1
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
3
|
IsoSearch: An Untargeted and Unbiased Metabolite and Lipid Isotopomer Tracing Strategy from HR-LC-MS/MS Datasets. Methods Protoc 2020; 3:mps3030054. [PMID: 32751454 PMCID: PMC7563207 DOI: 10.3390/mps3030054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Stable isotopic tracer analysis is a technique used to determine carbon or nitrogen atom incorporation into biological systems. A number of mass spectrometry based approaches have been developed for this purpose, including high-resolution tandem mass spectrometry (HR-LC-MS/MS), selected reaction monitoring (SRM) and parallel reaction monitoring (PRM). We have developed an approach for analyzing untargeted metabolomic and lipidomic datasets using high-resolution mass spectrometry with polarity switching and implemented our approach in the open-source R script IsoSearch and in Scaffold Elements software. Using our strategy, which requires an unlabeled reference dataset and isotope labeled datasets across various biological conditions, we traced metabolic isotopomer alterations in breast cancer cells (MCF-7) treated with the metabolic drugs 2-deoxy-glucose, 6-aminonicotinamide, compound 968, and rapamycin. Metabolites and lipids were first identified by the commercial software Scaffold Elements and LipidSearch, then IsoSearch successfully profiled the 13C-isotopomers extracted metabolites and lipids from 13C-glucose labeled MCF-7 cells. The results interpreted known models, such as glycolysis and pentose phosphate pathway inhibition, but also helped to discover new metabolic/lipid flux patterns, including a reactive oxygen species (ROS) defense mechanism induced by 6AN and triglyceride accumulation in rapamycin treated cells. The results suggest the IsoSearch/Scaffold Elements platform is effective for studying metabolic tracer analysis in diseases, drug metabolism, and metabolic engineering for both polar metabolites and non-polar lipids.
Collapse
|
4
|
Griffin JWD, Bradshaw PC. Effects of a high protein diet and liver disease in an in silico model of human ammonia metabolism. Theor Biol Med Model 2019; 16:11. [PMID: 31366360 PMCID: PMC6670211 DOI: 10.1186/s12976-019-0109-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND After proteolysis, the majority of released amino acids from dietary protein are transported to the liver for gluconeogenesis or to peripheral tissues where they are used for protein synthesis and eventually catabolized, producing ammonia as a byproduct. High ammonia levels in the brain are a major contributor to the decreased neural function that occurs in several pathological conditions such as hepatic encephalopathy when liver urea cycle function is compromised. Therefore, it is important to gain a deeper understanding of human ammonia metabolism. The objective of this study was to predict changes in blood ammonia levels resulting from alterations in dietary protein intake, from liver disease, or from partial loss of urea cycle function. METHODS A simple mathematical model was created using MATLAB SimBiology and data from published studies. Simulations were performed and results analyzed to determine steady state changes in ammonia levels resulting from varying dietary protein intake and varying liver enzyme activity levels to simulate liver disease. As a toxicity reference, viability was measured in SH-SY5Y neuroblastoma cells following differentiation and ammonium chloride treatment. RESULTS Results from control simulations yielded steady state blood ammonia levels within normal physiological limits. Increasing dietary protein intake by 72% resulted in a 59% increase in blood ammonia levels. Simulations of liver cirrhosis increased blood ammonia levels by 41 to 130% depending upon the level of dietary protein intake. Simulations of heterozygous individuals carrying a loss of function allele of the urea cycle carbamoyl phosphate synthetase I (CPS1) gene resulted in more than a tripling of blood ammonia levels (from roughly 18 to 60 μM depending on dietary protein intake). The viability of differentiated SH-SY5Y cells was decreased by 14% by the addition of a slightly higher amount of ammonium chloride (90 μM). CONCLUSIONS Data from the model suggest decreasing protein consumption may be one simple strategy to decrease blood ammonia levels and minimize the risk of developing hepatic encephalopathy for many liver disease patients. In addition, the model suggests subjects who are known carriers of disease-causing CPS1 alleles may benefit from monitoring blood ammonia levels and limiting the level of protein intake if ammonia levels are high.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
5
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018; 10:nu10111564. [PMID: 30360490 PMCID: PMC6266414 DOI: 10.3390/nu10111564] [Citation(s) in RCA: 564] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
- Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
6
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018. [PMID: 30360490 DOI: 10.20944/preprints201809.0459.v1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia. .,Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
7
|
Hakvoort TBM, He Y, Kulik W, Vermeulen JLM, Duijst S, Ruijter JM, Runge JH, Deutz NEP, Koehler SE, Lamers WH. Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology 2017; 65:281-293. [PMID: 27641632 DOI: 10.1002/hep.28852] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/18/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Glutamine synthetase (GS) catalyzes condensation of ammonia with glutamate to glutamine. Glutamine serves, with alanine, as a major nontoxic interorgan ammonia carrier. Elimination of hepatic GS expression in mice causes only mild hyperammonemia and hypoglutaminemia but a pronounced decrease in the whole-body muscle-to-fat ratio with increased myostatin expression in muscle. Using GS-knockout/liver and control mice and stepwise increments of enterally infused ammonia, we show that ∼35% of this ammonia is detoxified by hepatic GS and ∼35% by urea-cycle enzymes, while ∼30% is not cleared by the liver, independent of portal ammonia concentrations ≤2 mmol/L. Using both genetic (GS-knockout/liver and GS-knockout/muscle) and pharmacological (methionine sulfoximine and dexamethasone) approaches to modulate GS activity, we further show that detoxification of stepwise increments of intravenously (jugular vein) infused ammonia is almost totally dependent on GS activity. Maximal ammonia-detoxifying capacity through either the enteral or the intravenous route is ∼160 μmol/hour in control mice. Using stable isotopes, we show that disposal of glutamine-bound ammonia to urea (through mitochondrial glutaminase and carbamoylphosphate synthetase) depends on the rate of glutamine synthesis and increases from ∼7% in methionine sulfoximine-treated mice to ∼500% in dexamethasone-treated mice (control mice, 100%), without difference in total urea synthesis. CONCLUSIONS Hepatic GS contributes to both enteral and systemic ammonia detoxification. Glutamine synthesis in the periphery (including that in pericentral hepatocytes) and glutamine catabolism in (periportal) hepatocytes represents the high-affinity ammonia-detoxifying system of the body. The dependence of glutamine-bound ammonia disposal to urea on the rate of glutamine synthesis suggests that enhancing peripheral glutamine synthesis is a promising strategy to treat hyperammonemia. Because total urea synthesis does not depend on glutamine synthesis, we hypothesize that glutamate dehydrogenase complements mitochondrial ammonia production. (Hepatology 2017;65:281-293).
Collapse
Affiliation(s)
- Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Youji He
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Kulik
- Department of Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline L M Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan M Ruijter
- Heart Failure Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas E P Deutz
- Department of General Surgery, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Koehler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Optimality in the zonation of ammonia detoxification in rodent liver. Arch Toxicol 2015; 89:2069-78. [DOI: 10.1007/s00204-015-1596-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
9
|
Schliess F, Hoehme S, Henkel SG, Ghallab A, Driesch D, Böttger J, Guthke R, Pfaff M, Hengstler JG, Gebhardt R, Häussinger D, Drasdo D, Zellmer S. Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 2014; 60:2040-51. [PMID: 24677161 DOI: 10.1002/hep.27136] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/14/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED The impairment of hepatic metabolism due to liver injury has high systemic relevance. However, it is difficult to calculate the impairment of metabolic capacity from a specific pattern of liver damage with conventional techniques. We established an integrated metabolic spatial-temporal model (IM) using hepatic ammonia detoxification as a paradigm. First, a metabolic model (MM) based on mass balancing and mouse liver perfusion data was established to describe ammonia detoxification and its zonation. Next, the MM was combined with a spatial-temporal model simulating liver tissue damage and regeneration after CCl4 intoxication. The resulting IM simulated and visualized whether, where, and to what extent liver damage compromised ammonia detoxification. It allowed us to enter the extent and spatial patterns of liver damage and then calculate the outflow concentrations of ammonia, glutamine, and urea in the hepatic vein. The model was validated through comparisons with (1) published data for isolated, perfused livers with and