1
|
Misao T, Fukushima K, Fujino H. Novel anti-cancer effect of 2-arachidonoylglycerol via processing body formation in HCA-7 human colon cancer cells. Prostaglandins Other Lipid Mediat 2024; 174:106861. [PMID: 38876400 DOI: 10.1016/j.prostaglandins.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) has been reported to exhibit anticancer effects, including against colorectal cancer (CRC); however, the detailed mechanisms have not been clarified. Herein, we demonstrated that 2-AG suppressed cyclooxygenase-2 (COX-2) expression induced by prostaglandin E2 in human colon cancer HCA-7 cells. The suppression of COX-2 expression by 2-AG was through the acceleration of processing body (P-body) formation followed by COX-2 mRNA degradation. These effects were restored by TAK-715, a specific inhibitor of p38 MAPK. Therefore, the effect of 2-AG on COX-2 may be distinct from conventional non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit the function of COX-2, whereas 2-AG suppresses the protein expression of COX-2. Recently, the cardiovascular risks of NSAIDs were reported by the Food and Drug Administration in the United States. Therefore, elucidation of the effect of 2-AG is expected to contribute to the development of an alternative and novel therapeutic option that would have no or fewer risks regarding cardiovascular events.
Collapse
Affiliation(s)
- Takaya Misao
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
| |
Collapse
|
2
|
Rahman M, Upadhyay S, Ganguly K, Introna M, Ji J, Boman C, Muala A, Blomberg A, Sandström T, Palmberg L. Comparable Response Following Exposure to Biodiesel and Diesel Exhaust Particles in Advanced Multicellular Human Lung Models. TOXICS 2023; 11:532. [PMID: 37368632 DOI: 10.3390/toxics11060532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated the effect of exhaust particles from well-characterized rapeseed methyl ester (RME) biodiesel exhaust particles (BDEP) and petro-diesel exhaust particles (DEP) on primary bronchial epithelial cells (PBEC) and macrophages (MQ). The advanced multicellular physiologically relevant bronchial mucosa models were developed using human primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) in the presence or absence of THP-1 cell-derived macrophages (MQ). The experimental set-up used for BDEP and DEP exposures (18 µg/cm2 and 36 µg/cm2) as well as the corresponding control exposures were PBEC-ALI, MQ-ALI, and PBEC co-cultured with MQ (PBEC-ALI/MQ). Following exposure to both BDEP and DEP, reactive oxygen species as well as the stress protein heat shock protein 60 were upregulated in PBEC-ALI and MQ-ALI. Expression of both pro-inflammatory (M1: CD86) and repair (M2: CD206) macrophage polarization markers was increased in MQ-ALI after both BDEP and DEP exposures. Phagocytosis activity of MQ and the phagocytosis receptors CD35 and CD64 were downregulated, whereas CD36 was upregulated in MQ-ALI. Increased transcript and secreted protein levels of CXCL8, as well as IL-6 and TNF-α, were detected following both BDEP and DEP exposure at both doses in PBEC-ALI. Furthermore, the cyclooxygenase-2 (COX-2) pathway, COX-2-mediated histone phosphorylation and DNA damage were all increased in PBEC-ALI following exposure to both doses of BDEP and DEP. Valdecoxib, a COX-2 inhibitor, reduced the level of prostaglandin E2, histone phosphorylation, and DNA damage in PBEC-ALI following exposure to both concentrations of BDEP and DEP. Using physiologically relevant multicellular human lung mucosa models with human primary bronchial epithelial cells and macrophages, we found BDEP and DEP to induce comparable levels of oxidative stress, inflammatory response, and impairment of phagocytosis. The use of a renewable carbon-neutral biodiesel fuel does not appear to be more favorable than conventional petroleum-based alternative, as regards of its potential for adverse health effects.
Collapse
Affiliation(s)
- Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Micol Introna
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jie Ji
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Gavrikova T, Nakamura N, Davydova J, Antonarakis ES, Yamamoto M. Infectivity-Enhanced, Conditionally Replicative Adenovirus for COX-2-Expressing Castration-Resistant Prostate Cancer. Viruses 2023; 15:901. [PMID: 37112881 PMCID: PMC10144787 DOI: 10.3390/v15040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The development of conditionally replicative adenoviruses (CRAds) for castration-resistant prostate cancer (CRPC), particularly neuroendocrine prostate cancer (NEPC), has two major obstacles: choice of control element and poor infectivity. We applied fiber-modification-based infectivity enhancement and an androgen-independent promoter (cyclooxynegase-2, COX-2) to overcome these issues. METHODS The properties of the COX-2 promoter and the effect of fiber modification were tested in two CRPC cell lines (Du-145 and PC3). Fiber-modified COX-2 CRAds were tested in vitro for cytocidal effect as well as in vivo for antitumor effect with subcutaneous CRPC xenografts. RESULTS In both CRPC cell lines, the COX-2 promoter showed high activity, and Ad5/Ad3 fiber modification significantly enhanced adenoviral infectivity. COX-2 CRAds showed a potent cytocidal effect in CRPC cells with remarkable augmentation by fiber modification. In vivo, COX-2 CRAds showed an antitumor effect in Du-145 while only Ad5/Ad3 CRAd showed the strongest antitumor effect in PC3. CONCLUSION COX-2 promoter-based, infectivity-enhanced CRAds showed a potent antitumor effect in CRPC/NEPC cells.
Collapse
Affiliation(s)
- Tatyana Gavrikova
- Division of Human Gene Therapy, Department of Surgery, Medicine and Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naohiko Nakamura
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Cacheiro-Llaguno C, Hernández-Subirá E, Díaz-Muñoz MD, Fresno M, Serrador JM, Íñiguez MA. Regulation of Cyclooxygenase-2 Expression in Human T Cells by Glucocorticoid Receptor-Mediated Transrepression of Nuclear Factor of Activated T Cells. Int J Mol Sci 2022; 23:13275. [PMID: 36362060 PMCID: PMC9653600 DOI: 10.3390/ijms232113275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Cyclooxygenase (COX) is the key enzyme in prostanoid synthesis from arachidonic acid (AA). Two isoforms, named COX-1 and COX-2, are expressed in mammalian tissues. The expression of COX-2 isoform is induced by several stimuli including cytokines and mitogens, and this induction is inhibited by glucocorticoids (GCs). We have previously shown that the transcriptional induction of COX-2 occurs early after T cell receptor (TCR) triggering, suggesting functional implications of this enzyme in T cell activation. Here, we show that dexamethasone (Dex) inhibits nuclear factor of activated T cells (NFAT)-mediated COX-2 transcriptional induction upon T cell activation. This effect is dependent on the presence of the GC receptor (GR), but independent of a functional DNA binding domain, as the activation-deficient GRLS7 mutant was as effective as the wild-type GR in the repression of NFAT-dependent transcription. Dex treatment did not disturb NFAT dephosphorylation, but interfered with activation mediated by the N-terminal transactivation domain (TAD) of NFAT, thus pointing to a negative cross-talk between GR and NFAT at the nuclear level. These results unveil the ability of GCs to interfere with NFAT activation and the induction of pro-inflammatory genes such as COX-2, and explain some of their immunomodulatory properties in activated human T cells.
Collapse
|
5
|
The Toxic Effects and Mechanisms of Nano-Cu on the Spleen of Rats. Int J Mol Sci 2019; 20:ijms20061469. [PMID: 30909528 PMCID: PMC6471436 DOI: 10.3390/ijms20061469] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Research has shown that nano-copper (nano-Cu) can cause damage to the spleen and immune system yet their mechanisms of cytotoxicity are poorly understood. Our aim is to explore the potential immunotoxicity in the spleen of rats after nano-Cu exposure. The results of hematologic parameters, lymphocyte subsets, immunoglobulins, and histopathology indicated that copper obviously changed the immune function of the spleen. The levels of antioxidants (SOD, CAT, GSH-Px), oxidants (iNOS, NO, MDA), and anti-oxidative signalling pathway of Nrf2 (Nrf2 and HO-1) were strongly induced by nano-Cu. The expression of mRNA and protein of pro-/anti-inflammatory (IFN-γ, TNF-α, MIP-1α, MCP-1, MIF, IL-1/-2/-4/-6) cytokines were increased by nano-Cu. The expression of regulatory signal pathways, MAPKs and PI3-K/Akt were activated, which might be involved in the inflammatory responses and immunomodulatory processes of sub-acute nano-Cu exposure. The immune function of the spleen was repressed by nano-Cu induced oxidative stress and inflammation.
