochem J 1998; 330 ( Pt 3):1179-87. [PMID: 9494083 PMCID: PMC1219259 DOI: 10.1042/bj3301179] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The roles of a trimeric GTP-binding regulatory protein, protein kinase A and mitochondria in the regulation of store-activated (thapsigargin-stimulated) Ca2+ inflow in freshly-isolated rat hepatocytes were investigated. Rates of Ca2+ inflow were estimated by measuring the increase in the fluorescence of intracellular fura-2 following the addition of extracellular Ca2+ (Ca2+o) to cells incubated in the absence of added Ca2+o. Guanosine 5'-[gamma-thio]-triphosphate (GTP[S]) and AlF4(-) inhibited the thapsigargin-stimulated Ca2+o-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and this inhibition was prevented by the Rp diastereoisomer of adenosine 3',5'-(cyclic)phosphoro[thioate]. cAMP, forskolin and glucagon (half-maximal effect at 10 nM) mimicked inhibition of the thapsigargin-stimulated Ca2+o-induced increase in [Ca2+]c by GTP[S], but had little effect on thapsigargin-induced release of Ca2+ from intracellular stores. Azide and carbonyl cyanide p-trifluoromethoxyphenylhydrazone inhibited the thapsigargin-stimulated Ca2+o-induced increase in [Ca2+]c in the presence of increased cAMP (induced by glucagon). In contrast, Ruthenium Red markedly enhanced the thapsigargin-stimulated Ca2+o-induced increase in [Ca2+]c in both the presence and absence of increased cAMP (induced by forskolin and dibutyryl cAMP). It is concluded that, in hepatocytes, protein kinase A regulates the disposition of Ca2+, which enters the cytoplasmic space through store-activated Ca2+ channels, by directing some of this Ca2+ to the mitochondria. The idea that caution should be exercised in using observed values of Ca2+o-induced increase in [Ca2+]c as estimates of rates of agonist-stimulated Ca2+ inflow is briefly discussed.
Collapse
Affiliation(s)
- K C Fernando
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia, 5001, Australia
| | | | | |
Collapse
|
8
|
Fernando KC, Gregory RB, Katsis F, Kemp BE, Barritt GJ. Evidence that a low-molecular-mass GTP-binding protein is required for store-activated Ca2+ inflow in hepatocytes. Biochem J 1997; 328 ( Pt 2):463-71. [PMID: 9371702 PMCID: PMC1218942 DOI: 10.1042/bj3280463] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The roles of a monomeric GTP-binding regulatory protein in the activation of store-activated plasma membrane Ca2+ channels and in the release of Ca2+ from the smooth endoplasmic reticulum (SER) in rat liver parenchymal cells were investigated with the use of freshly isolated rat hepatocytes and rat liver microsomes. A low concentration (approx. 130 microM intracellular) of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) activated Ca2+ inflow in intact hepatocytes in the absence of an agonist, whereas a high concentration (approx. 530 microM intracellular) of GTP-S- or guanosine 5'-[betagamma-imido]triphosphate (p[NH]ppG) inhibited the Ca2+ inflow induced by inhibitors of the activity of the endoplasmic-reticulum Ca2+-ATPase (SERCA) and by vasopressin. GTP (530 microM) prevented the inhibition of Ca2+ inflow by GTP-S- and p[NH]ppG. Brefeldin A and the peptide human Arf-1-(2-17), which inhibit many functions of ADP ribosylation factor (Arf) proteins, inhibited the Ca2+ inflow induced by SERCA inhibitors and vasopressin, and altered the profile of Ca2+ release from the SER. These effects were observed at concentrations of Brefeldin A and Arf-1-(2-17) comparable with those that inhibit the functions of Arf proteins in other systems. Succinylated Arf-1-(2-17) had a negligible effect on Ca2+ inflow. GTP[S] and Arf-1-(2-17) completely inhibited the synergistic action of GTP and Ins(1,4,5)P3 in releasing 45Ca2+ from rat liver microsomes loaded with 45Ca2+. AlF4(-) (under conditions expected to activate trimeric G-proteins) and succinylated Arf-1-(2-17) had no effect on GTP/Ins(1,4,5))3-induced 45Ca2+ release, and a mastoparan analogue caused partial inhibition. Arf-1-(2-17) did not inhibit 45Ca2+ release induced by either thapsigargin or ionomycin. It is concluded that a low-molecular-mass G-protein, most probably a member of the Arf protein family, is required for store-activated Ca2+ inflow in rat hepatocytes. The idea that the role of this G-protein is to maintain a region of the SER in the correct intracellular location is discussed briefly.