without CCl4 intoxication and (2) a set of in vivo experiments. Using the experimentally determined portal concentrations of ammonia, the model adequately predicted metabolite concentrations over time in the hepatic vein during toxin-induced liver damage and regeneration in rodents. Further simulations, especially in combination with a simplified model of blood circulation with three ammonia-detoxifying compartments, indicated a yet unidentified process of ammonia consumption during liver regeneration and revealed unexpected concomitant changes in amino acid metabolism in the liver and at extrahepatic sites. CONCLUSION The IM of hepatic ammonia detoxification considerably improves our understanding of the metabolic impact of liver disease and highlights the importance of integrated modeling approaches on the way toward virtual organisms.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ghafoory S, Breitkopf-Heinlein K, Li Q, Scholl C, Dooley S, Wölfl S. Zonation of nitrogen and glucose metabolism gene expression upon acute liver damage in mouse. PLoS One 2013; 8:e78262. [PMID: 24147127 PMCID: PMC3798318 DOI: 10.1371/journal.pone.0078262] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022] Open
Abstract
Zonation of metabolic activities within specific structures and cell types is a phenomenon of liver organization and ensures complementarity of variant liver functions like protein production, glucose homeostasis and detoxification. To analyze damage and regeneration of liver tissue in response to a toxic agent, expression of liver specific enzymes was analyzed by in situ hybridization in mouse over a 6 days time course following carbon tetrachloride (CCl4) injection. CCl4 mixed with mineral oil was administered to BALB/c mice by intraperitoneal injection, and mice were sacrificed at different time points post injection. Changes in the expression of albumin (Alb), arginase (Arg1), glutaminase 2 (Gls2), Glutamine synthetase (Gs), glucose-6-phosphatase (G6pc), glycogen synthase 2 (Gys2), Glycerinaldehyd-3-phosphat-Dehydrogenase (Gapdh), Cytochrom p450 2E1 (Cyp2e1) and glucagon receptor (Gcgr) genes in the liver were studied by in situ hybridization and qPCR. We observed significant changes in gene expression of enzymes involved in nitrogen and glucose metabolism and their local distribution following CCl4 injury. We also found that Cyp2e1, the primary metabolizing enzyme for CCl4, was strongly expressed in the pericentral zone during recovery. Furthermore, cells in the damaged area displayed distinct gene expression profiles during the analyzed time course and showed complete recovery with strong albumin production 6 days after CCl4 injection. Our results indicate that despite severe damage, liver cells in the damaged area do not simply die but instead display locally adjusted gene expression supporting damage response and recovery.
Collapse
Affiliation(s)
- Shahrouz Ghafoory
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Section Molecular Hepatology - Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Qi Li
- Department of Medicine II, Section Molecular Hepatology - Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Catharina Scholl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology - Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
da Silva R, Levillain O, Brosnan JT, Araneda S, Brosnan ME. The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes. Can J Physiol Pharmacol 2012; 91:362-8. [PMID: 23656379 DOI: 10.1139/cjpp-2012-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is functional zonation of metabolism across the liver acinus, with glutamine synthetase restricted to a narrow band of cells around the terminal hepatic venules. Portacaval anastomosis, where there is a major rerouting of portal blood flow from the portal vein directly to the vena cava bypassing the liver, has been reported to result in a marked decrease in the activity of glutamine synthetase. It is not known whether this represents a loss of perivenous hepatocytes or whether there is a specific loss of glutamine synthetase. To answer this question, we have determined the activity of glutamine synthetase and another enzyme from the perivenous compartment, ornithine aminotransferase, as well as the immunochemical localization of both glutamine synthetase and ornithine aminotransferase in rats with a portacaval shunt. The portacaval shunt caused a marked decrease in glutamine synthetase activity and an increase in ornithine aminotransferase activity. Immunohistochemical analysis showed that the glutamine synthetase and ornithine aminotransferase proteins maintained their location in the perivenous cells. These results indicate that there is no generalized loss of perivenous hepatocytes, but rather, there is a significant alteration in the expression of these proteins and hence metabolism in this cell population.
