1
|
Ghate T, Soneji K, Barvkar V, Ramakrishnan P, Prusty D, Islam SR, Manna SK, Srivastava AK. Thiourea mediated ROS-metabolites reprogramming restores root system architecture under arsenic stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129020. [PMID: 35650738 DOI: 10.1016/j.jhazmat.2022.129020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a ubiquitous carcinogenic metalloid that enters into human food chain, through rice consumption. To unravel the conundrum of oxidative vs. reductive stress, the differential root-system architecture (RSA) was studied under As (a ROS producer) and thiourea (TU; a ROS scavenger) alone treatments, which indicated 0.80- and 0.74-fold reduction in the number of lateral roots (NLR), respectively compared with those of control. In case of As+TU treatment, NLR was increased by 4.35-fold compared with those of As-stress, which coincided with partial restoration of redox-status and auxin transport towards the root-tip. The expression levels of 16 ROS related genes, including RBOHC, UPB-1 C, SHR1, PUCHI, were quantified which provided the molecular fingerprint, in accordance with endogenous ROS signature. LC-MS based untargeted and targeted metabolomics data revealed that As-induced oxidative stress was metabolically more challenging than TU alone-induced reductive stress. Cis/trans-ferruloyl putrescine and γ-glutamyl leucine were identified as novel As-responsive metabolites whose levels were decreased and increased, respectively under As+TU than As-treated roots. In addition, the overall amino acid accumulation was increased in As+TU than As-treated roots, indicating the improved nutritional availability. Thus, the study revealed dynamic interplay between "ROS-metabolites-RSA", to the broader context of TU-mediated amelioration of As-stress in rice.
Collapse
Affiliation(s)
- Tejashree Ghate
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; School of Biological sciencesUM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari 400098, Mumbai
| | - Kanchan Soneji
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Division of crop production, ICAR- Indian Institute of Soybean Research, Khandwa Road, Indore 452001, (M.P), India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India
| | - Padma Ramakrishnan
- Centre for Cellular and Molecular Platforms, GKVK Post, Bengaluru 560065, India
| | - Debasish Prusty
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Sk Ramiz Islam
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Soumen Kanti Manna
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
2
|
Tepfer D. DNA Transfer to Plants by Agrobacterium rhizogenes: A Model for Genetic Communication Between Species and Biospheres. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
3
|
Outchkourov NS, Carollo CA, Gomez-Roldan V, de Vos RCH, Bosch D, Hall RD, Beekwilder J. Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves. FRONTIERS IN PLANT SCIENCE 2014; 5:519. [PMID: 25339964 PMCID: PMC4189325 DOI: 10.3389/fpls.2014.00519] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/15/2014] [Indexed: 05/02/2023]
Abstract
Coloration of plant organs such as fruit, leaves and flowers through anthocyanin production is governed by a combination of MYB and bHLH type transcription factors (TFs). In this study we introduced Rosea1 (ROS1, a MYB type) and Delila (DEL, a bHLH type), into Nicotiana benthamiana leaves by agroinfiltration. ROS1 and DEL form a pair of well-characterized TFs from Snapdragon (Antirrhinum majus), which specifically induce anthocyanin accumulation when expressed in tomato fruit. In N. benthamiana, robust induction of a single anthocyanin, delphinidin-3-rutinoside (D3R) was observed after expression of both ROS1 and DEL. Surprisingly in addition to D3R, a range of additional metabolites were also strongly and specifically up-regulated upon expression of ROS1 and DEL. Except for the D3R, these induced compounds were not derived from the flavonoid pathway. Most notable among these are nornicotine conjugates with butanoyl, hexanoyl, and octanoyl hydrophobic moieties, and phenylpropanoid-polyamine conjugates such as caffeoyl putrescine. The defensive properties of the induced molecules were addressed in bioassays using the tobacco specialist lepidopteran insect Manduca sexta. Our study showed that the effect of ROS1 and DEL expression in N. benthamiana leaves extends beyond the flavonoid pathway. Apparently the same transcription factor may regulate different secondary metabolite pathways in different plant species.