Collapse
Affiliation(s)
- K C Fernando
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, G.P.O. Box 2100, Adelaide, South Australia, 5001, Australia
| | | | | | | | | |
Collapse
|
9
|
Abstract
It is generally accepted that in endothelial cells the occupation of bradykinin B2 receptors, which are linked to the guanine nucleotide-dependent regulatory proteins, Gi and Gq, results in the activation of phospholipase C-beta1 (PLC-beta1), followed by a transient increase in the formation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. The PLC-beta1 isoform, in contrast to the gamma1 isoform, is present only at a low level in cultured endothelial cells, implying that PLC-gamma1 activation may play an important role in endothelial signaling pathways. In cultured human endothelial cells, bradykinin induced a rapid increase in the tyrosine phosphorylation of several Triton-soluble proteins. Immunoprecipitation of tyrosine-phosphorylated proteins from bradykinin-stimulated cells followed by Western blotting using the respective antibodies facilitated the identification of a 77 kiloDalton (kDa) protein as paxillin, a 130 kDa protein as PLC-gamma1, and a 42/44 kDa doublet as mitogen-activated protein (MAP) kinase. The bradykinin-induced tyrosine phosphorylation of PLC-gamma1 was relatively transient and was associated with an increase in intracellular levels of IP3. Bradykinin also induced the rapid and transient activation of phosphotyrosine phosphatases localized mainly in the Triton X-100-soluble cell fraction; this tyrosine phosphatase activity was apparently initiated after the release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- I Fleming
- Zentrum der Physiologie, Klinikum der J.W. Goethe-Universitat, Frankfurt/Main, Germany
| | | |
Collapse
|
10
|
Regioselective synthesis of photolabile P(1,2)- and P(4,5)-(o-nitrobenzyl) esters of myo-inositol 1,2,3,4,5,6-hexakisphosphate. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(96)02501-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Favre CJ, Nüsse O, Lew DP, Krause KH. Store-operated Ca2+ influx: what is the message from the stores to the membrane? THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1996; 128:19-26. [PMID: 8759933 DOI: 10.1016/s0022-2143(96)90110-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C J Favre
- Division of Infectious Diseases, University Hospital, Geneva, Switzerland
| | | | | | | |
Collapse
|
12
|
Lan L, Bawden MJ, Auld AM, Barritt GJ. Expression of Drosophila trpl cRNA in Xenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5'[gamma-thio]triphosphate. Biochem J 1996; 316 ( Pt 3):793-803. [PMID: 8670154 PMCID: PMC1217420 DOI: 10.1042/bj3160793] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of expression of the Drosophila melanogaster Trpl protein, which is thought to encode a putative Ca2+ channel [Phillips, Bull and Kelly (1992) Neuron 8, 631-642], on divalent cation inflow in Xenopus laevis oocytes were investigated. The addition of extracellular Ca2+ ([Ca2+]0) to oocytes injected with trpl cRNA and to mock-injected controls, both loaded with the fluorescent Ca2+ indicator fluo-3, induced a rapid initial and a slower sustained rate of increase in fluorescence, which were designated the initial and sustained rates of Ca2+ inflow respectively. Compared with mock-injected oocytes, trpl-cRNA-injected oocytes exhibited a higher resting cytoplasmic free Ca2+ concentration ([Ca2+]i), and higher initial and sustained rates of Ca2+ inflow in the basal (no agonist) states. The basal rate of Ca2+ inflow in trpl-cRNA-injected oocytes increased with (1) an increase in the time elapsed between injection of trpl cRNA and the measurement of Ca2+ inflow, (2) an increase in the amount of trpl cRNA injected and (3) an increase in [Ca2+]0. Gd3+ inhibited the trpl cRNA-induced basal rate of Ca2+ inflow, with a concentration of approx. 5 microM Gd3+ giving half-maximal inhibition. Expression of trpl cRNA also caused an increase in the basal rate of Mn2+ inflow. The increases in resting [Ca2+]1 and in the basal rate of Ca2+ inflow induced by expression of trpl cRNA were inhibited by the calmodulin inhibitors W13, calmodazolium and peptide (281-309) of (Ca2+ and calmodulin)-dependent protein kinase II. A low concentration of exogenous calmodulin (introduced by microinjection) activated, and a higher concentration inhibited, the trpl cRNA-induced increase in basal rate of Ca2+ inflow. The action of the high concentration of exogenous calmodulin was reversed by W13 and calmodazolium. When rates of Ca2+ inflow in trpl-cRNA-injected oocytes were compared with those in mock-injected oocytes, the guanosine 5'-[beta-thio]diphosphate-stimulated rate was greater, the onset of thapsigargin-stimulated initial rate somewhat delayed and the inositol 1,4,5-trisphosphate-stimulated initial rate markedly inhibited. It is concluded that (1) the divalent cation channel activity of the Drosophila Trpl protein can be detected in Xenopus oocytes: (2) in the environment of the Xenopus oocyte the Trpl channel admits some Mn2+ as well as Ca2+, is activated by cytoplasmic free Ca2+ (through endogenous calmodulin) and by a trimeric GTP-binding regulatory protein, but does not appear to be activated by depletion of Ca2+ in the endoplasmic reticulum; and (3) expression of the Trpl protein inhibits the process by which the release of Ca2+ from intracellular stores activates endogenous store-activated Ca2+ channels.