Collapse
Affiliation(s)
- Robin da Silva
- Memorial University of Newfoundland, Department of Biochemistry, St. John's, NL A1B 3X9, Canada
| | | | | | | | | |
Collapse
|
12
|
Cooper AJL. 13N as a tracer for studying glutamate metabolism. Neurochem Int 2010; 59:456-64. [PMID: 21108979 DOI: 10.1016/j.neuint.2010.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
Abstract
This mini-review summarizes studies my associates and I carried out that are relevant to the topic of the present volume [i.e. glutamate dehydrogenase (GDH)] using radioactive (13)N (t(1/2) 9.96 min) as a biological tracer. These studies revealed the previously unrecognized rapidity with which nitrogen is exchanged among certain metabolites in vivo. For example, our work demonstrated that (a) the t(1/2) for conversion of portal vein ammonia to urea in the rat liver is ∼10-11s, despite the need for five enzyme-catalyzed steps and two mitochondrial transport steps, (b) the residence time for ammonia in the blood of anesthetized rats is ≤7-8s, (c) the t(1/2) for incorporation of blood-borne ammonia into glutamine in the normal rat brain is <3s, and (d) equilibration between glutamate and aspartate nitrogen in rat liver is extremely rapid (seconds), a reflection of the fact that the components of the hepatic aspartate aminotransferase reaction are in thermodynamic equilibrium. Our work emphasizes the importance of the GDH reaction in rat liver as a conduit for dissimilating or assimilating ammonia as needed. In contrast, our work shows that the GDH reaction in rat brain appears to operate mostly in the direction of ammonia production (dissimilation). The importance of the GDH reaction as an endogenous source of ammonia in the brain and the relation of GDH to the brain glutamine cycle is discussed. Finally, our work integrates with the increasing use of positron emission tomography (PET) and nuclear magnetic resonance (NMR) to study brain ammonia uptake and brain glutamine, respectively, in normal individuals and in patients with liver disease or other diseases associated with hyperammonemia.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
13
|
Comar JF, Suzuki-Kemmelmeier F, Constantin J, Bracht A. Hepatic zonation of carbon and nitrogen fluxes derived from glutamine and ammonia transformations. J Biomed Sci 2010; 17:1. [PMID: 20055990 PMCID: PMC2843605 DOI: 10.1186/1423-0127-17-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 01/07/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glutaminase predominates in periportal hepatocytes and it has been proposed that it determines the glutamine-derived nitrogen flow through the urea cycle. Glutamine-derived urea production should, thus, be considerably faster in periportal hepatocytes. This postulate, based on indirect observations, has not yet been unequivocally demonstrated, making a direct investigation of ureogenesis from glutamine highly desirable. METHODS Zonation of glutamine metabolism was investigated in the bivascularly perfused rat liver with [U-14C]glutamine infusion (0.6 mM) into the portal vein (antegrade perfusion) or into the hepatic vein (retrograde perfusion). RESULTS Ammonia infusion into the hepatic artery in retrograde and antegrade perfusion allowed to promote glutamine metabolism in the periportal region and in the whole liver parenchyma, respectively. The results revealed that the space-normalized glutamine uptake, indicated by (14)CO(2) production, gluconeogenesis, lactate production and the associated oxygen uptake, predominates in the periportal region. Periportal predominance was especially pronounced for gluconeogenesis. Ureogenesis, however, tended to be uniformly distributed over the whole liver parenchyma at low ammonia concentrations (up to 1.0 mM); periportal predominance was found only at ammonia concentrations above 1 mM. The proportions between the carbon and nitrogen fluxes in periportal cells are not the same along the liver acinus. CONCLUSIONS In conclusion, the results of the present work indicate that the glutaminase activity in periportal hepatocytes is not the rate-controlling step of the glutamine-derived nitrogen flow through the urea cycle. The findings corroborate recent work indicating that ureogenesis is also an important ammonia-detoxifying mechanism in cells situated downstream to the periportal region.
Collapse
Affiliation(s)
- Jurandir F Comar
- Laboratory of Liver Metabolism, Biochemistry Department, University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
14
|
Brosnan ME, Brosnan JT. Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am J Clin Nutr 2009; 90:857S-861S. [PMID: 19625684 DOI: 10.3945/ajcn.2009.27462z] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate plays a central role in hepatic amino acid metabolism, both because of its role in the transdeamination of most amino acids and because the catabolism of arginine, ornithine, proline, histidine, and glutamine gives rise to glutamate. It is now appreciated that different hepatic functions are restricted to hepatocyte subpopulations within different acinar zones. This is also a feature of glutamate metabolism. Glutamine catabolism and synthesis are physically separated by zonation, with glutamine synthetase restricted to a narrow band of hepatocytes in zone 3 of the hepatic acinus, whereas glutaminase occurs in zone 1. Arginine and ornithine metabolism is also restricted to particular hepatocyte subpopulations. Ornithine aminotransferase, the regulated enzyme of arginine and ornithine catabolism, is restricted to the same zone 3 cells as glutamine synthetase, whereas the urea cycle is found in the remaining hepatocytes. This separation facilitates the independent regulation of these 2 different metabolic processes. We know the acinar localization of only a small fraction of the approximately 15,000 genes expressed in the liver. Knowledge of the acinar localization of metabolic processes is essential for an appreciation of their relation to other hepatic functions and their regulation.
