1
|
Kaja S, Hilgenberg JD, Rybalchenko V, Medina-Ortiz WE, Gregg EV, Koulen P. Polycystin-2 expression and function in adult mouse lacrimal acinar cells. Invest Ophthalmol Vis Sci 2011; 52:5605-11. [PMID: 21508103 DOI: 10.1167/iovs.10-7114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Lacrimal glands regulate the production and secretion of tear fluid. Dysfunction of lacrimal gland acinar cells can ultimately result in ocular surface disorders, such as dry eye disease. Ca(2+) homeostasis is tightly regulated in the cellular environment, and secretion from the acinar cells of the lacrimal gland is regulated by both cholinergic and adrenergic stimuli, which both result in changes in the cytosolic Ca(2+) concentration. We have previously described the detailed intracellular distribution of inositol-1,4,5-trisphosphate receptors (IP(3)Rs), and ryanodine receptors (RyRs) in lacrimal acinar cells, however, little is known regarding the expression and distribution of the third major class of intracellular Ca(2+) release channels, transient receptor potential polycystin family (TRPP) channels. METHODS Studies were performed in adult lacrimal gland tissue of Swiss-Webster mice. Expression, localization, and intracellular distribution of TRPP Ca(2+) channels were investigated using immunocytochemistry, immunohistochemistry, and electron microscopy. The biophysical properties of single polycystin-2 channels were investigated using a planar lipid bilayer electrophysiology system. RESULTS All channel-forming isoforms of TRPP channels (polycystin-2, polycystin-L, and polycystin-2L2) were expressed in adult mouse lacrimal gland. Subcellular analysis of immunogold labeling revealed strongest polycystin-2 expression on the membranes of the endoplasmic reticulum, Golgi, and nucleus. Biophysical properties of lacrimal gland polycystin-2 channels were similar to those described for other tissues. CONCLUSIONS The expression of TRPP channels in lacrimal acinar cells suggests a functional role of the proteins in the regulation of lacrimal fluid secretion under physiological and disease conditions, and provides the basis for future studies focusing on physiology and pharmacology.
Collapse
Affiliation(s)
- Simon Kaja
- Vision Research Center, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64108, USA.
| | | | | | | | | | | |
Collapse
|
2
|
Okamoto H, Takasawa S. Recent advances in physiological and pathological significance of NAD+ metabolites: roles of poly(ADP-ribose) and cyclic ADP-ribose in insulin secretion and diabetogenesis. Nutr Res Rev 2009; 16:253-66. [PMID: 19087393 DOI: 10.1079/nrr200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Poly(ADP-ribose) synthetase/polymerase (PARP) activation causes NAD+ depletion in pancreatic beta-cells, which results in necrotic cell death. On the other hand, ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (CD38) synthesizes cyclic ADP-ribose from NAD+, which acts as a second messenger, mobilizing intracellular Ca2+ for insulin secretion in response to glucose in beta-cells. PARP also acts as a regenerating gene (Reg) transcription factor to induce beta-cell regeneration. This provides the new concept that NAD+ metabolism can control the cellular function through gene expression. Clinically, PARP could be one of the most important therapeutic targets; PARP inhibitors prevent cell death, maintain the formation of a second messenger, cyclic ADP-ribose, to achieve cell function, and keep PARP functional as a transcription factor for cell regeneration.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Biochemistry and Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories) Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | | |
Collapse
|
3
|
The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour? Nutr Res Rev 2009; 21:42-55. [PMID: 19079853 DOI: 10.1017/s0954422408945182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pyridine nucleotide NAD+ is derived from dietary niacin and serves as the substrate for the synthesis of cyclic ADP-ribose (cADPR), an intracellular Ca signalling molecule that plays an important role in synaptic plasticity in the hippocampus, a region of the brain involved in spatial learning. cADPR is formed in part via the activity of the ADP-ribosyl cyclase enzyme CD38, which is widespread throughout the brain. In the present review, current evidence of the relationship between dietary niacin and behaviour is presented following investigations of the effect of niacin deficiency, pharmacological nicotinamide supplementation and CD38 gene deletion on brain nucleotides and spatial learning ability in mice and rats. In young male rats, both niacin deficiency and nicotinamide supplementation significantly altered brain NAD+ and cADPR, both of which were inversely correlated with spatial learning ability. These results were consistent across three different models of niacin deficiency (pair feeding, partially restricted feeding and niacin recovery). Similar changes in spatial learning ability were observed in Cd38- / - mice, which also showed decreases in brain cADPR. These findings suggest an inverse relationship between spatial learning ability, dietary niacin intake and cADPR, although a direct link between cADPR and spatial learning ability is still missing. Dietary niacin may therefore play a role in the molecular events regulating learning performance, and further investigations of niacin intake, CD38 and cADPR may help identify potential molecular targets for clinical intervention to enhance learning and prevent or reverse cognitive decline.