Collapse
|
6
|
Lin CK, Tseng CK, Liaw CC, Huang CY, Wei CK, Sheu JH, Lee JC. Lobohedleolide suppresses hepatitis C virus replication via JNK/c-Jun-C/EBP-mediated down-regulation of cyclooxygenase-2 expression. Sci Rep 2018; 8:8676. [PMID: 29875371 PMCID: PMC5989199 DOI: 10.1038/s41598-018-26999-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) chronically infects 2–3% people of the global population, which leads to liver cirrhosis and hepatocellular carcinoma. Drug resistance remains a serious problem that limits the effectiveness of US Food and Drug Administration (FDA)-approved direct-acting antiviral (DAA) drugs against HCV proteins. The objective of our study was to discover new antivirals from natural products to supplement current therapeutics. We demonstrated that lobohedleolide, isolated from the Formosan soft coral Lobophytum crassum, significantly reduced HCV replication in replicon cells and JFH-1 infection system, with EC50 values of 10 ± 0.56 and 22 ± 0.75 μM, respectively, at non-toxic concentrations. We further observed that the inhibitory effect of lobohedleolide on HCV replication is due to suppression of HCV-induced cyclooxygenase-2 (COX-2) expression. Based on deletion-mutant analysis of the COX-2 promoter, we identified CCAAT/enhancer-binding protein (C/EBP) as a key transcription factor for the down-regulation of COX-2 by lobohedleolide, through which lobohedleolide decreased the phosphorylation of c-Jun NH2-terminal protein kinase and c-Jun to suppress HCV-induced C/EBP expression. The combination treatment of lobohedleolide with clinically used HCV drugs synergistically reduced HCV RNA replication, indicating that lobohedleolide exhibited a high biomedical potential to be used as a supplementary therapeutic agent to control HCV infection.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ku Wei
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Pan SC, Li CY, Kuo CY, Kuo YZ, Fang WY, Huang YH, Hsieh TC, Kao HY, Kuo Y, Kang YR, Tsai WC, Tsai ST, Wu LW. The p53-S100A2 Positive Feedback Loop Negatively Regulates Epithelialization in Cutaneous Wound Healing. Sci Rep 2018; 8:5458. [PMID: 29615682 PMCID: PMC5882638 DOI: 10.1038/s41598-018-23697-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
The S100A2 protein is an important regulator of keratinocyte differentiation, but its role in wound healing remains unknown. We establish epithelial-specific S100A2 transgenic (TG) mice and study its role in wound repair using punch biopsy wounding assays. In line with the observed increase in proliferation and migration of S100A2-depleted human keratinocytes, mice expressing human S100A2 exhibit delayed cutaneous wound repair. This was accompanied by the reduction of re-epithelialization as well as a slow, attenuated response of Mcp1, Il6, Il1β, Cox2, and Tnf mRNA expression in the early phase. We also observed delayed Vegfa mRNA induction, a delayed enhancement of the Tgfβ1-mediated alpha smooth muscle actin (α-Sma) axis and a differential expression of collagen type 1 and 3. The stress-activated p53 tumor suppressor protein plays an important role in cutaneous wound healing and is an S100A2 inducer. Notably, S100A2 complexes with p53, potentiates p53-mediated transcription and increases p53 expression both transcriptionally and posttranscriptionally. Consistent with a role of p53 in repressing NF-κB-mediated transcriptional activation, S100A2 enhanced p53-mediated promoter suppression of Cox2, an early inducible NF-κB target gene upon wound injury. Our study thus supports a model in which the p53-S100A2 positive feedback loop regulates wound repair process.
Collapse
Affiliation(s)
- Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Che-Yu Li
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chia-Yi Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yi-Zih Kuo
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yu-Hsuan Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzu-Chin Hsieh
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuan Kuo
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ya-Rong Kang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wan-Chi Tsai
- Department of Laboratory Science and Technology, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan, Republic of China.
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Laboratory Science and Technology, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
8
|
HARA S. Prostaglandin terminal synthases as novel therapeutic targets. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:703-723. [PMID: 29129850 PMCID: PMC5743848 DOI: 10.2183/pjab.93.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) exert their anti-inflammatory and anti-tumor effects by reducing prostaglandin (PG) production via the inhibition of cyclooxygenase (COX). However, the gastrointestinal, renal and cardiovascular side effects associated with the pharmacological inhibition of the COX enzymes have focused renewed attention onto other potential targets for NSAIDs. PGH2, a COX metabolite, is converted to each PG species by species-specific PG terminal synthases. Because of their potential for more selective modulation of PG production, PG terminal synthases are now being investigated as a novel target for NSAIDs. In this review, I summarize the current understanding of PG terminal synthases, with a focus on microsomal PGE synthase-1 (mPGES-1) and PGI synthase (PGIS). mPGES-1 and PGIS cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis. mPGES-1 and PGIS are expected to be attractive alternatives to COX as therapeutic targets for several diseases, including inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Shuntaro HARA
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
9
|
Hiyama A, Yokoyama K, Nukaga T, Sakai D, Mochida J. Response to tumor necrosis factor-α mediated inflammation involving activation of prostaglandin E2 and Wnt signaling in nucleus pulposus cells. J Orthop Res 2015; 33:1756-68. [PMID: 26123748 DOI: 10.1002/jor.22959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/30/2015] [Indexed: 02/04/2023]
Abstract
The cyclooxygenase 2 (COX-2) product, prostaglandin E2 (PGE2 ), acts through a family of G protein-coupled receptors designated E-prostanoid (EP) receptors that mediate intracellular signaling by multiple pathways. However, it is not known whether crosstalk between tumor necrosis factor-α(TNF-α)-PGE2 -mediated signaling and Wnt signaling plays a role in the regulation of intervertebral disc (IVD) cells. In this study, we investigated the relationship between TNF-α-PGE2 signaling and Wnt signaling in IVD cells. TNF-α increased the expression of COX-2 in IVD cells. The EP receptors EP1, EP3, and EP4 were expressed in IVD cells, and TNF-α significantly increased PGE2 production. Stimulation with TNF-α also upregulated EP3 and EP4 mRNA and protein expression in IVD cells. The inductive effect of the EP3 and EP4 receptors on Topflash promoter activity was confirmed through gain- and loss-of-function studies using selective EP agonists and antagonists. PGE2 treatment activated Wnt-β-catenin signaling through activation of EP3. We conclude that TNF-α-induced COX-2 and PGE2 stimulate Wnt signaling and activate Wnt target genes. Suppression of the EP3 receptor via TNF-α-PGE2 signaling seems to suppress IVD degeneration by controlling the activation of Wnt signaling. These findings may help identify the underlying mechanism and role of Wnt signaling in IVD degeneration.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Katsuya Yokoyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tadashi Nukaga
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
10
|
Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells. Cell Death Dis 2014; 5:e1534. [PMID: 25412312 PMCID: PMC4260753 DOI: 10.1038/cddis.2014.495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells.
Collapse
|
11
|
Sang X, Li B, Ze Y, Hong J, Ze X, Gui S, Sun Q, Liu H, Zhao X, Sheng L, Liu D, Yu X, Wang L, Hong F. Toxicological mechanisms of nanosized titanium dioxide-induced spleen injury in mice after repeated peroral application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5590-5599. [PMID: 23621103 DOI: 10.1021/jf3035989] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Due to an increase in surface area per particle weight, nanosized titanium dioxide (nano-TiO2) has greatly increased its function as a catalyst and is used for whitening and brightening foods. However, concerns over the safety of nano-TiO2 have been raised. The purpose of this study was to determine whether the protein kinase MAPKs/PI3-K/Akt signaling pathways and transcription factors are activated prior to or concurrent with COX-2 up-regulation in mouse spleen following exposure to 10 mg/kg BW of pure anatase nano-TiO2 by the intragastric route for 15-90 days. The study clearly showed that nano-TiO2 was deposited in the spleen and resulted in reactive oxygen species production, time-dependent splenic inflammation, and necrosis, coupled with a 12.64-64.06% increase in COX-2 and prostaglandin E2 expression, respectively. Furthermore, nano-TiO2 elevated the expressions of ERK, AP-1, CRE, Akt, JNK2, MAPKs, PI3-K, c-Jun, and c-Fos in the spleen by 1.08-6-fold with increased exposure duration, respectively. These findings suggested that nano-TiO2-induced COX-2 expression may be mediated predominantly through the induction of AP-1 and CRE and that AP-1/CRE induction occurred via the MAPKs/PI3-K/Akt signaling pathways in the spleen. Therefore, the findings suggest the need for caution when using nanomaterials as food additives.
Collapse
Affiliation(s)
- Xuezi Sang
- Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica). Adv Pharmacol Sci 2012; 2012:614046. [PMID: 22927840 PMCID: PMC3426159 DOI: 10.1155/2012/614046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/15/2012] [Indexed: 12/28/2022] Open
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.
Collapse
|
14
|
Švajger U, Jeras M. Anti-inflammatory Effects of Resveratrol and Its Potential Use in Therapy of Immune-mediated Diseases. Int Rev Immunol 2012; 31:202-22. [DOI: 10.3109/08830185.2012.665108] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J Neurosci 2011; 31:13710-21. [PMID: 21957234 DOI: 10.1523/jneurosci.3544-11.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stimulation of synaptic NMDA receptors (NMDARs) induces neuroprotection, while extrasynaptic NMDARs promote excitotoxic cell death. Neuronal expression of cyclooxygenase-2 (COX-2) is enhanced by synaptic NMDARs, and although this enzyme mediates neuronal functions, COX-2 is also regarded as a key modulator of neuroinflammation and is thought to exacerbate excitotoxicity via overproduction of prostaglandins. This raises an apparent paradox: synaptic NMDARs are pro-survival yet are essential for robust neuronal COX-2 expression. We hypothesized that stimulation of extrasynaptic NMDARs converts COX-2 signaling from a physiological to a potentially pathological process. We combined HPLC-electrospray ionization-tandem MS-based mediator lipidomics and unbiased image analysis in mouse dissociated and organotypic cortical cultures to uncover that synaptic and extrasynaptic NMDARs differentially modulate neuronal COX-2 expression and activity. We show that synaptic NMDARs enhance neuronal COX-2 expression, while sustained synaptic stimulation limits COX-2 activity by suppressing cellular levels of the primary COX-2 substrate, arachidonic acid (AA). In contrast, extrasynaptic NMDARs suppress COX-2 expression while activating phospholipase A₂, which enhances AA levels by hydrolysis of membrane phospholipids. Thus, sequential activation of synaptic then extrasynaptic NMDARs maximizes COX-2-dependent prostaglandin synthesis. We also show that excitotoxic events only drive induction of COX-2 expression through abnormal synaptic network excitability. Finally, we show that nonenzymatic lipid peroxidation of arachidonic and other polyunsaturated fatty acids is a function of network activity history. A new paradigm emerges from our results suggesting that pathological COX-2 signaling associated with models of stroke, epilepsy, and neurodegeneration requires specific spatiotemporal NMDAR stimulation.