Collapse
Affiliation(s)
- Nikolay S. Outchkourov
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentreWageningen, Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research CentreWageningen, Netherlands
| | - Carlos A. Carollo
- Laboratory of Pharmacognosy, Federal University of Mato Grosso do Sul, Campo GrandeBrazil
| | - Victoria Gomez-Roldan
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentreWageningen, Netherlands
| | - Ric C. H. de Vos
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentreWageningen, Netherlands
| | - Dirk Bosch
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentreWageningen, Netherlands
| | - Robert D. Hall
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentreWageningen, Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research CentreWageningen, Netherlands
| | - Jules Beekwilder
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentreWageningen, Netherlands
- *Correspondence: Jules Beekwilder, Business Unit Bioscience, Plant Research International, Wageningen University and Research Centre, P.O. Box 16, 6700 AA Wageningen, Netherlands e-mail:
| |
Collapse
|
4
|
Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 2006; 16:446-56. [PMID: 16699540 DOI: 10.1038/sj.cr.7310056] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyamines are implicated in regulating various developmental processes in plants, but their exact roles and how they govern these processes still remain elusive. We report here an Arabidopsis bushy and dwarf mutant, bud2, which results from the complete deletion of one member of the small gene family that encodes S-adenosylmethionine decarboxylases (SAMDCs) necessary for the formation of the indispensable intermediate in the polyamine biosynthetic pathway. The bud2 plant has enlarged vascular systems in inflorescences, roots, and petioles, and an altered homeostasis of polyamines. The double mutant of bud2 and samdc1, a knockdown mutant of another SAMDC member, is embryo lethal, demonstrating that SAMDCs are essential for plant embryogenesis. Our results suggest that polyamines are required for the normal growth and development of higher plants.
Collapse
Affiliation(s)
- Chunmin Ge
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tang W, Newton RJ. Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. PLANT CELL REPORTS 2005; 24:581-9. [PMID: 16160835 DOI: 10.1007/s00299-005-0021-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/05/2005] [Accepted: 06/04/2005] [Indexed: 05/04/2023]
Abstract
Polyamines have been demonstrated to play an important role in adventitious root formation and development in plants. Here, we present a detailed analysis of influence of exogenously added polyamines on adventitious root development and its relationship to cold tolerance in Virginia pine (Pinus virginia Mill.). Our results demonstrated that polyamines putrescine (Put), spermidine (Spd), and spermine (Spm) at 0.001 mM improve rooting frequency and promote root elongation. Put, Spd, and Spm at 0.01-1 mM decrease rooting frequency and reduce root elongation root elongation. Measurements of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) activities showed that higher DAO and PAO enzyme activities were obtained when high concentrations of polyamines were applied and when plantlets were treated for 5-7 week at 4 degrees C and 16 degrees C. Survival rate of plantlets increased with the treatment of polyamines at low temperature. Polyamines increased mitotic index of cells in root tips of regenerated plantlet cultured on medium containing 0.001 microM Put, Spd, or Spm, but did not increase mitotic index in tissues of needle tips of the same plantlets. These results demonstrated that polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine plantlets.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.
| | | |
Collapse
|
6
|
Bruce WB, Edmeades GO, Barker TC. Molecular and physiological approaches to maize improvement for drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:13-25. [PMID: 11741036 DOI: 10.1093/jexbot/53.366.13] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Average maize yields have increased steadily over the years in the USA and yet the variations in harvestable yield have also markedly increased. Much of the increase in yield variability can be attributed to (1) varying environmental stress conditions; (2) improved nitrogen inputs and better weed control; and (3) continuing sensitivity of different maize lines to the variation in input supply, especially rainfall. Drought stress alone can account for a significant percentage of average yield losses. Yet despite variable environments, new commercially available maize hybrids continue to be produced each year with ever-increasing harvestable yield. Since many factors contribute to high plant performance under water deficits, efforts are being made to elucidate the nature of water-stress tolerance in an attempt to improve maize hybrids further. Such factors include better partitioning of biomass to the developing ear resulting in faster spikelet growth and improved reproductive success. An emphasis on faster spikelet growth rate may result in a reduction in the number of spikelets formed on the ear that facilitates overall seed set by reducing water and carbon constraints per spikelet. To understand the molecular mechanisms for drought tolerance in improved maize lines better, a variety of genomic tools are being used. Newer molecular markers and comprehensive gene expression profiling methods provide opportunities to direct the continued breeding of genotypes that provide stable grain yield under widely varied environmental conditions.