Collapse
Affiliation(s)
- Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | | |
Collapse
|
15
|
Abstract
Expression of high activities of both glutamine synthetase and glutaminase allows the liver to play a major role in the regulation of glutamine homeostasis. The liver shows net glutamine output in metabolic acidosis, in prolonged starvation and animals bearing tumors, net glutamine uptake in the postabsorptive state, on consuming high protein diets, and in uncontrolled diabetes or sepsis. Liver glutamine synthetase is expressed only in a small population of perivenous cells that allows it to salvage any ammonia not incorporated into urea in periportal cells. Hepatic glutaminase is a unique isozyme found only in periportal liver parenchymal cells where it provides glutamate and ammonia for the urea cycle. Control of hepatic glutamine metabolism occurs almost exclusively through changes in the activity of glutaminase, with no change in glutamine synthetase flux.
Collapse
Affiliation(s)
- Malcolm Watford
- Department of Nutritional Sciences, Cook College, Rutgers, The State University, New Brunswick, New Jersey 08901, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
The liver shows net glutamine uptake after a protein-containing meal, during uncontrolled diabetes, sepsis and short-term starvation, but changes to net release during long-term starvation and metabolic acidosis. Some studies report a small net release of glutamate by the liver. The differential expression of glutamine synthetase (perivenous) and glutaminase (periportal) within the liver indicates that glutamine is used for urea synthesis in periportal cells, whereas glutamine synthesis serves to detoxify any residual ammonia in perivenous cells. Experiments in vivo suggest that changes in net hepatic glutamine balance are due predominantly to regulation of glutaminase activity, with the flux through glutamine synthetase being relatively constant.
Collapse
Affiliation(s)
- M Watford
- Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Christoffels VM, Grange T, Kaestner KH, Cole TJ, Darlington GJ, Croniger CM, Lamers WH. Glucocorticoid receptor, C/EBP, HNF3, and protein kinase A coordinately activate the glucocorticoid response unit of the carbamoylphosphate synthetase I gene. Mol Cell Biol 1998; 18:6305-15. [PMID: 9774647 PMCID: PMC109217 DOI: 10.1128/mcb.18.11.6305] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single far-upstream enhancer is sufficient to confer hepatocyte-specific, glucocorticoid- and cyclic AMP-inducible periportal expression to the carbamoylphosphate synthetase I (CPS) gene. To identify the mechanism of hormone-dependent activation, the composition and function of the enhancer have been analyzed. DNase I protection and gel mobility shift assays revealed the presence of a cyclic AMP response element, a glucocorticoid response element (GRE), and several sites for the liver-enriched transcription factor families HNF3 and C/EBP. The in vivo relevance of the transcription factors interacting with the enhancer in the regulation of CPS expression in the liver was assessed by the analysis of knockout mice. A strong reduction of CPS mRNA levels was observed in glucocorticoid receptor- and C/EBPalpha-deficient mice, whereas the CPS mRNA was normally expressed in C/EBPbeta knockout mice and in HNF3alpha and -gamma double-knockout mice. (The role of HNFbeta could not be assessed, because the corresponding knockout mice die at embryonic day 10). In hepatoma cells, most of the activity of the enhancer is contained within a 103-bp fragment, which depends for its activity on the simultaneous occupation of the GRE, HNF3, and C/EBP sites, thus meeting the requirement of a glucocorticoid response unit. In fibroblast-like CHO cells, on the other hand, the GRE in the CPS enhancer does not cooperate with the C/EBP and HNF3 elements in transactivation of the CPS promoter. In both hepatoma and CHO cells, stimulation of expression by cyclic AMP depends mainly on the integrity of the glucocorticoid pathway, demonstrating cross talk between this pathway and the cyclic AMP (protein kinase A) pathway.