Collapse
|
16
|
Wen X, Chao C, Ives K, Hellmich MR. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells. BMC Mol Biol 2011; 12:29. [PMID: 21745389 PMCID: PMC3142223 DOI: 10.1186/1471-2199-12-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/11/2011] [Indexed: 01/06/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2) and the bombesin (BBS)-like peptide, gastrin-releasing peptide (GRP), have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR)-positive, androgen-insensitive prostate cancer cell line, PC-3. BBS-stimulated COX-2 expression is mediated, in part, by p38MAPK and PI3 kinase (PI3K)/Akt pathways, and blocked by a GRPR antagonist. The PI3K/Akt pathway couples GRPR to the transcription factor, activator protein-1 (AP-1), and enhanced COX-2 promoter activity. Although BBS stimulates nuclear factor-kappaB (NF-κB) in PC-3, NF-κB does not regulate GRPR-mediated COX-2 expression. The p38MAPK pathway increases BBS-stimulated COX-2 expression by slowing the degradation of COX-2 mRNA. Expression of recombinant GRPR in the androgen-sensitive cell line LNCaP is sufficient to confer BBS-stimulated COX-2 expression via the p38MAPK and PI3K/Akt pathways. Conclusions Our study establishes a mechanistic link between GRPR activation and enhanced COX-2 expression in prostate cancer cell lines, and suggests that inhibiting GRPR may, in the future, provide an effective therapeutic alternative to non-steroidal anti-inflammatory drugs for inhibiting COX-2 in patients with recurrent prostate cancer.
Collapse
Affiliation(s)
- Xiaodong Wen
- Department of Surgery, Univ. of Texas Medical Branch, 301 Univ. Blvd., Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
17
|
Nuñez F, Bravo S, Cruzat F, Montecino M, De Ferrari GV. Wnt/β-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells. PLoS One 2011; 6:e18562. [PMID: 21494638 PMCID: PMC3071840 DOI: 10.1371/journal.pone.0018562] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/11/2011] [Indexed: 12/14/2022] Open
Abstract
Background Increased expression of the cyclooxygenase-2 enzyme (COX2) is one of the main characteristics of gastric cancer (GC), which is a leading cause of death in the world, particularly in Asia and South America. Although the Wnt/β-catenin signaling pathway has been involved in the transcriptional activation of the COX2 gene, the precise mechanism modulating this response is still unknown. Methodology/Principal Findings Here we studied the transcriptional regulation of the COX2 gene in GC cell lines and assessed whether this phenomenon is modulated by Wnt/β-catenin signaling. We first examined the expression of COX2 mRNA in GC cells and found that there is a differential expression pattern consistent with high levels of nuclear-localized β-catenin. Pharmacological treatment with either lithium or valproic acid and molecular induction with purified canonical Wnt3a significantly enhanced COX2 mRNA expression in a dose- and time-dependent manner. Serial deletion of a 1.6 Kbp COX2 promoter fragment and gain- or loss-of-function experiments allowed us to identify a minimal Wnt/β-catenin responsive region consisting of 0.8 Kbp of the COX2 promoter (pCOX2-0.8), which showed maximal response in gene-reporter assays. The activity of this pCOX2-0.8 promoter region was further confirmed by site-directed mutagenesis and DNA-protein binding assays. Conclusions/Significance We conclude that the pCOX2-0.8 minimal promoter contains a novel functional T-cell factor/lymphoid enhancer factor (TCF/LEF)-response element (TBE Site II; -689/-684) that responds directly to enhanced Wnt/β-catenin signaling and which may be important for the onset/progression of GC.
Collapse
Affiliation(s)
- Felipe Nuñez
- Centro de Tecnología e Innovación para el Cáncer (CTI-Cáncer), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Soraya Bravo
- Centro de Tecnología e Innovación para el Cáncer (CTI-Cáncer), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Fernando Cruzat
- Centro de Tecnología e Innovación para el Cáncer (CTI-Cáncer), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Martín Montecino
- Centro de Tecnología e Innovación para el Cáncer (CTI-Cáncer), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Giancarlo V. De Ferrari
- Centro de Tecnología e Innovación para el Cáncer (CTI-Cáncer), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
18
|
Santos RCV, Rico MAP, Bartrons R, Pujol FV, Rosa JL, de Oliveira JR. The Transcriptional Activation of the Cyclooxygenase-2 Gene in Zymosan-Activated Macrophages is Dependent on NF-Kappa B, C/EBP, AP-1, and CRE Sites. Inflammation 2010; 34:653-8. [DOI: 10.1007/s10753-010-9275-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Abstract
Cyclooxygenase-2 (COX-2), the rate-limiting enzyme for prostaglandin (PG) biosynthesis, plays a key role in inflammation, tumorigenesis, development and circulatory homeostasis. COX-2 expression is rapidly and sensitively regulated by various stimuli, and also its regulation is distinct among cell types at transcriptional and posttranscriptional levels. Therefore, it is important to consider these features of COX-2 expression in the reporter assays we describe in this chapter. Emphasis should be made with regard to two points. Firstly, COX-2 reporter assays should be evaluated by intrinsic COX-2 expression, such as RT-PCR, northern blotting, western blotting, or by PGE(2) measurement. Secondly, one must carefully choose several conditions in the reporter assays for experimental purposes.
Collapse
|
20
|
Katsukawa M, Nakata R, Takizawa Y, Hori K, Takahashi S, Inoue H. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1214-20. [PMID: 20656057 DOI: 10.1016/j.bbalip.2010.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/26/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023]
Abstract
Lemongrass is a widely used herb as a food flavoring, as a perfume, and for its analgesic and anti-inflammatory purposes; however, the molecular mechanisms of these effects have not been elucidated. Previously, we identified carvacrol from the essential oil of thyme as a suppressor of cyclooxygenase (COX)-2, a key enzyme for prostaglandin synthesis, and also an activator of peroxisome proliferator-activated receptor (PPAR), a molecular target for "lifestyle-related" diseases. In this study, we evaluated the essential oil of lemongrass using our established assays for COX-2 and PPARs. We found that COX-2 promoter activity was suppressed by lemongrass oil in cell-based transfection assays, and we identified citral as a major component in the suppression of COX-2 expression and as an activator of PPARα and γ. PPARγ-dependent suppression of COX-2 promoter activity was observed in response to citral treatment. In human macrophage-like U937 cells, citral suppressed both LPS-induced COX-2 mRNA and protein expression, dose-dependently. Moreover, citral induced the mRNA expression of the PPARα-responsive carnitine palmitoyltransferase 1 gene and the PPARγ-responsive fatty acid binding protein 4 gene, suggesting that citral activates PPARα and γ, and regulates COX-2 expression. These results are important for understanding the anti-inflammatory and anti-lifestyle-related disease properties of lemongrass.
Collapse
Affiliation(s)
- Michiko Katsukawa
- Department of Food Science and Nutrition, Nara Women's University, Kitauoyanishi-machi, Nara-City, Nara, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H. Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. J Lipid Res 2010; 51:132-9. [PMID: 19578162 DOI: 10.1194/jlr.m900255-jlr200] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin biosynthesis, plays a key role in inflammation and circulatory homeostasis. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors belonging to the nuclear receptor superfamily and are involved in the control of COX-2 expression, and vice versa. Here, we show that COX-2 promoter activity was suppressed by essential oils derived from thyme, clove, rose, eucalyptus, fennel, and bergamot in cell-based transfection assays using bovine arterial endothelial cells. Moreover, from thyme oil, we identified carvacrol as a major component of the suppressor of COX-2 expression and an activator of PPARalpha and gamma. PPARgamma-dependent suppression of COX-2 promoter activity was observed in response to carvacrol treatment. In human macrophage-like U937 cells, carvacrol suppressed lipopolysaccharide-induced COX-2 mRNA and protein expression, suggesting that carvacrol regulates COX-2 expression through its agonistic effect on PPARgamma. These results may be important in understanding the antiinflammatory and antilifestyle-related disease properties of carvacrol.
Collapse
Affiliation(s)
- Mariko Hotta
- Department of Food Science and Nutrition, Nara Women's University Nara 630-8506 Japan
| | | | | | | | | | | |
Collapse
|
22
|
Han EH, Kim JY, Kim HG, Choi JH, Im JH, Woo ER, Jeong HG. Dihydro-N-caffeoyltyramine down-regulates cyclooxygenase-2 expression by inhibiting the activities of C/EBP and AP-1 transcription factors. Food Chem Toxicol 2010; 48:579-86. [DOI: 10.1016/j.fct.2009.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 01/17/2023]
|
23
|
Burk DR, Senechal-Willis P, Lopez LC, Hogue BG, Daskalova SM. Suppression of lipopolysaccharide-induced inflammatory responses in RAW 264.7 murine macrophages by aqueous extract of Clinopodium vulgare L. (Lamiaceae). JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:397-405. [PMID: 19770031 DOI: 10.1016/j.jep.2009.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 08/24/2009] [Accepted: 09/14/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The wild basil Clinopodium vulgare L. is commonly used in Bulgarian folk medicine for treatment of irritated skin, mastitis- and prostatitis-related swelling, as well as for some disorders accompanied with significant degree of inflammation (e.g. gastric ulcers, diabetes, and cancer). AIM OF STUDY To determine the effect of aqueous extract of Clinopodium vulgare L. on LPS-induced inflammatory responses of murine RAW 264.7 macrophages. MATERIALS AND METHODS Cell cytotoxicity was evaluated by MTT assay. Protein expression levels were monitored by Western blot analysis. Production of NO and PGE(2) was measured by the Griess colorimetric method and enzyme immunoassay, respectively. Activation of MMP-9 was visualized by gelatin zymography. Cytokine levels were determined by BioPlex assay. Intracellular ROS and free radical scavenging potential were measured by DCFH-DA and DPPH method, respectively. Xanthine oxidase activity was evaluated spectrophotometrically. RESULTS The extract suppresses NF-kappaB activation by preventing I kappa-B phosphorylation and inhibits the phosphorylation of p38 and SAPK/JNK MAPKs. It down-regulates iNOS expression which manifests as a drastic decrease of NO production, inhibits MMP-9 activation, but does not affect COX-2 protein levels and reduces only slightly the released PGE(2). Secretion of IL-1 beta and Il-10 is greatly reduced, whereas suppression of TNF-alpha and GM-CSF production is less dramatic. The extract has strong free radical scavenging properties and exerts inhibitory effect on xanthine oxidase activity, which lowers the levels of intracellular ROS. CONCLUSION The study provides evidence for the anti-inflammatory potential of Clinopodium vulgare L. aqueous extract.