Collapse
Affiliation(s)
- Wesley B Bruce
- Pioneer Hi-Bernational, Inc., 7300 NW 62nd Ave., Johnston, IA 50131-1004, USA.
| | | | | |
Collapse
|
7
|
Fujihara S, Yoneyama T. Endogenous levels of polyamines in the organs of cucumber plant (Cucumis sativus) and factors affecting leaf polyamine contents. PHYSIOLOGIA PLANTARUM 2001; 113:416-423. [PMID: 12060288 DOI: 10.1034/j.1399-3054.2001.1130316.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polyamine compositions of various organs from hydroponically cultivated cucumber plants (Cucumis sativus L. cv. Sharp-1) and factors affecting the leaf polyamine content were examined. Diamine putrescine was found most abundantly in the root, while a relatively large amount of spermine was detected in the reproductive organs such as the immature fruit and the calyx (+stamen). Spermidine was present at the highest level in rapidly growing tissues such as newly expanded leaf and fruit at an early developing stage, implying the possible involvement of spermidine in the growth and development of these young tissues. Polyamine content of cucumber leaves changed during the day. Especially, the putrescine content of upper leaves showed a striking decrease from the morning to the night. Alterations of leaf Ca or Mg content did not significantly affect leaf polyamine composition. On the other hand, abnormal cucumber leaves showed altered polyamine composition. Yellowing of the leaf intervein resulted in a striking decrease in spermidine content without a significant change in putrescine and spermine content. By contrast, the leaves infected with the phytopathogen, powdery mildew, showed decreased putrescine and increased spermine content in response to the degree of fungi infection. The possible usefulness of polyamines as a diagnostic marker of plant development and physiological disorder is discussed.
Collapse
Affiliation(s)
- Shinsuke Fujihara
- Laboratory of Plant Nutrition Diagnosis, National Agriculture Research Center, Tsukuba, 305-8666 Japan Department of Applied Biological Chemistry, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | |
Collapse
|
8
|
Sevón N, Biondi S, Bagni N, Oksman-Caldentey KM. Transgenic Hyoscyamus muticus (Egyptian henbane). ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-3-662-10603-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
9
|
Bais HP, Govindaswamy S, Ravishankar GA. Enhancement of growth and coumarin production in hairy root cultures of witloof chicory (Cichorium intybus L.cv.Lucknow local) under the influence of fungal elicitors. J Biosci Bioeng 2000. [DOI: 10.1016/s1389-1723(00)90011-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Rosazza JP, Huang Z, Dostal L, Volm T, Rousseau B. Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 15:457-71. [PMID: 8821508 DOI: 10.1007/bf01570016] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review we examine the fascinating array of microbial and enzymatic transformations of ferulic acid. Ferulic acid is an extremely abundant, preformed phenolic aromatic chemical found widely in nature. Ferulic acid is viewed as a commodity scale, renewable chemical feedstock for biocatalytic conversion to other useful aromatic chemicals. Most attention is focused on bioconversions of ferulic acid itself. Topics covered include cinnamoyl side-chain cleavage; nonoxidative decarboxylation; mechanistic details of styrene formation; purification and characterization of ferulic acid decarboxylase; conversion of ferulic acid to vanillin; O-demethylation; and reduction reactions. Biotransformations of vinylguaiacol are discussed, and selected biotransformations of vanillic acid including oxidative and nonoxidative decarboxylation are surveyed. Finally, enzymatic oxidative dimerization and polymerization reactions are reviewed.
Collapse
Affiliation(s)
- J P Rosazza
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City 52242-5000, USA
| | | | | | | | | |
Collapse
|