Collapse
Affiliation(s)
- V M Christoffels
- Department of Anatomy and Embryology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Lie-Venema H, Hakvoort TB, van Hemert FJ, Moorman AF, Lamers WH. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:243-308. [PMID: 9752723 DOI: 10.1016/s0079-6603(08)60829-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutamine synthetase, the enzyme that catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, is expressed in a tissue-specific and developmentally controlled manner. The first part of this review focuses on its spatiotemporal pattern of expression, the factors that regulate its levels under (patho)physiological conditions, and its role in glutamine, glutamate, and ammonia metabolism in mammals. Glutamine synthetase protein stability is more than 10-fold reduced by its product glutamine and by covalent modifications. During late fetal development, translational efficiency increases more than 10-fold. Glutamine synthetase mRNA stability is negatively affected by cAMP, whereas glucocorticoids, growth hormone, insulin (all positive), and cAMP (negative) regulate its rate of transcription. The signal transduction pathways by which these factors may regulate the expression of glutamine synthetase are briefly discussed. The second part of the review focuses on the evolution, structure, and transcriptional regulation of the glutamine synthetase gene in rat and chicken. Two enhancers (at -6.5 and -2.5 kb) were identified in the upstream region and two enhancers (between +156 and +857 bp) in the first intron of the rat glutamine synthetase gene. In addition, sequence analysis suggests a regulatory role for regions in the 3' untranslated region of the gene. The immediate-upstream region of the chicken glutamine synthetase gene is responsible for its cell-specific expression, whereas the glucocorticoid-induced developmental appearance in the neural retina is governed by its far-upstream region.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Wu G, Chung-Bok MI, Vincent N, Kowalski TJ, Choi YH, Watford M. Distribution of phosphate-activated glutaminase isozymes in the chicken: absence from liver but presence of high activity in pectoralis muscle. Comp Biochem Physiol B Biochem Mol Biol 1998; 120:285-90. [PMID: 9787797 DOI: 10.1016/s0305-0491(98)10018-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The distribution of glutaminase expression in a uricotelic species, the chicken, has been examined using cDNA probes to the rat isozymes. The results suggest that chickens do not possess a glutaminase isozyme equivalent to the liver-type isozyme of mammalian liver. Measurements of enzymic activity also showed very low glutaminase activity in chicken liver. Extra-hepatic tissues in the chicken do express a glutaminase isozyme mRNA which is detected by rat kidney-type glutaminase cDNA. The abundance of this mRNA was highest in kidney and breast muscle and relatively abundant in brain, spleen and adipose tissue. Chicken small intestine expressed relatively low levels of the mRNA. The high level of glutaminase mRNA in chicken pectoralis muscle was accompanied by high glutaminase enzymic activity. In contrast, in mixed leg muscle glutaminase mRNA was barely detectable by Northern blot and glutaminase activity was relatively low. Starvation for 48 h resulted in a slight decrease in the activity of glutaminase in pectoralis muscle, but a large decrease in the relative abundance of the mRNA. The results suggest that in the chicken, hepatic glutamine hydrolysis is not quantitatively important, but skeletal muscle may be a major site of glutamine catabolism.
Collapse
Affiliation(s)
- G Wu
- Department of Animal Science and Nutrition, Texas A&M University, College Station 77843, USA
| | | | | | | | | | | |
Collapse
|
20
|
Häussinger D. Hepatic glutamine transport and metabolism. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:43-86. [PMID: 9559051 DOI: 10.1002/9780470123188.ch3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the liver was long known to play a major role in the uptake, synthesis, and disposition of glutamine, metabolite balance studies across the whole liver yielded apparently contradictory findings suggesting that little or no net turnover of glutamine occurred in this organ. Efforts to understand the unique regulatory properties of hepatic glutaminase culminated in the conceptual reformulation of the pathway for glutamine synthesis and turnover, especially as regards the role of sub-acinar distribution of glutamine synthetase and glutaminase. This chapter describes these processes as well as the role of glutamine in hepatocellular hydration, a process that is the consequence of cumulative, osmotically active uptake of glutamine into cells. This topic is also examined in terms of the effects of cell swelling on the selective stimulation or inhibition of other far-ranging cellular processes. The pathophysiology of the intercellular glutamine cycle in cirrhosis is also considered.