Collapse
Affiliation(s)
- David R Burk
- Center for Infectious Diseases and Vaccinology, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA.
| | | | | | | | | |
Collapse
|
24
|
Han EH, Park JH, Kang KW, Jeong TC, Kim HS, Jeong HG. Risk assessment of tetrabromobisphenol A on cyclooxygenase-2 expression via MAP kinase/NF-kappaB/AP-1 signaling pathways in murine macrophages. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1431-1438. [PMID: 20077215 DOI: 10.1080/15287390903212873] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tetrabromobisphenol A [2,2-bis-(3,5-dibromo-4-hydroxyphenyl)propane; TBBPA] is used worldwide as a flame retardant in numerous products. In the present study, the effects of TBBPA were examined on the expression of cyclooxygenase-2 (COX-2), inflammation-related cytokines, transcription factors, and signaling pathways responsible for transcriptional activation of the COX-2 gene in murine RAW 264.7 macrophages. Exposure to TBBPA markedly enhanced the production of prostaglandin E(2), a major COX-2 metabolite, in macrophages. TBBPA concentration-dependently increased the levels of COX-2 protein and mRNA. In addition, TBBPA increased the secretion and mRNA levels of proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-1beta. Transfection of a human COX-2 promoter construct demonstrated that TBBPA induced COX-2 promoter activity. Furthermore, transfection with pNF-kappaB-Luc and pAP-1-Luc plasmid revealed that TBBPA activated the NF-kappaB and AP-1 sites. Phosphatidylinositol 3 (PI3) kinase, its downstream signaling molecule, Akt, and mitogen-activated protein kinases (MAPK) were also significantly activated by TBBPA. Our data demonstrate TBBPA-induced COX-2 and proinflammatory cytokine expression occurs through the PI3-kinase/Akt/MAP kinase/NF-kappaB/AP-1 pathways.
Collapse
Affiliation(s)
- Eun Hee Han
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
25
|
Han EH, Kim JY, Kim HK, Hwang YP, Jeong HG. o,p′-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways. Toxicol Appl Pharmacol 2008; 233:333-42. [DOI: 10.1016/j.taap.2008.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 01/13/2023]
|
26
|
Sun H, Xu B, Inoue H, Chen QM. p38 MAPK mediates COX-2 gene expression by corticosterone in cardiomyocytes. Cell Signal 2008; 20:1952-9. [DOI: 10.1016/j.cellsig.2008.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 06/19/2008] [Accepted: 07/03/2008] [Indexed: 01/09/2023]
|
27
|
Joo M, Kwon M, Azim AC, Sadikot RT, Blackwell TS, Christman JW. Genetic determination of the role of PU.1 in macrophage gene expression. Biochem Biophys Res Commun 2008; 372:97-102. [PMID: 18485892 PMCID: PMC2494535 DOI: 10.1016/j.bbrc.2008.04.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/30/2008] [Indexed: 01/29/2023]
Abstract
PU.1, an Ets family transcription factor, mediates macrophage effector function in inflammation by regulating gene expression. But, the extent and nature of PU.1 function in gene expression has not been genetically determined because ablation of PU.1 gene abolishes macrophage development. Here, we epigenetically suppressed PU.1 by stably expressing PU.1 specific siRNA in macrophages, and determined the effect of PU.1 deficiency on expressions of key inflammatory genes: Toll-like receptor 4 (TLR4), cyclooxygenase-2 (COX-2), and macrophage inflammatory protein-1alpha (MIP-1alpha). PU.1-silenced cell lines expressed lower TLR4 mRNA and COX-2 protein, but higher MIP-1alpha protein, than controls. Over-expression of PU.1 suppressed lipopolysaccharide-induced MIP-1alpha production. PU.1 occupied proximal and distal cognate sites in the endogenous MIP-1alpha promoter, but dissociated only from the distal sites in response to lipopolysaccharide, suggesting a novel negative regulatory mechanism by PU.1. Together, our results defined PU.1 function in differentially regulating expressions of TLR4, COX-2, and MIP-1alpha.
Collapse
Affiliation(s)
- Myungsoo Joo
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, B1222 MCN, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Prestes-Carneiro LE, Shio MT, Fernandes PD, Jancar S. Cross-Regulation of iNOS and COX-2 by its Products in Murine Macrophages Under Stress Conditions. Cell Physiol Biochem 2008; 20:283-92. [PMID: 17762157 DOI: 10.1159/000107514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2007] [Indexed: 01/12/2023] Open
Abstract
Exposure of macrophages to heat shock induces rapid synthesis of heat shock proteins (HSPs) which are important for cell homeostasis. Prostaglandins (PGs) and nitric oxide (NO) are important cell regulatory molecules. We have therefore investigated the interactions between these molecules in the LPS-induced expression of iNOS and COX-2 and in the mitochondrial activity of macrophages. Cultures of the murine macrophage cell line, J774, were exposed to heat shock (43 degrees C, 30 min) and stimulated with LPS (1 microg/ml), concomitantly or after 8h of cell recovery. NO production was measured by Griess reaction; PGE(2) by ELISA; HSP70, iNOS and COX-2 by immunobloting; mitochondrial activity by MTT assay. Heat shock induced HSP70, but not iNOS or COX-2 whereas LPS induced iNOS and COX-2 but not HSP70. When heat shock and LPS were given concomitantly, iNOS but not COX-2 expression was reduced. When a period of 8h was given between heat shock and LPS stimulation, iNOS, COX-2, PGE(2) and NO levels were significantly increased. Under these conditions, the expression of COX-2 was reduced by L-NAME (NO-synthesis inhibitor) and of iNOS by nimesulide (PGs-synthesis inhibitor). Such cross-regulation was not observed in cells at 37 degrees C. These treatments significantly reduced MTT levels in cells at 37 degrees C but not in cells submitted to heat shock. These results suggest that HSPs and cross-regulation of iNOS and COX-2 by their products might be of relevance in the control of cell homeostasis during stress conditions.
Collapse
|
29
|
Alvarez S, Serramía MJ, Fresno M, Muñoz-Fernández MA. HIV-1 envelope glycoprotein 120 induces cyclooxygenase-2 expression in astrocytoma cells through a nuclear factor-kappaB-dependent mechanism. Neuromolecular Med 2007; 9:179-93. [PMID: 17627037 DOI: 10.1007/bf02685891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 07/31/2006] [Accepted: 07/31/2006] [Indexed: 01/14/2023]
Abstract
Human immunodeficiency virus-1 gp120 alters astroglial function, which compromises the function of the nearby of neuronal cells contributing to the cognitive impairment in human immunodeficiency virus-1 infection. Cyclooxygenase (COX)-2 has been involved in this process, although the intracellular pathways and second messengers involved are yet unknown. We have investigated the role of gp120-induced COX-2 in the astrocytoma human cell line U-87, and the different pathways involved in this activation. COX-2 mRNA and protein expression were detected in gp120-stimulated cells. Moreover, gp120 induces COX-2 promoter transcription. The effect of gp120 was abrogated by a neutralizing antibody against the chemokine receptor CXCR4 neutralizing antibody. Analysis of the promoter show that deletion or mutation of a proximal nuclear factor (NF)-kappaB site completely abrogated gp120-dependent transcription. NF-kappaB but neither Activating protein-1 nor nuclear factor of activated T-cells-dependent transcription was induced by gp120, as shown by reporter and electrophoretic mobility shift assays. In addition, transfection assays with the NF-kappaB inhibitor, IkappaBalpha, prevented gp120-mediated COX-2 induction. In contrast, there was no inhibition of COX-2 promoter transcription by expressing a dominant negative c-Jun, or nuclear factor of activated T-cells constructs. The antioxidant pyrrolidine dithiocarbamate inhibited COX-2 protein expression and COX-2 transcriptional activity induced by gp120. Thus, our results indicate that gp120 induced COX-2 transcription through NF-kappaB activation in astrocytoma cells.
