1
|
Abstract
Microorganisms can move towards favorable growth conditions as a response to environmental stimuli. This process requires a motility structure and a system to direct the movement. For swimming motility, archaea employ a rotating filament, the archaellum. This archaea-specific structure is functionally equivalent, but structurally different, from the bacterial flagellum. To control the directionality of movement, some archaea make use of the chemotaxis system, which is used for the same purpose by bacteria. Over the past decades, chemotaxis has been studied in detail in several model bacteria. In contrast, archaeal chemotaxis is much less explored and largely restricted to analyses in halophilic archaea. In this review, we summarize the available information on archaeal taxis. We conclude that archaeal chemotaxis proteins function similarly as their bacterial counterparts. However, because the motility structures are fundamentally different, an archaea-specific docking mechanism is required, for which initial experimental data have only recently been obtained.
Collapse
|
2
|
|
3
|
Spudich JL, Zacks DN, Bogomolni RA. Microbial Sensory Rhodopsins: Photochemistry and Function. Isr J Chem 2013. [DOI: 10.1002/ijch.199500045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Abstract
Phototaxis in the broadest sense means positive or negative displacement along a light gradient or vector. Prokaryotes most often use a biased random walk strategy, employing type I sensory rhodopsin photoreceptors and two-component signalling to regulate flagellar reversal. This strategy only allows phototaxis along steep light gradients, as found in microbial mats or sediments. Some filamentous cyanobacteria evolved the ability to steer towards a light vector. Even these cyanobacteria, however, can only navigate in two dimensions, gliding on a surface. In contrast, eukaryotes evolved the capacity to follow a light vector in three dimensions in open water. This strategy requires a polarized organism with a stable form, helical swimming with cilia and a shading or focusing body adjacent to a light sensor to allow for discrimination of light direction. Such arrangement and the ability of three-dimensional phototactic navigation evolved at least eight times independently in eukaryotes. The origin of three-dimensional phototaxis often followed a transition from a benthic to a pelagic lifestyle and the acquisition of chloroplasts either via primary or secondary endosymbiosis. Based on our understanding of the mechanism of phototaxis in single-celled eukaryotes and animal larvae, it is possible to define a series of elementary evolutionary steps, each of potential selective advantage, which can lead to pelagic phototactic navigation. We can conclude that it is relatively easy to evolve phototaxis once cell polarity, ciliary swimming and a stable cell shape are present.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Ihara K, Narusawa A, Maruyama K, Takeguchi M, Kouyama T. A halorhodopsin-overproducing mutant isolated from an extremely haloalkaliphilic archaeonNatronomonas pharaonis. FEBS Lett 2008; 582:2931-6. [DOI: 10.1016/j.febslet.2008.07.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/21/2008] [Accepted: 07/18/2008] [Indexed: 11/25/2022]
|
6
|
Iwasa T, Abe E, Yakura Y, Yoshida H, Kamo N. Tryptophan 171 in Pharaonis phoborhodopsin (sensory rhodopsin II) interacts with the chromophore retinal and its substitution with alanine or threonine slowed down the decay of M- and O-intermediate. Photochem Photobiol 2007; 83:328-35. [PMID: 17029563 DOI: 10.1562/2006-06-15-ra-928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pharaonis phoborhodopsin (ppR), also called pharaonis sensory rhodopsin II, NpSRII, is a photoreceptor for the photophobic response of Natronomonas pharaonis. Tryptophan 182 (W182) of bacteriorhodopsin (bR) is near the chromophore retinal and has been suggested to interact with retinal during the photoreaction and also to be involved in the hydrogen-bonding network around the retinal. W182 of bR is conserved in ppR as tryptophan 171 (W171). To elucidate whether W171 of ppR interacts with retinal during the photoreaction and/or is involved in the hydrogen-bonding network as in bR, we formed W171-substituted mutants of ppR, W171A and W171T. Our low-temperature spectroscopic study has revealed that the substitution of W171 to Ala or Thr resulted in the stabilization of M- and O-intermediates. The stability of M and absorption spectral changes during the M-decay were different depending on the substituted residue. These findings suggest that W171 in ppR interacts with retinal and the degree of the interaction depends on the substituted residues, which might be rate determining in the M-decay. In addition, the involvement of W171 in the hydrogen-bonding network is suggested by the O-decay. We also found that glycerol slowed the decay of M and not of O.