Collapse
Affiliation(s)
- D Häussinger
- Medizinische Universitätsklinik, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
21
|
Chung-Bok MI, Vincent N, Jhala U, Watford M. Rat hepatic glutaminase: identification of the full coding sequence and characterization of a functional promoter. Biochem J 1997; 324 ( Pt 1):193-200. [PMID: 9164856 PMCID: PMC1218416 DOI: 10.1042/bj3240193] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamine catabolism in mammalian liver is catalysed by a unique isoenzyme of phosphate-activated glutaminase. The full coding and 5' untranslated sequence for rat hepatic glutaminase was isolated by screening lambda ZAP cDNA libraries and a Charon 4a rat genomic library. The sequence produces a mRNA 2225 nt in length, encoding a polypeptide of 535 amino acid residues with a calculated molecular mass of 59.2 kDa. The deduced amino acid sequence of rat liver glutaminase shows 86% similarity to that of rat kidney glutaminase and 65% similarity to a putative glutaminase from Caenorhabditis elegans. A genomic clone to rat liver glutaminase was isolated that contains 3.5 kb of the gene and 7.5 kb of the 5' flanking region. The 1 kb immediately upstream of the hepatic glutaminase gene (from -1022 to +48) showed functional promoter activity in HepG2 hepatoma cells. This promoter region did not respond to treatment with cAMP, but was highly responsive (10-fold stimulation) to the synthetic glucocorticoid dexamethasone. Subsequent 5' deletion analysis indicated that the promoter region between -103 and +48 was sufficient for basal promoter activity. This region does not contain an identifiable TATA element, indicating that transcription of the glutaminase gene is driven by a TATA-less promoter. The region responsive to glucocorticoids was mapped to -252 to -103 relative to the transcription start site.
Collapse
Affiliation(s)
- M I Chung-Bok
- Department of Nutritional Sciences, Thompson Hall, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | | | | | | |
Collapse
|
22
|
Elgadi KM, Souba WW, Bode BP, Abcouwer SF. Hepatic glutaminase gene expression in the tumor-bearing rat. J Surg Res 1997; 69:33-9. [PMID: 9202643 DOI: 10.1006/jsre.1997.5000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Previous studies have documented an increase in hepatic plasma membrane glutamine transport in the tumor-bearing rat, but the effects of tumor burden on hepatic glutaminase expression have not been carefully studied. The purpose of this study was to examine the effects of tumor burden and food intake on hepatic glutaminase expression. Rats were implanted with syngeneic methylcholanthrene-induced fibrosarcoma tumor tissue; control rats were sham operated and pair-fed every 24 hr. Northern blotting was used to assay the effect of tumor burden and fasting on hepatic glutaminase mRNA levels, using beta-actin mRNA as a control. Hepatic glutaminase mRNA levels in livers of pair-fed controls were found to be 4-fold greater than levels in livers of tumor-bearing animals. Examination of food intake patterns in these animals indicated that pair-fed controls ate their allotted chow quickly while tumor-bearing rats ate small amounts throughout each 24 hr period. This observation suggested that the differences in glutaminase mRNA levels may be due to a period of fasting by pair-fed animals which was not experienced by the tumor-bearing group. Hepatic glutaminase mRNA levels rapidly increased in normal rats during acute fasting to levels 5.5-fold greater than fed animals. Glucose feeding and insulin injection rapidly reversed the effect of fasting on hepatic glutaminase mRNA levels in normal rats. Tumor-bearing rats also exhibited upregulation of hepatic glutaminase mRNA levels in response to fasting. CONCLUSIONS (1) Tumor burden itself does not alter hepatic glutaminase expression, at least at the pre-translational level. Instead, differences in hepatic glutaminase mRNA content are due to differences in food intake patterns. (2) Hepatic glutaminase mRNA levels are rapidly upregulated in response to fasting, an effect which appears to be linked to a decrease in plasma insulin concentrations. Because tumor-bearing rats eat regularly over a 24 hr period (albeit in small increments), thereby maintaining the plasma insulin concentration, hepatic glutaminase mRNA may not rise as it does in pair-fed controls whose daily chow intake is complete within hours of food allocation. (3) This study indicates that differences in the timing of food intake between tumor-bearing rats and pair-fed controls can alter the expression of genes that are influenced by nutrient availability. These differences should be taken into account when designing studies which involve pair-feeding to control nutrient intake.
Collapse
Affiliation(s)
- K M Elgadi
- Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
23
|
Jonker A, de Boer PA, van den Hoff MJ, Lamers WH, Moorman AF. Towards quantitative in situ hybridization. J Histochem Cytochem 1997; 45:413-23. [PMID: 9071323 DOI: 10.1177/002215549704500309] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In situ hybridization analysis of tissue mRNA concentrations remains to be accepted as a quantitative technique, even though exposure of tissue sections to photographic emulsion is equivalent to Northern blot analysis. Because of the biological importance of in situ quantification of RNA sequences within a morphological context, we evaluated the quantitative aspects of this technique. In calibrated microscopic samples, autoradiographic signal (density of silver grains) was proportionate to the radioactivity present, to the exposure time, and to time of development of the photographic emulsion. Similar results were obtained with tissue sections, showing that all steps of the in situ hybridization protocol, before and including the detection of the signal, can be reproducibly performed. Furthermore, the integrated density of silver grains produced in liver and intestinal sections by the in situ hybridization procedure using 35S-labeled riboprobes is directly proportionate to the signal obtained by quantitative Northern blot analysis. The significance of this finding is that in situ quantification of RNA can be realized with high sensitivity and with the additional advantage of the possibility of localizing mRNA within the cells of interest. Application of this procedure on fetal and adult intestinal tissue showed that the carbamoylphosphate synthetase (CPS)-expressing epithelial cells of both tissues accumulated CPS mRNA to the same level but that whole-organ CPS mRNA levels decreased four-to fivefold in the same period, owing to a comparable decrease in the number of CPS-expressing cells in total intestinal tissue.