Collapse
Affiliation(s)
- Susana Alvarez
- Laboratory of Inmuno-Biología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Ansorge N, Jüttner S, Cramer T, Schmidt WE, Höcker M, Schmitz F. An upstream CRE-E-box element is essential for gastrin-dependent activation of the cyclooxygenase-2 gene in human colon cancer cells. ACTA ACUST UNITED AC 2007; 144:25-33. [PMID: 17604853 DOI: 10.1016/j.regpep.2007.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/20/2007] [Indexed: 12/16/2022]
Abstract
Cyclooxygenase-2, the inducible enzyme of arachidonic acid metabolism and prostaglandin synthesis, is over expressed in colorectal cancer. Inhibition of COX-1/-2 by non-steroidal anti-inflammatory drugs is associated with a decreased risk for these malignancies, whereas high serum gastrin levels elevate this risk. As gastrin exhibits trophical effects on colonic epithelium we sought to explore whether it is capable to induce COX-2 expression in a human colon cancer cell line. The aim of this study is the description of the gastrin evoked effects on the transcriptional activity of the COX-2 gene in colorectal cancer cells and the identification of regulatory promoter elements. Reporter gene assays were performed with the gastrin-stimulated human colorectal cancer cell-line Colo-320, which was stable transfected with the human cholecystokinin-B/gastrin receptor cDNA and COX-2-promoter-luciferase constructs containing different segments of the 5'-region of the COX-2 gene or with mutated promoter constructs. Transcription factors were characterized with electrophoretic mobility shift assays. Gastrin-dependent induction of COX-2 mRNA was shown using "real-time" PCR. Resulting elevated Prostaglandin E2-levels were measured using ELISA. Gastrin stimulated the PGE2-generation and COX-2-mRNA expression in human Colo-320-B cells potently, obviously by transactivating the COX-2-promoter using a region between - 68 bp and + 70 bp. Further examinations identified a CRE-E-box element between - 56 bp and - 48 bp mediating the gastrin-effects on the COX-2 gene. Transcription factors binding to this promoter element were USF-1 und -2. These results show the necessity to perform succeeding studies, which could describe possible mechanisms in which gastrin and COX-2 contribute to the induction of colorectal carcinomas.
Collapse
Affiliation(s)
- Nikolaus Ansorge
- Medizinische Klinik I, St. Josef-Hospital, Ruhr-Universität Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Tesfaye A, Di Cello F, Hillion J, Ronnett BM, Elbahloul O, Ashfaq R, Dhara S, Prochownik E, Tworkoski K, Reeves R, Roden R, Ellenson LH, Huso DL, Resar LMS. The High-Mobility Group A1 Gene Up-Regulates Cyclooxygenase 2 Expression in Uterine Tumorigenesis. Cancer Res 2007; 67:3998-4004. [PMID: 17483309 DOI: 10.1158/0008-5472.can-05-1684] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uterine cancer is the most common cancer of the female genital tract and is the fourth most frequent cause of cancer death in women in the U.S. Despite the high prevalence of uterine cancers, the molecular events that lead to neoplastic transformation in the uterus are poorly understood. Moreover, there are limited mouse models to study these malignancies. We generated transgenic mice with high-mobility group A1 gene (HMGA1a) expression targeted to uterine tissue and all female mice developed tumors by 9 months of age. Histopathologically, the tumors resemble human uterine adenosarcoma and are transplantable. To determine whether these findings are relevant to human disease, we evaluated primary human uterine neoplasms and found that HMGA1a mRNA and protein levels are increased in most high-grade neoplasms but not in normal uterine tissue, benign tumors, or most low-grade neoplasms. We also found that HMGA1a up-regulates cyclooxygenase 2 (COX-2) expression in transgenic tumors. Moreover, both HMGA1a and COX-2 expression are up-regulated in high-grade human leiomyosarcomas. Using chromatin immunoprecipitation, HMGA1a binds directly to the COX-2 promoter in human uterine cancer cells in vivo and activates its expression in transfection experiments. We also show that blocking either HMGA1a or COX-2 in high-grade human uterine cancer cells blocks anchorage-independent cell growth in methylcellulose. These findings show that HMGA1a functions as an oncogene when overexpressed in the uterus and contributes to the pathogenesis of human uterine cancer by activating COX-2 expression. Although a larger study is needed to confirm these results, HMGA1a may be a useful marker for aggressive human uterine cancers.
Collapse
Affiliation(s)
- Abeba Tesfaye
- Hematology Division, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Joo M, Wright JG, Hu NN, Sadikot RT, Park GY, Blackwell TS, Christman JW. Yin Yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1219-26. [PMID: 17220375 DOI: 10.1152/ajplung.00474.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expression of cyclooxygenase-2 (COX-2) is associated with the pathogenesis of inflammation and various cancers, including lung cancer. Yin Yang 1 (YY1) is a zinc-finger transcription factor that interacts with histone acetyltransferases and deacetylases for its transcriptional activity and also is involved in inflammation and tumorigenesis. We investigated whether YY1 regulates COX-2 expression. We located a possible YY1 binding site proximal to the transcription initiation site of the COX-2 promoter. Electrophoretic mobility shift assays show that YY1 bound to the putative YY1 site in vitro. To show biological relevance, we performed chromatin immunoprecipitation assays showing that lipopolysaccharide (LPS) treatment induced YY1 binding to the cognate site in the endogenous COX-2 promoter. Overexpression of YY1 in macrophages treated with either LPS or live Pseudomonas aeruginosa increased COX-2 transcriptional activity. Furthermore, YY1 enhanced COX-2 protein expression and prostaglandin D2 production elicited by LPS treatment. Mechanistically, we observed that LPS treatment resulted in disruption of an interaction between YY1 and p300, a histone acetyltransferase, but did not affect the interaction between YY1 and histone deacetylase 1/2. These data suggest that in response to LPS, YY1 dissociates from p300 and binds to the COX-2 promoter, contributing to COX-2 expression in an inflammatory milieu.
Collapse
Affiliation(s)
- Myungsoo Joo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Cao D, Bromberg PA, Samet JM. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am J Respir Cell Mol Biol 2007; 37:232-9. [PMID: 17395887 DOI: 10.1165/rcmb.2006-0449oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in the inflammatory response induced by physiologic and stress stimuli. Exposure to diesel exhaust particulate matter (DEP) has been shown to induce pulmonary inflammation and exacerbate asthma and chronic obstructive pulmonary disease. DEP is a potent inducer of inflammatory reponses in human airway epithelial cells. The mechanism through which DEP inhalation induces inflammatory mediator expression is not understood. In this report, we demonstrate that DEP can induce the expression of COX-2 gene in a human bronchial epithelial cell line (BEAS-2B) at both transcriptional and protein levels. The induction of COX-2 gene expression involves chromatin modification, in particular acetylation and deacetylation of histones. We show that exposure to DEP increases the acetylation of histone H4 associated with the COX-2 promoter and causes degradation of histone deacetylase 1 (HDAC1). Further, we establish that HDAC1 plays a pivotal role in mediating the transcriptional activation of the COX-2 gene in BEAS-2B cells exposed to DEP, supported by evidence that the down-regulation of HDAC1 using siRNA leads to activation of COX-2 gene expression, whereas overexpression of HDAC1 results in its repression. Finally, DEP exposure induced recruitment of histone acetyltransferase (HAT) p300 to the promoter of the COX-2 gene, suggesting that acetylation is also important in regulating its expression in response to DEP exposure. These results show for the first time acetylation via selective degradation of HDAC1, and that recruitment of HAT plays an important role in DEP-induced expression of the COX-2 gene.
Collapse
Affiliation(s)
- Dongsun Cao
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, USA
| | | | | |
Collapse
|
34
|
Chêne G, Dubourdeau M, Balard P, Escoubet-Lozach L, Orfila C, Berry A, Bernad J, Aries MF, Charveron M, Pipy B. n-3 and n-6 polyunsaturated fatty acids induce the expression of COX-2 via PPARgamma activation in human keratinocyte HaCaT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:576-89. [PMID: 17459764 DOI: 10.1016/j.bbalip.2007.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 12/31/2006] [Accepted: 02/21/2007] [Indexed: 01/22/2023]
Abstract
Polyunsaturated fatty acids (PUFA) n-3 inhibit inflammation, in vivo and in vitro in keratinocytes. We examined in HaCaT keratinocyte cell line whether eicosapentaenoic acid (EPA) a n-3 PUFA, gamma-linoleic acid (GLA) a n-6 PUFA, and arachidic acid a saturated fatty acid, modulate expression of cyclooxygenase-2 (COX-2), an enzyme pivotal to skin inflammation and reparation. We demonstrate that only treatment of HaCaT with GLA and EPA or a PPARgamma ligand (roziglitazone), induced COX-2 expression (protein and mRNA). Moreover stimulation of COX-2 promoter activity was increased by those PUFAs or rosiglitazone. The inhibitory effects of GW9662 and T0070907 (PPARgamma antagonists), on COX-2 expression and on stimulation of COX-2 promoter activity by EPA and GLA suggest that PPARgamma is implicated in COX-2 induction. Finally, PLA2 inhibitor methyl arachidonyl fluorophosphonate blocked the PUFA effects on COX-2 induction, promoter activity and arachidonic acid mobilization suggesting involvement of AA metabolites in PPAR activation. These findings demonstrate that n-3 and n-6 PUFA increased PPARgamma activity is necessary for the COX-2 induction in HaCaT human keratinocyte cells. Given the anti-inflammatory properties of EPA, we suggest that induction of COX-2 in keratinocytes may be important in the anti-inflammatory and protective mechanism of action of PUFAs n-3 or n-6.