Collapse
Affiliation(s)
- L Lan
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
13
|
Fleming I, Fisslthaler B, Busse R. Interdependence of calcium signaling and protein tyrosine phosphorylation in human endothelial cells. J Biol Chem 1996; 271:11009-15. [PMID: 8631922 DOI: 10.1074/jbc.271.18.11009] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The signal transduction cascade which initiates transmembraneous influx of Ca2+ into endothelial cells in response to the discharge of intracellular Ca2+ stores is thought to involve a step sensitive to tyrosine kinase inhibition. We investigated the interrelationship between Ca2+ signaling and protein tyrosine phosphorylation following cell stimulation with either the receptor-dependent agonist, bradykinin, or the protein-tyrosine phosphatase inhibitor, phenylarsine oxide. In cultured human endothelial cells phenylarsine oxide instigated a concentration-dependent increase in the intracellular concentration of free Ca2+ ([Ca2+]i). This increase in [Ca2+]i was not associated with the tyrosine phosphorylation of phospholipase C gamma, enhanced formation of inositol 1,4,5-trisphosphate, or the rapid depletion of intracellularly stored Ca2+ but was coincident with the enhanced and prolonged tyrosine phosphorylation of a number of cytoskeletal proteins. In bradykinin-stimulated cells the tyrosine phosphorylation of the same cytoskeletal proteins (most notably 85- and 100-kDa proteins) was transient when cells were stimulated in the presence of extracellular Ca2+, was maintained under Ca2+-free conditions, and was reversed following readdition of extracellular Ca2+. These data suggest that the tyrosine phosphorylation of 2 cytoskeletal proteins is determined by the level of Ca2+ present in intracellular stores thus indicating a critical role for tyrosine phosphorylation in the control of capacitative Ca2+ entry in endothelial cells.
Collapse
Affiliation(s)
- I Fleming
- Zentrum der Physiologie, Klinikum der J.W. Goethe-Universität, Frankfurt/Main, Germany
| | | | | |
Collapse
|
14
|
Auld AM, Bawden MJ, Berven LA, Harland L, Hughes BP, Barritt GJ. Injection of rat hepatocyte poly(A)+ RNA to Xenopus laevis oocytes leads to expression of a constitutively-active divalent cation channel distinguishable from endogenous receptor-activated channels. Cell Calcium 1996; 19:439-52. [PMID: 8793184 DOI: 10.1016/s0143-4160(96)90117-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of hepatocyte plasma membrane receptor-activated divalent cation channels in immature (stages V and VI) Xenopus laevis oocytes and the properties which allow these channels to be distinguished from endogenous receptor-activated divalent cation channels were investigated. Divalent cation inflow to oocytes housed in a multiwell plate was measured using the fluorescent dyes Fluo-3 and Fura-2. In control oocytes, ionomycin, cholera toxin, thapsigargin, 3-fluoro-inositol 1,4,5-trisphosphate (InsP3F) and guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) stimulated Ca2+ and Mn2+ inflow following addition of these ions to the oocytes. Ionomycin-, cholera-toxin-, thapsigargin- and InsP3F-stimulated Ca2+ inflow was inhibited by Gd3+ (half maximal inhibition at less thari 5 microM Gd3+ for InsP3F-stimulated Ca2+ inflow). GTP gamma S-stimulated Ca2+ inflow was insensitive to 50 microM Gd3+ and to SK&F 96365. These results indicate that at least three types of endogenous receptor-activated Ca2+ channels can be detected in Xenopus oocytes using Ca(2+)-sensitive fluorescent dyes: lanthanide-sensitive divalent cation channels activated by intracellular Ca2+ store depletion, lanthanide-sensitive divalent cation channels activated by cholera toxin, and lanthanide-insensitive divalent cation channels activated by an unknown trimeric G-protein. Oocytes microinjected with rat hepatocyte poly(A)+ RNA exhibited greater rates of Ca2+ and Mn2+ inflow in the basal (no agonist) state, greater rates of Ca2+ inflow in the presence of vasopressin or InsP3F and greater rates of Ba2+ inflow in the presence of InsP3F, when compared with "mock"-injected oocytes. In poly(A)+ RNA-injected oocytes, vasopressin- and InsP3F-stimulated Ca2+ inflow, but not basal Ca2+ inflow, was inhibited by Gd3+. It is concluded that at least one type of hepatocyte plasma membrane divalent cation channel, which admits Mn2+ as well as Ca2+ and is lanthanide-insensitive, can be expressed and detected in Xenopus oocytes.