Collapse
Affiliation(s)
- Tatsuo Iwasa
- Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran, Japan.
| | | | | | | | | |
Collapse
|
7
|
Moukhametzianov R, Klare JP, Efremov R, Baeken C, Göppner A, Labahn J, Engelhard M, Büldt G, Gordeliy VI. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 2006; 440:115-9. [PMID: 16452929 DOI: 10.1038/nature04520] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 12/15/2005] [Indexed: 11/09/2022]
Abstract
The microbial phototaxis receptor sensory rhodopsin II (NpSRII, also named phoborhodopsin) mediates the photophobic response of the haloarchaeon Natronomonas pharaonis by modulating the swimming behaviour of the bacterium. After excitation by blue-green light NpSRII triggers, by means of a tightly bound transducer protein (NpHtrII), a signal transduction chain homologous with the two-component system of eubacterial chemotaxis. Two molecules of NpSRII and two molecules of NpHtrII form a 2:2 complex in membranes as shown by electron paramagnetic resonance and X-ray structure analysis. Here we present X-ray structures of the photocycle intermediates K and late M (M2) explaining the evolution of the signal in the receptor after retinal isomerization and the transfer of the signal to the transducer in the complex. The formation of late M has been correlated with the formation of the signalling state. The observed structural rearrangements allow us to propose the following mechanism for the light-induced activation of the signalling complex. On excitation by light, retinal isomerization leads in the K state to a rearrangement of a water cluster that partly disconnects two helices of the receptor. In the transition to late M the changes in the hydrogen bond network proceed further. Thus, in late M state an altered tertiary structure establishes the signalling state of the receptor. The transducer responds to the activation of the receptor by a clockwise rotation of about 15 degrees of helix TM2 and a displacement of this helix by 0.9 A at the cytoplasmic surface.
Collapse
|
8
|
Abstract
Atomic resolution structures of a sensory rhodopsin phototaxis receptor in haloarchaea (the first sensory member of the widespread microbial rhodopsin family) have yielded insights into the interaction face with its membrane-embedded transducer and into the mechanism of spectral tuning. Spectral differences between sensory rhodopsin and the light-driven proton pump bacteriorhodopsin depend largely upon the repositioning of a conserved arginine residue in the chromophore-binding pocket. Information derived from the structures, combined with biophysical and biochemical analysis, has established a model for receptor activation and signal relay, in which light-induced helix tilting in the receptor is transmitted to the transducer by lateral transmembrane helix-helix interactions.
Collapse
Affiliation(s)
- John L Spudich
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77030, USA.
| | | |
Collapse
|
9
|
Shimono K, Kitami M, Iwamoto M, Kamo N. Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophys Chem 2000; 87:225-30. [PMID: 11099184 DOI: 10.1016/s0301-4622(00)00195-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pharaonis phoborhodopsin (ppR; or pharaonis sensory rhodopsin II, psRII) is a photophobic receptor of the halobacterium Natronobacterium pharaonis. Its lambdamax is at 496 nm, but upon acidification in the absence of chloride, lambdamax shifted to 522 nm. This bathochromic shift is thought to be caused by the protonation of Asp75, which corresponds to Asp85 of bacteriorhodopsin (bR). The D75N mutant, in which Asp75 was replaced by Asn, had its lambdamax at approximately 520 nm, supporting this mechanism for the bathochromic shift. A titration of the shift yielded a pKa of 3.5 for Asp75. In the presence of chloride, the spectral shifts were different: with a decrease in pH, a bathochromic shift was first observed, followed by a hypsochromic shift on further acidification. This was interpreted as: the disappearance of a negative charge by the protonation of Asp75 was compensated by the binding of chloride, but it is worthy to note that the binding requires the protonation of another proton-associable group other than Asp75. This is supported by the observation that in the presence of chloride, upon acidification, the lambdamax of D75N even showed a blue shift, showing that the protonation of a proton-associable group (pKa = 1.2) leads to the chloride binding that gives rise to a blue shift.