Collapse
Affiliation(s)
- Gérald Chêne
- Macrophages, Mediateurs de l'Inflammation et Interactions Cellulaires, Université Paul Sabatier, EA 2405- INSERM IFR 31, Institut Louis Bugnard, BP 84225, 31432 Toulouse CEDEX 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jin SH, Kim TI, Yang KM, Kim WH. Thalidomide destabilizes cyclooxygenase-2 mRNA by inhibiting p38 mitogen-activated protein kinase and cytoplasmic shuttling of HuR. Eur J Pharmacol 2007; 558:14-20. [PMID: 17208222 DOI: 10.1016/j.ejphar.2006.11.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
We investigated the effect of thalidomide on transcriptional and post-transcriptional cyclooxygenase-2 (COX-2) expression, including a pathway leading to COX-2 mRNA destabilization. We found that thalidomide inhibited the interleukin-1beta (IL-1beta)-mediated induction of COX-2 protein and mRNA in Caco-2 cells. Transient transfection with a COX-2 promoter construct demonstrated that thalidomide did not affect IL-1beta-induced transcriptional activation of COX-2, although it did decrease the stability of COX-2 mRNA and suppress IL-1beta-induced cytoplasmic shuttling of an mRNA stabilizing protein, HuR. Thalidomide also suppressed IL-1beta-induced p38 mitogen-activated protein kinase (MAPK) activation, while a p38 MAPK inhibitor destabilized COX-2 mRNA and the cytoplasmic shuttling of HuR induced by IL-1beta. These data suggest that one of the molecular mechanisms of thalidomide may be destabilization of COX-2 mRNA through inhibition of cytoplasmic shuttling of HuR and p38 MAPK.
Collapse
Affiliation(s)
- Soo Hyun Jin
- Department of Internal Medicine and Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
36
|
Hou DX, Masuzaki S, Hashimoto F, Uto T, Tanigawa S, Fujii M, Sakata Y. Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated mouse macrophages: molecular mechanisms and structure-activity relationship. Arch Biochem Biophys 2007; 460:67-74. [PMID: 17313938 DOI: 10.1016/j.abb.2007.01.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 12/27/2006] [Accepted: 01/05/2007] [Indexed: 01/22/2023]
Abstract
The inhibitory effects of green tea proanthocyanidins on cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) release were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Prodelphinidin B2 3,3' di-O-gallate (PDGG) caused a dose-dependent inhibition of COX-2 at both mRNA and protein levels with the attendant release of PGE(2). Molecular evidence revealed that PDGG inhibited the degradation of Ikappa-B, nuclear translocation of p65 and CCAAT/enhancer-binding protein (C/EBP)delta, and phosphorylation of c-Jun, but not CRE-binding protein (CREB), which regulate COX-2 expression. Moreover, PDGG suppressed the activations of mitogen-activated protein kinase (MAPK) including c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. The results demonstrated that PDGG suppressed COX-2 expression via blocking MAPK-mediated activation of nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and C/EBPdelta. Furthermore, studies on structure-activity relationship using five kinds of proanthocyanidins revealed that the galloyl moiety of proanthocyanidins appeared important to their inhibitory actions. Thus, our findings provide the first molecular basis that green tea proanthocyanidins with the galloyl moiety might have anti-inflammatory properties through blocking MAPK-mediated COX-2 expression.
Collapse
Affiliation(s)
- De-Xing Hou
- Department of Biochemical Science and Technology, Kagoshima University, Korimoto 1-21-24, Kagoshima City 890-0065, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Kang YJ, Mbonye UR, DeLong CJ, Wada M, Smith WL. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 2007; 46:108-25. [PMID: 17316818 PMCID: PMC3253738 DOI: 10.1016/j.plipres.2007.01.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases-1 and -2 (COX-1 and -2) catalyze the committed step in prostaglandin formation. Each isozyme subserves different biological functions. This is, at least in part, a consequence of differences in patterns of COX-1 and COX-2 expression. COX-1 is induced during development, and COX-1 mRNA and COX-1 protein are very stable. These latter properties can explain why COX-1 protein levels usually remain constant in those cells that express this isozyme. COX-2 is usually expressed inducibly in association with cell replication or differentiation. Both COX-2 mRNA and COX-2 protein have short half-lives relative to those of COX-1. Therefore, COX-2 protein is typically present for only a few hours after its synthesis. Here we review and develop the concepts that (a) COX-2 gene transcription can involve at least six different cis-acting promoter elements interacting with trans-acting factors generated by multiple, different signaling pathways, (b) the relative contribution of each cis-acting COX-2 promoter element depends on the cell type, the stimulus and the time following the stimulus and (c) a unique 27 amino acid instability element located just upstream of the C-terminus of COX-2 targets this isoform to the ER-associated degradation system and proteolysis by the cytosolic 26S proteasome.
Collapse
Affiliation(s)
- Yeon-Joo Kang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Uri R. Mbonye
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824
| | - Cynthia J. DeLong
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Masayuki Wada
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - William L. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
- To whom correspondence should be addressed: William L. Smith, 1150 W. Medical Center Drive, 5301 Medical Science Research Building III, Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109; Tel: 734-647-6180; Fax:734-764-3509;
| |
Collapse
|
38
|
Kitazawa M, Shibata Y, Hashimoto S, Ohizumi Y, Yamakuni T. Proinsulin C-peptide stimulates a PKC/IkappaB/NF-kappaB signaling pathway to activate COX-2 gene transcription in Swiss 3T3 fibroblasts. J Biochem 2006; 139:1083-8. [PMID: 16788059 DOI: 10.1093/jb/mvj122] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proinsulin C-peptide causes multiple molecular and physiological effects, and improves renal and neuronal dysfunction in patients with diabetes. However, whether C-peptide controls the inhibitor kappaB (IkappaB)/NF-kappaB-dependent transcription of genes, including inflammatory genes is unknown. Here we showed that 1 nM C-peptide increased the expression of cyclooxygenase-2 (COX-2) mRNA and its protein in Swiss 3T3 fibroblasts. Consistently, C-peptide enhanced COX-2 gene promoter-activity, which was inhibited by GF109203X and Go6976, specific PKC inhibitors, and BAY11-7082, a specific nuclear factor-kappaB (NF-kappaB) inhibitor, accompanied by increased phosphorylation and degradation of IkappaB. These results suggest that C-peptide stimulates the transcription of inflammatory genes via activation of a PKC/IkappaB/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Masashi Kitazawa
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | | | | | | | | |
Collapse
|
39
|
Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenberg AJ, Abreu MT. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 2006; 131:862-77. [PMID: 16952555 PMCID: PMC2169292 DOI: 10.1053/j.gastro.2006.06.017] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 06/02/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We recently showed that mice deficient in Toll-like receptor 4 (TLR4) or its adapter molecule MyD88 have increased signs of colitis compared with wild-type (WT) mice after dextran sodium sulfate (DSS)-induced injury. We wished to test the hypothesis that cyclooxygenase 2 (Cox-2)-derived prostaglandin E2 (PGE2) is important in TLR4-related mucosal repair. METHODS Cox-2 expression was analyzed by real-time polymerase chain reaction, immunohistochemistry, Western blotting, and luciferase reporter constructs. Small interfering RNA was used to inhibit expression of MyD88. TLR4-/- or WT mice were given 2.5% DSS for 7 days. Proliferation and apoptosis were assessed using bromodeoxyuridine staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays, respectively. PGE2 was given orally to DSS-treated mice. RESULTS Intestinal epithelial cell lines up-regulated Cox-2 expression in a TLR4- and MyD88-dependent fashion. Lipopolysaccharide-mediated stimulation of PGE2 production was blocked by a selective Cox-2 inhibitor or small interfering RNA against MyD88. After DSS injury, Cox-2 expression increased only in WT mice. TLR4-/- mice have significantly reduced proliferation and increased apoptosis after DSS injury compared with WT mice. PGE2 supplementation of TLR4-/- mice resulted in improvement in clinical signs of colitis and restoration of proliferation and apoptosis to WT values. The mechanism for improved epithelial repair may be through PGE2-dependent activation of the epidermal growth factor receptor. CONCLUSIONS We describe an important link between TLR4 signaling and Cox-2 expression in the gut. TLR4 and MyD88 signaling are required for optimal proliferation and protection against apoptosis in the injured intestine. Although TLR4 signaling is beneficial in the short term, chronic signaling through TLR4 may lower the threshold for colitis-associated cancer.
Collapse
Affiliation(s)
- Masayuki Fukata
- Inflammatory Bowel Disease Center, Division of Gastroenterology, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Carothers AM, Moran AE, Cho NL, Redston M, Bertagnolli MM. Changes in antitumor response in C57BL/6J-Min/+ mice during long-term administration of a selective cyclooxygenase-2 inhibitor. Cancer Res 2006; 66:6432-8. [PMID: 16778222 DOI: 10.1158/0008-5472.can-06-0992] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selective cyclooxygenase-2 (COX-2) inhibitors are widely prescribed for severe arthritis and are currently under study in human chemoprevention trials. Recently, long-term use of these agents has come under scrutiny due to reports of treatment-associated cardiovascular toxicity. On short-term administration, the selective COX-2 inhibitor celecoxib inhibits adenoma growth in animal tumor models, including the C57BL/6J-Min/+ (Min/+) mouse. With uninterrupted long-term celecoxib administration, intestinal tumors in Min/+ mice initially regressed and then recurred to levels comparable with untreated controls. Celecoxib treatment initially suppressed COX-2 and prostaglandin E2 (PGE2) expression, but long-term use produced significantly higher levels of these molecules and reactivated PGE2-associated growth factor signaling pathways in tumor and normal tissues. These results indicate that COX-2 is an important chemoprevention target and that inhibition of this enzyme alters a paracrine enterocyte regulatory pathway. Chronic uninterrupted celecoxib treatment, however, induces untoward effects that enhance early progression events in intestinal tumorigenesis and may contribute to treatment toxicity.