Collapse
Affiliation(s)
- A M Auld
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Berven LA, Crouch MF, Katsis F, Kemp BE, Harland LM, Barritt GJ. Evidence that the pertussis toxin-sensitive trimeric GTP-binding protein Gi2 is required for agonist- and store-activated Ca2+ inflow in hepatocytes. J Biol Chem 1995; 270:25893-7. [PMID: 7592776 DOI: 10.1074/jbc.270.43.25893] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of a trimeric GTP-binding protein (G-protein) in the mechanism of vasopressin-dependent Ca2+ inflow in hepatocytes was investigated using both antibodies against the carboxyl termini of trimeric G-protein alpha subunits, and carboxyl-terminal alpha-subunit synthetic peptides. An anti-Gi1-2 alpha antibody and a Gi2 alpha peptide (Gi2 alpha) Ile345-Phe355), but not a Gi3 alpha peptide (Gi3 alpha Ile344-Phe354), inhibited vasopressin- and thapsigargin-stimulated Ca2+ inflow, had no effect on vasopressin-stimulated release of Ca2+ from intracellular stores, and caused partial inhibition of thapsigargin-stimulated release of Ca2+. An anti-Gq alpha antibody also inhibited vasopressin-stimulated Ca2+ inflow and partially inhibited vasopressin-induced release of Ca2+ from intracellular stores. Immunofluorescence measurements showed that Gi2 alpha is distributed throughout much of the interior of the hepatocyte as well as at the periphery of the cell. By contrast, Gq/11 alpha was found principally at the cell periphery. It is concluded that the trimeric G-protein, Gi2, is required for store-activated Ca2+ inflow in hepatocytes and acts between the release of Ca2+ from the endoplasmic reticulum (presumably adjacent to the plasma membrane) and the receptor-activated Ca2+ channel protein(s) in the plasma membrane.
Collapse
Affiliation(s)
- L A Berven
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia
| | | | | | | | | | | |
Collapse
|
16
|
Fernando KC, Barritt GJ. Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:97-106. [PMID: 7542927 DOI: 10.1016/0167-4889(95)00041-p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides.
Collapse
Affiliation(s)
- K C Fernando
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | |
Collapse
|
17
|
Berven LA, Barritt GJ. Evidence obtained using single hepatocytes for inhibition by the phospholipase C inhibitor U73122 of store-operated Ca2+ inflow. Biochem Pharmacol 1995; 49:1373-9. [PMID: 7763279 DOI: 10.1016/0006-2952(95)00050-a] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ability of 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17- yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), an inhibitor of phospholipase C (Smith et al., J Pharmacol Exp Ther 253:688-697, 1992), to inhibit agonist-stimulated and store-operated Ca2+ inflow in single hepatocytes was investigated with the aim of testing whether the activation of phospholipase C is a necessary step in the process of agonist-stimulated Ca2+ inflow in this cell type. U73122 inhibited the release of Ca2+ from intracellular stores and plasma membrane Ca2+ inflow induced by vasopressin. An inactive analogue of U73122, 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]- 2,5-pyrrolidone-dione (U73433), did not inhibit vasopressin-induced release of Ca2+ from intracellular stores, but did partially inhibit Ca2+ inflow. Neither U73122 nor 'inactive' analogue U73433 inhibited the release of Ca2+ from intracellular stores when this was initiated by the photolysis of 'caged' guanosine (5'-[gamma-thio]triphosphate (GTP gamma S) introduced to the cytoplasmic space by microinjection. However, both compounds inhibited GTP gamma S-stimulated Ca2+ inflow. U73122 also inhibited the actions of glycerophosphoryl-myo-inositol-4,5-diphosphate (GPIP2), a slowly-hydrolysed analogue of inositol 1,4,5-triphosphate (InsP3) which is released by photolysis of 'caged' 1-(alpha-glycerophosphoryl)-myo-inositol-4,5-diphosphate, P4(5)-1-(2-nitrophenyl)ethyl ester, and thapsigargin in stimulating Ca2+ inflow. U73122 did not inhibit GPIP2-stimulated release of Ca2+ from intracellular stores, but did partially inhibit the ability of thapsigargin to induce Ca2+ release. It is concluded that, while U73122 does inhibit phospholipase C beta in hepatocytes, complete inhibition of this enzyme in situ requires an intracellular concentration of U73122 higher than that achieved in the present experiments. Moreover, both U73122 and 'inactive' analogue U73433 have one or possibly two additional sites of action. These are likely to be the hepatocyte plasma membrane Ca2+ inflow channel protein (or a protein involved in the activation of this channel by the InsP3-sensitive intracellular Ca2+ store), and a protein involved in thapsigargin action.
Collapse
Affiliation(s)
- L A Berven
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | |
Collapse
|