Collapse
Affiliation(s)
- A Jonker
- Department of Anatomy and Embryology, Academical Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Christoffels VM, van den Hoff MJ, Lamers MC, van Roon MA, de Boer PA, Moorman AF, Lamers WH. The upstream regulatory region of the carbamoyl-phosphate synthetase I gene controls its tissue-specific, developmental, and hormonal regulation in vivo. J Biol Chem 1996; 271:31243-50. [PMID: 8940127 DOI: 10.1074/jbc.271.49.31243] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The carbamoyl-phosphate synthetase I gene is expressed in the periportal region of the liver, where it is activated by glucocorticosteroids and glucagon (via cyclic AMP), and in the crypts of the intestinal mucosa. The enhancer of the gene is located 6.3 kilobase pairs upstream of the transcription start site and has been shown to direct the hormone-dependent hepatocyte-specific expression in vitro. To analyze the function of the upstream region in vivo, three groups of transgenic mice were generated. In the first group the promoter drives expression of the reporter gene, whereas the promoter and upstream region including the far upstream enhancer drive expression of the reporter gene in the second group. In the third group the far upstream enhancer was directly coupled to a minimized promoter fragment. Reporter-gene expression was virtually undetectable in the first group. In the second group spatial, temporal, and hormonal regulation of expression of the reporter gene and the endogenous carbamoyl-phosphate synthetase gene were identical. The third group showed liver-specific periportal reporter gene expression, but failed to activate expression in the intestine. These results show that the upstream region of the carbamoyl-phosphate synthetase gene controls four characteristics of its expression: tissue specificity, spatial pattern of expression within the liver and intestine, hormone sensitivity, and developmental regulation. Within the upstream region, the far upstream enhancer at -6.3 kilobase pairs is the determinant of the characteristic hepatocyte-specific periportal expression pattern of carbamoyl-phosphate synthetase.
Collapse
Affiliation(s)
- V M Christoffels
- University of Amsterdam, Department of Anatomy and Embryology, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Lie-Venema H, Labruyère WT, van Roon MA, de Boer PA, Moorman AF, Berns AJ, Lamers WH. The spatio-temporal control of the expression of glutamine synthetase in the liver is mediated by its 5'-enhancer. J Biol Chem 1995; 270:28251-6. [PMID: 7499322 DOI: 10.1074/jbc.270.47.28251] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In previous studies of the glutamine synthetase gene, the promoter and two enhancer elements, one in the upstream region and one within the first intron, were identified. To analyze the role of the far-upstream enhancer element in the regulation of the expression of the glutamine synthetase gene, two classes of transgenic mice were generated. In GSK mice, the basal promoter directs the expression of the chloramphenicol acetyltransferase reporter gene. In GSL mice reporter gene expression is driven, in addition, by the upstream regulatory region, including the far-upstream enhancer. Whereas chloramphenicol acetyltransferase expression was barely detectable in GSK mice, high levels were detected in GSL mice. By comparing chloramphenicol acetyltransferase expression with that of endogenous glutamine synthetase in GSL mice, three groups of organs were distinguished in which the effects of the upstream regulatory region on the expression of glutamine synthetase were quantitatively different. The chloramphenicol acetyltransferase mRNA in the GSL mice was shown to be localized in the pericentral hepatocytes of the liver. The developmental changes in chloramphenicol acetyltransferase enzyme activity in the liver were similar to those in endogenous glutamine synthetase. These results show that the upstream region is a major determinant for three characteristics of glutamine synthetase expression: its organ specificity, its pericentral expression pattern in the liver, and its developmental appearance in the liver.
Collapse
Affiliation(s)
- H Lie-Venema
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|