Collapse
Affiliation(s)
- Adelaide M Carothers
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Duque J, Díaz-Muñoz MD, Fresno M, Iñiguez MA. Up-regulation of cyclooxygenase-2 by interleukin-1β in colon carcinoma cells. Cell Signal 2006; 18:1262-9. [PMID: 16326073 DOI: 10.1016/j.cellsig.2005.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 10/05/2005] [Indexed: 11/26/2022]
Abstract
Growing evidence shows that Interleukin (IL)-1beta and Cyclooxygenase 2 (COX-2) play a crucial role in the pathogenesis of inflammatory diseases and tumor growth, particularly in the gastrointestinal tract. Here, we have analyzed the regulation of COX-2 by IL-1beta in the human colon carcinoma cell line Caco-2, showing that COX-2 induction by this cytokine is due to both nuclear factor (NF)-kappaB-dependent transcriptional and p38 mitogen-activated protein kinase (MAPK)-mediated post-transcriptional mechanisms. Treatment of these cells with IL-1beta increased the levels of COX-2 mRNA and protein and hence the production of PGE2. IL-1beta induced NF-kappaB activation in Caco-2 cells, promoting the binding of this transcription factor to DNA and increasing NF-kappaB-dependent transcription. Inhibition of NF-kappaB activation diminished IL-1beta-mediated transcriptional activation of COX-2. Furthermore, mutation or deletion of a putative NF-kappaB binding site in the human COX-2 promoter greatly diminished its induction by IL-1beta. In addition, this cytokine induced a rapid increase in p38 MAPK activation. Interestingly, inhibition of p38 MAPK by SB203580 severely decreased induction of COX-2 expression by IL-1beta. p38 MAPK signalling was required for IL-1beta-dependent stabilization of COX-2 transcript. Given the importance of COX-2 expression in intestinal inflammation and colon carcinogenesis, these findings contribute to determine the key signalling pathways involved in the regulation of COX-2 expression in colorectal cells by inflammatory stimuli, such as IL-1beta.
Collapse
Affiliation(s)
- Javier Duque
- Centro de Biología Molecular "Severo Ochoa", Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Cui X, Yang SC, Sharma S, Heuze-Vourc'h N, Dubinett SM. IL-4 regulates COX-2 and PGE2 production in human non-small cell lung cancer. Biochem Biophys Res Commun 2006; 343:995-1001. [PMID: 16574063 DOI: 10.1016/j.bbrc.2006.03.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/11/2006] [Indexed: 11/25/2022]
Abstract
IL-4 is a type 2 cytokine that may mediate pleiotropic effects in the NSCLC microenvironment. Here, we investigated whether IL-4 regulates PGE(2) production in NSCLC cells. We found that IL-4 inhibited constitutive COX-2 expression and PGE(2) production in A427 and H2122 NSCLC cell lines, and also suppressed IL-1beta-induced COX-2 expression in A549 and RH2 NSCLC cell lines. COX-2 mRNA was decreased in response to IL-4, and promoter analysis indicated that IL-4 inhibited both constitutive and IL-1beta-induced COX-2 transcription. IL-4 inhibited IL-1beta-stimulated ERK phosphorylation, which may mediate the inhibition of IL-1beta-induced COX-2 by IL-4. IL-4 did not modulate additional arachidonic acid pathway enzymes mPGES-1 and 15-PGDH, which could potentially be responsible for regulating PGE(2) production. Overall, our studies demonstrate that IL-4 has the capacity to inhibit COX-2 mRNA transcription in NSCLC cells and the inhibition of PGE(2) appears to be predominately COX-2 dependent.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Lung Cancer Research Program of the Jonsson Comprehensive Cancer Center, and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
43
|
Wang Q, Zhou Y, Wang X, Evers BM. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene 2006; 25:43-50. [PMID: 16278684 PMCID: PMC1413679 DOI: 10.1038/sj.onc.1209004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycogen-synthase kinase-3 (GSK-3) and extracellular signal-regulated kinase (ERK) are critical downstream signaling proteins for the PI3-kinase/Akt and Ras/Raf/MEK-1 pathway, respectively, and regulate diverse cellular processes including embryonic development, cell differentiation and apoptosis. Here, we show that inhibition of GSK-3 using GSK-3 inhibitors or RNA interference (RNAi) significantly induced the phosphorylation of ERK1/2 in human colon cancer cell lines HT29 and Caco-2. Pretreatment with the PKCdelta-selective inhibitor rottlerin or transfection with PKCdelta siRNA attenuated the phosphorylation of ERK1/2 induced by the GSK-3 inhibitor SB-216763 and, furthermore, treatment with SB-216763 or transfection with GSK-3alpha and GSK-3beta siRNA increased PKCdelta activity, thus identifying a role for PKCdelta in the induction of ERK1/2 phosphorylation by GSK-3 inhibition. Treatment with SB-216763 increased expression of cyclooxygenase-2 (COX-2) and IL-8, which are downstream targets of ERK1/2 activation; this induction was abolished by MEK/ERK inhibition, suggesting GSK-3 inhibition induced COX-2 and IL-8 through ERK1/2 activation. The transcriptional induction of COX-2 and IL-8 by GSK-3 inhibition was further demonstrated by the increased COX-2 and IL-8 promoter activity after SB-216763 treatment or transfection with GSK-3alpha or GSK-3beta siRNA. Importantly, our findings identify GSK-3, acting through PKCdelta, as a negative regulator of ERK1/2, thus revealing a novel crosstalk mechanism between these critical signaling pathways.
Collapse
Affiliation(s)
| | | | | | - B Mark Evers
- Department of Surgery and
- The Sealy Center for Cancer Cell Biology The University of Texas Medical Branch Galveston, Texas
- Correspondence: B. Mark Evers, M.D., Department of Surgery, The University of Texas Medical Branch 301 University Boulevard, Galveston, TX 77555-0536, Telephone: (409) 772-5254, FAX: (409) 747-4819 e-mail:
| |
Collapse
|
44
|
Kaul R, Verma SC, Murakami M, Lan K, Choudhuri T, Robertson ES. Epstein-Barr virus protein can upregulate cyclo-oxygenase-2 expression through association with the suppressor of metastasis Nm23-H1. J Virol 2006; 80:1321-31. [PMID: 16415009 PMCID: PMC1346972 DOI: 10.1128/jvi.80.3.1321-1331.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Previous studies have demonstrated the interaction between the Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) and the metastatic suppressor Nm23-H1 both in vitro and in vivo (C. Subramanian, M. A. Cotter II, and E. S. Robertson, Nat. Med. 7:350-355, 2001). EBNA3C can reverse the ability of Nm23-H1 to suppress migration of Burkitt's lymphoma and breast carcinoma cell lines in vitro. EBNA3C contributes to EBV-associated human cancers by regulating transcription of a number of cellular and viral promoters and by targeting and altering the transcription activities of the metastasis suppressor Nm23-H1. Cyclo-oxygenase-2 (COX-2), an inducible enzyme important in inflammation, is overexpressed in a variety of cancers and can influence cell migration. In this report we show that Nm23-H1 and EBNA3C can modulate expression of COX-2 in the context of EBV infection and transformation. The levels of COX-2 were consistently higher in EBV-positive cells than in EBV-negative cells. Additionally, we show that Nm23-H1 can upregulate the COX-2 promoter element in luciferase reporter assays, whereas EBNA3C alone did not affect the level of response but clearly contributed to an additive increase when coexpressed with Nm23-H1. The downstream effect of COX-2 expression was also evaluated and showed that prostaglandin E(2) levels increased with Nm23-H1 and that there was some level of cooperativity in the presence of EBNA3C. The majority of this response was mediated through the cyclic AMP response element and NF-kappaB sites. These studies suggest a potential role for COX-2 in EBV-associated human cancers.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Antigens, Viral/physiology
- Base Sequence
- Binding Sites/genetics
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Viral
- Cyclooxygenase 2/genetics
- DNA, Complementary/genetics
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/physiopathology
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Humans
- Models, Biological
- NF-kappa B/metabolism
- NM23 Nucleoside Diphosphate Kinases
- Neoplasm Metastasis
- Nucleoside-Diphosphate Kinase/physiology
- Promoter Regions, Genetic
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Rajeev Kaul
- Department of Microbiology, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
45
|
Okawa T, Naomoto Y, Nobuhisa T, Takaoka M, Motoki T, Shirakawa Y, Yamatsuji T, Inoue H, Ouchida M, Gunduz M, Nakajima M, Tanaka N. Heparanase Is Involved in Angiogenesis in Esophageal Cancer through Induction of Cyclooxygenase-2. Clin Cancer Res 2005; 11:7995-8005. [PMID: 16299228 DOI: 10.1158/1078-0432.ccr-05-1103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Both heparanase and cyclooxygenase-2 (COX-2) are thought to play critical roles for tumor malignancy, including angiogenesis, although it is unknown about their relationship with each other in cancer progression. We hypothesized that they may link to each other on tumor angiogenesis. EXPERIMENTAL DESIGN The expressions of heparanase and COX-2 in 77 primary human esophageal cancer tissues were assessed by immunohistochemistry to do statistical analysis for the correlation between their clinicopathologic features, microvessel density, and survival of those clinical cases. Human esophageal cancer cells were transduced with heparanase cDNA and used for reverse transcription-PCR and Western blot to determine the expression of heparanase and COX-2. COX-2 promoter vector and its deletion/mutation constructs were also used along with transduction of heparanase cDNA for luciferase assay. RESULTS Heparanase and COX-2 protein expression exhibited a similar pattern in esophageal tumor tissues, and their expression correlated with tumor malignancy and poor survival. Their expression also revealed a significant correlation with high intratumoral microvessel density. Up-regulation of COX-2 mRNA and protein was observed in esophageal cancer cells transfected with heparanase cDNA. COX-2 promoter was activated after heparanase cDNA was transduced and the deletion/mutation of three transcription factor (cyclic AMP response element, nuclear factor-kappaB, and nuclear factor-interleukin-6) binding elements in COX-2 promoter strongly suppressed its activity. CONCLUSION Our results suggest that heparanase may play a novel role for COX-2-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Takaomi Okawa
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Uto T, Fujii M, Hou DX. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 transcription by 6-(methylsulfinyl) hexyl isothiocyanate, a chemopreventive compound from Wasabia japonica (Miq.) Matsumura, in mouse macrophages. Biochem Pharmacol 2005; 70:1772-84. [PMID: 16256955 DOI: 10.1016/j.bcp.2005.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 09/23/2005] [Accepted: 09/26/2005] [Indexed: 01/05/2023]
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MITC) is a chemopreventive compound occurring in Wasabi (Wasabia japonica (Miq.) Matsumura), which is a very popular pungent spice in Japan. We investigated the effects of 6-MITC on the expression of cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Treatment with 6-MITC suppressed LPS-mediated induction of COX-2 protein in a dose-dependent manner. Transfections with various COX-2 promoter reporter constructs revealed that the inhibitory effects of 6-MITC on COX-2 gene expression were directed by the core promoter elements including nuclear factor kappaB (NF-kappaB), CCAAT/enhancer-binding protein (C/EBP) and cyclic AMP-response element (CRE) sites. Western blotting analysis showed that 6-MITC inhibited LPS-induced activation of MAPK (ERK, p38 kinase and JNK) and transcriptional factors (CREB, c-Jun and C/EBPdelta) binding the core elements of COX-2 promoter, substantiating the involvement of these signal transduction pathways in the regulation of COX-2 expression by 6-MITC. Moreover, Western blotting experiments with MAPK-specific inhibitors (U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) demonstrated that 6-MITC suppressed LPS-induced COX-2 expression by blocking the activation of JNK-mediated AP-1 and ERK/p38 kinase-mediated CREB or C/EBPdelta. Finally, the structure-activity study revealed that the inhibitory potency of methylsulfinyl isothiocyanates (MITCs) depended on the methyl chain length. These findings demonstrate for the first time that 6-MITC is an effective agent to attenuate COX-2 production, and enhance our understanding of the anti-inflammation properties of 6-MITC.