Collapse
Affiliation(s)
- K Shimono
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
10
|
Schmies G, Lüttenberg B, Chizhov I, Engelhard M, Becker A, Bamberg E. Sensory rhodopsin II from the haloalkaliphilic natronobacterium pharaonis: light-activated proton transfer reactions. Biophys J 2000; 78:967-76. [PMID: 10653809 PMCID: PMC1300699 DOI: 10.1016/s0006-3495(00)76654-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In the present work the light-activated proton transfer reactions of sensory rhodopsin II from Natronobacterium pharaonis (pSRII) and those of the channel-mutants D75N-pSRII and F86D-pSRII are investigated using flash photolysis and black lipid membrane (BLM) techniques. Whereas the photocycle of the F86D-pSRII mutant is quite similar to that of the wild-type protein, the photocycle of D75N-pSRII consists of only two intermediates. The addition of external proton donors such as azide, or in the case of F86D-pSRII, imidazole, accelerates the reprotonation of the Schiff base, but not the turnover. The electrical measurements prove that pSRII and F86D-pSRII can function as outwardly directed proton pumps, whereas the mutation in the extracellular channel (D75N-pSRII) leads to an inwardly directed transient current. The almost negligible size of the photostationary current is explained by the long-lasting photocycle of about a second. Although the M decay, but not the photocycle turnover, of pSRII and F86D-pSRII is accelerated by the addition of azide, the photostationary current is considerably increased. It is discussed that in a two-photon process a late intermediate (N- and/or O-like species) is photoconverted back to the original resting state; thereby the long photocycle is cut short, giving rise to the large increase of the photostationary current. The results presented in this work indicate that the function to generate ion gradients across membranes is a general property of archaeal rhodopsins.
Collapse
Affiliation(s)
- G Schmies
- Max-Planck-Institut für Molekulare Physiologie, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.
Collapse
Affiliation(s)
- G Schäfer
- Institut für Biochemie, Medizinische Universität zu Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
12
|
Takao K, Kikukawa T, Araiso T, Kamo N. Azide accelerates the decay of M-intermediate of pharaonis phoborhodopsin. Biophys Chem 1998; 73:145-53. [PMID: 17029720 DOI: 10.1016/s0301-4622(98)00156-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/1998] [Revised: 03/13/1998] [Accepted: 04/22/1998] [Indexed: 11/17/2022]
Abstract
Natronobacterium pharaonis has retinal proteins, one of which is pharaonis phoborhodopsin, abbreviated as ppR (or called pharaonis sensory rhodopsin II, psR-II). This pigment protein functions as a photoreceptor of the negative phototaxis of this bacterium. On photoexcitation ppR undergoes photocycling; the photoexcited state relaxes in the dark and returns to the original state via several intermediates. The photocycle of ppR resembles that of bR except in wavelengths and rate. The cycle of bR is completed in 10 ms while that of ppR takes seconds. The Arrhenius analysis of M-intermediate (ppR(M)) decay which is rate-limiting revealed that the slow decay is due to the large negative activation entropy of ppR. The addition of azide increases the decay rate 300-fold (at pH 7); Arrhenius analysis revealed decreases in the activation energy (activation enthalpy) and a further decrease in the activation entropy.
Collapse
Affiliation(s)
- K Takao
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Sapporo, 060-0812 Japan
| | | | | | | |
Collapse
|
13
|
Lüttenberg B, Wolff EK, Engelhard M. Heterologous coexpression of the blue light receptor psRII and its transducer pHtrII from Natronobacterium pharaonis in the Halobacterium salinarium strain Pho81/w restores negative phototaxis. FEBS Lett 1998; 426:117-20. [PMID: 9598990 DOI: 10.1016/s0014-5793(98)00322-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The photophobic receptor (psRII) and its transducer pHtrII from Natronobacterium pharaonis were heterologously coexpressed in the phototaxis-deficient Halobacterium salinarium strain Pho81/w which lacks all four bacterial rhodopsins, i.e. the two ion pumps bacteriorhodopsin and halorhodopsin as well as the two sensory pigments SRI and SRII. This genetically transformed Pho81/w strain showed a photophobic response upon illumination with blue light. The action spectrum of the psRII/pHtrII mediated phototactic behavior was determined in the range of 420-600 nm. The shape of the action spectrum was similar to the absorption spectrum of psRII, clearly indicating that the psRII-specific photophobic response in Pho81/w was restored. These results suggest that the pharaonis photoreceptor-transducer complex (psRII/pHtrII) is functionally competent to substitute the corresponding salinarium receptor system. Although the two archaea are phylogenetically quite distant from each other the two signal transduction chains are homologous systems which can replace each other.