Collapse
Affiliation(s)
- Takuhiro Uto
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima City 890-0065, Japan
| | | | | |
Collapse
|
47
|
Hou DX, Yanagita T, Uto T, Masuzaki S, Fujii M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure-activity relationship and molecular mechanisms involved. Biochem Pharmacol 2005; 70:417-25. [PMID: 15963474 DOI: 10.1016/j.bcp.2005.05.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/01/2005] [Accepted: 05/04/2005] [Indexed: 12/19/2022]
Abstract
The effects of anthocyanidins, the aglycon nucleuses of anthocyanins widely occurring in reddish fruits and vegetables, on the expression of cyclooxygenase-2 (COX-2) were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Of five anthocyanidins, delphinidin and cyanidin inhibited LPS-induced COX-2 expression, but pelargonidin, peonidin and malvidin did not. The structure-activity relationship suggest that the ortho-dihydroxyphenyl structure of anthocyanidins on the B-ring appears to be related with the inhibitory actions. Delphinidin, the most potent inhibitor, caused a dose-dependent inhibition of COX-2 expression at both mRNA and protein levels. Western blotting analysis indicated that delphinidin inhibited the degradation of IkappaB-alpha, nuclear translocation of p65 and CCAAT/enhancer-binding protein (C/EBP)delta and phosphorylation of c-Jun, but not CRE-binding protein (CREB). Moreover, delphinidin suppressed the activations of mitogen-activated protein kinase (MAPK) including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. MAPK inhibitors (U0126 for MEK1/2, SB203580 for p38 kinase and SP600125 for JNK) specifically blocked LPS-induced COX-2 expression. Thus, our results demonstrated that LPS-induced COX-2 expression by activating MAPK pathways and delphinidin suppressed COX-2 by blocking MAPK-mediated pathways with the attendant activation of nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and C/EBPdelta. These findings provide the first molecular basis that anthocyanidins with ortho-dihydroxyphenyl structure may have anti-inflammatory properties through the inhibition of MAPK-mediated COX-2 expression.
Collapse
Affiliation(s)
- De-Xing Hou
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima City 890-0065, Japan.
| | | | | | | | | |
Collapse
|
48
|
Chen P, Hu S, Yao J, Moore SA, Spector AA, Fang X. Induction of cyclooxygenase-2 by anandamide in cerebral microvascular endothelium. Microvasc Res 2005; 69:28-35. [PMID: 15797258 DOI: 10.1016/j.mvr.2005.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 02/03/2023]
Abstract
Anandamide (AEA), an endogenous cannabinoid receptor agonist, is a potent vasodilator in the cerebral microcirculation. AEA is converted to arachidonic acid (AA) by fatty acid amidohydrolase (FAAH), and the conversion of AA to prostaglandins has been proposed as a potential mechanism for the vasodilation. Although AEA stimulated prostaglandin production by mouse cerebral microvascular endothelial cells, no [(3)H]prostaglandins were produced when these cells were incubated with [3H]AEA. Incubation with R(+)-methanandamide (MAEA), a stable analogue of AEA that is not a substrate for FAAH, produced a similar increase in PGE2 production as AEA. The PGE2 production induced by either AEA or MAEA was completely inhibited by NS-398, a selective cyclooxygenase (COX)-2 inhibitor, suggesting that COX-2 was induced. AEA and MAEA increased the expression of COX-2 protein in a time-dependent manner. This increase occurred as early as 1 h and reached maximum at 2 h. Induction of COX-2 protein by AEA was partially inhibited by AM-251, a selective cannabinoid receptor-1 antagonist. Furthermore, AEA increased COX-2 promoter activity approximately twofold above baseline in a fragment ranging from -1432 to +59, the full-length of the COX-2 promoter, and the increase in COX-2 promoter activity produced by AEA was partially inhibited by AM-251. These results indicate that AEA increased COX-2 expression at the transcriptional level through, at least in part, a cannabinoid receptor-1-mediated mechanism in cerebral microvascular endothelium.
Collapse
Affiliation(s)
- Ping Chen
- Department of Biochemistry, 4-403 BSB, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
49
|
Joo M, Hahn YS, Kwon M, Sadikot RT, Blackwell TS, Christman JW. Hepatitis C virus core protein suppresses NF-kappaB activation and cyclooxygenase-2 expression by direct interaction with IkappaB kinase beta. J Virol 2005; 79:7648-57. [PMID: 15919917 PMCID: PMC1143634 DOI: 10.1128/jvi.79.12.7648-7657.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to hepatocytes, hepatitis C virus (HCV) infects immune cells, including macrophages. However, little is known concerning the impact of HCV infection on cellular functions of these immune effector cells. Lipopolysaccharide (LPS) activates IkappaB kinase (IKK) signalsome and NF-kappaB, which leads to the expression of cyclooxygenase-2 (COX-2), which catalyzes production of prostaglandins, potent effectors on inflammation and possibly hepatitis. Here, we examined whether expression of HCV core interferes with IKK signalsome activity and COX-2 expression in activated macrophages. In reporter assays, HCV core inhibited NF-kappaB activation in RAW 264.7 and MH-S murine macrophage cell lines treated with bacterial LPS. HCV core inhibited IKK signalsome and IKKbeta kinase activities induced by tumor necrosis factor alpha in HeLa cells and coexpressed IKKgamma in 293 cells, respectively. HCV core was coprecipitated with IKappaKappabeta and prevented nuclear translocation of IKKbeta. NF-kappaB activation by either LPS or overexpression of IKKbeta was sufficient to induce robust expression of COX-2, which was markedly suppressed by ectopic expression of HCV core. Together, these data indicate that HCV core suppresses IKK signalsome activity, which blunts COX-2 expression in macrophages. Additional studies are necessary to determine whether interrupted COX-2 expression by HCV core contributes to HCV pathogenesis.
Collapse
Affiliation(s)
- Myungsoo Joo
- Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Wu CY, Wang CJ, Tseng CC, Chen HP, Wu MS, Lin JT, Inoue H, Chen GH. Helicobacter pylori promote gastric cancer cells invasion through a NF-kB and COX-2-mediated pathway. World J Gastroenterol 2005; 11:3197-203. [PMID: 15929167 PMCID: PMC4316048 DOI: 10.3748/wjg.v11.i21.3197] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effects of Helicobacter pylori (H pylori) infection on the invasiveness of gastric cancer cells, and to elucidate its mechanism.
METHODS: Gastric carcinoma cells, MKN-45, were incubated with CagA-positive H pylori, and cell invasion was determined by Matrigel analysis. The expression of matrix metallopr-oteinase-9 (MMP-9), vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) were assessed by Western-blot analysis, and transcriptional activation of the COX-2 promoter was examined by measuring luciferase and β-galactosidase activities. Lastly, the protein-DNA interaction was confirmed by an electrophoretic mobility shift assay.
RESULTS: The current studies showed that: (1) incubation of CagA-positive H pylori with MKN-45 cells significantly promotes gastric cancer cells invasion, and this effect is attenuated by pre-treatment with NS-398, a COX-2 inhibitor, or PDTC, a nuclear factor κB (NF-κB) inhibitor; (2) the induction of MKN-45 cells invasion by H pylori is associated with increases in COX-2, MMP-9, and VEGF protein expression, and co-incubation of NS-398 or PDTC significantly reduces these effects; (3) H pylori infection transactivates COX-2 promoter activity and increases the binding of NF-κB to this promoter.
CONCLUSION: Our data demonstrate that H pylori infection promotes gastric epithelial cells invasion by activating MMP-9 and VEGF expression. These effects appear to be mediated through a NF-κB and COX-2 mediated pathway, as COX-2 or NF-κB inhibitor significantly attenuate the invasiveness of gastric cancer cells and the expressions of MMP-9 and VEGF protein.
Collapse
Affiliation(s)
- Chun-Ying Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, China
| | | | | | | | | | | | | | | |
Collapse
|