Collapse
Affiliation(s)
- B Lüttenberg
- Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| | | | | |
Collapse
|
14
|
Shimono K, Iwamoto M, Sumi M, Kamo N. Functional expression of pharaonis phoborhodopsin in Escherichia coli. FEBS Lett 1997; 420:54-6. [PMID: 9450549 DOI: 10.1016/s0014-5793(97)01487-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pharaonis phoborhodopsin, the photoreceptor of the negative phototaxis of archaebacterial Natronobacterium pharaonis, was functionally expressed in the heterologous system of Escherichia coli. Flash-photolysis on a millisecond time scale indicated that the photochemical properties of ppR expressed in E. coli were the same as those of the native ppR in N. pharaonis. We concluded that the integral membrane protein ppR is correctly folded in vivo in the eubacterial E. coli membrane.
Collapse
Affiliation(s)
- K Shimono
- Laboratory of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
15
|
Hoff WD, Jung KH, Spudich JL. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:223-58. [PMID: 9241419 DOI: 10.1146/annurev.biophys.26.1.223] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two sensory rhodopsins (SRI and SRII) mediate color-sensitive phototaxis responses in halobacteria. These seven-helix receptor proteins, structurally and functionally similar to animal visual pigments, couple retinal photoisomerization to receptor activation and are complexed with membrane-embedded transducer proteins (HtrI and HtrII) that modulate a cytoplasmic phosphorylation cascade controlling the flagellar motor. The Htr proteins resemble the chemotaxis transducers from Escherichia coli. The SR-Htr signaling complexes allow studies of the biophysical chemistry of signal generation and relay, from the photobiophysics of initial excitation of the receptors to the final output at the level of the flagellar motor switch, revealing fundamental principles of sensory transduction and more broadly the nature of dynamic interactions between membrane proteins. We review here recent advances that have led to new insights into the molecular mechanism of signaling by these membrane complexes.
Collapse
Affiliation(s)
- W D Hoff
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030-1501, USA
| | | | | |
Collapse
|
16
|
Engelhard M, Scharf B, Siebert F. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. FEBS Lett 1996; 395:195-8. [PMID: 8898094 DOI: 10.1016/0014-5793(96)01041-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Fourier Transform Infrared (FTIR) spectra of photocycle intermediates of sensory rhodopsin II (pSRII) from Natronobacterium pharaonis were measured. The results of the FTIR experiments indicate considerable conformational movements of pSRII already at the stage of the early K-like intermediate which persist at least during the lifetime of the long lived intermediate. These changes in the amide bond region are more intense than those described for sensory rhodopsin I (SRI) and are quite similar to those observed for rhodopsin. Concomitantly with the deprotonation of the Schiff base a carboxyl group located in a hydrophobic environment is protonated. In analogy to bacteriorhodopsin, this carboxyl group might arise from Asp-75 which probably serves as counter ion to the Schiff base. The protonation reaction differs from the situation observed in SRI where the protonation is pH independent over the range of pH 5-8.
Collapse
Affiliation(s)
- M Engelhard
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | |
Collapse
|
17
|
Seidel R, Scharf B, Gautel M, Kleine K, Oesterhelt D, Engelhard M. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci U S A 1995; 92:3036-40. [PMID: 7708770 PMCID: PMC42354 DOI: 10.1073/pnas.92.7.3036] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The blue-light receptor genes (sopII) of sensory rhodopsin (SR) II were cloned from two species, the halophilic bacteria Haloarcula vallismortis (vSR-II) and Natronobacterium pharaonis (pSR-II). Upstream of both sopII gene loci, sequences corresponding to the halobacterial transducer of rhodopsin (Htr) II were recognized. In N. pharaonis, psopII and phtrII are transcribed as a single transcript. Comparison of the amino acid sequences of vHtr-II and pHtr-II with Htr-I and the chemotactic methyl-accepting proteins from Escherichia coli revealed considerable identities in the signal domain and methyl-accepting sites. Similarities with Htr-I in Halobacterium salinarium suggest a common principle in the phototaxis of extreme halophiles. Alignment of all known retinal protein sequences from Archaea identifies both SR-IIs as an additional subgroup of the family. Positions defining the retinal binding site are usually identical with the exception of Met-118 (numbering is according to the bacteriorhodopsin sequence), which might explain the typical blue color shift of SR-II to approximately 490 nm. In archaeal retinal proteins, the function can be deduced from amino acids in positions 85 and 96. Proton pumps are characterized by Asp-85 and Asp-96; chloride pumps by Thr-85 and Ala-96; and sensors by Asp-85 and Tyr-96 or Phe-96.
Collapse
Affiliation(s)
- R Seidel
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|