Collapse
|
4
|
Medina-Ortiz WE, Gregg EV, Brun-Zinkernagel AM, Koulen P. Identification and functional distribution of intracellular ca channels in mouse lacrimal gland acinar cells. Open Ophthalmol J 2007; 1:8-16. [PMID: 19478858 PMCID: PMC2605693 DOI: 10.2174/1874364100701010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 11/14/2007] [Accepted: 11/16/2007] [Indexed: 11/22/2022] Open
Abstract
We have determined the presence and cellular distribution of intracellular calcium channels, inositol 1, 4, 5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) in adult and postnatal (P10) lacrimal gland acinar cells. Western blot analysis of both P10 cultures and adult tissue identified the presence of each IP(3)R and RyR isotypes. The immunocytochemistry analysis showed a differential cellular distribution of these calcium channels where the nuclear envelope, endoplasmic reticulum (ER) and Golgi apparatus membranes represent areas with highest levels of channel expression. This IP(3)R and RyR isotype distribution is confirmed by the immuno-EM results. The findings described in this study are in agreement with published pharmacological data that shows the participation of these channels in the secretion process of the lacrimal gland acinar cells. Furthermore, the differential subcellular distribution between the isoforms could indicate a potential role of these intracellular Ca(2+ )channels on the regulation of specific cellular functions.
Collapse
Affiliation(s)
- W E Medina-Ortiz
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
5
|
Dartt DA. Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocul Surf 2007; 2:76-91. [PMID: 17216081 DOI: 10.1016/s1542-0124(12)70146-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Tears are a complex fluid consisting of three layers, each of which is secreted by a different set of tissues or glands. The aqueous portion of the tear film is produced predominantly by the lacrimal gland. Dry eye syndromes are diseases in which the amount and composition of tears are altered, which can lead to ocular surface damage. There are many causes for dry eye syndromes. One such cause is the alteration in the functions of nerves innervating the lacrimal gland and the ocular surface. The autoimmune disease Sjogren syndrome can deleteriously affect the innervation of the lacrimal gland. Damage to the sensory nerves in the ocular surface, specifically the cornea, as a result of refractive surgery and normal aging, prevents the normal reflex arc to the lacrimal gland. Both defects can result in decreased tear secretion and dry eye syndromes. This review will discuss the current information regarding neurally-stimulated protein, water, and electrolyte secretion from the lacrimal gland and delineate how nerve dysfunction resulting from a variety of causes decreases secretion from this gland.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
6
|
Hodges RR, Dartt DA. Regulatory pathways in lacrimal gland epithelium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 231:129-96. [PMID: 14713005 DOI: 10.1016/s0074-7696(03)31004-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tears are a complex fluid that continuously cover the exposed surface of the eye, namely the cornea and conjunctiva. Tears are secreted in response to the multitude of environmental stresses that can harm the ocular surface such as cold, mechanical stimulation, physical injury, noxious chemicals, as well as infections from various organisms. Tears also provide nutrients and remove waste from cells of the ocular surface. Because of the varied function of tears, tears are complex and are secreted by several different tissues. Tear secretion is under tight neural control allowing tears to respond rapidly to changing environmental conditions. The lacrimal gland is the main contributor to the aqueous portion of the tear film and the regulation of secretion from this gland has been well studied. Despite multiple redundencies in pathways to stimulate secretion from the lacrimal gland, defects can occur resulting in dry eye syndromes. These diseases can have deleterious effects on vision. In this review, we summarize the latest information regarding the regulatory pathways, which control secretion from the lacrimal gland, and their roles in the pathogenesis of dry eye syndromes.
Collapse
Affiliation(s)
- Robin R Hodges
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
7
|
Dartt DA. Regulation of lacrimal gland secretion by neurotransmitters and the EGF family of growth factors. Exp Eye Res 2001; 73:741-52. [PMID: 11846506 DOI: 10.1006/exer.2001.1076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- D A Dartt
- The Schepens Eye Research Institute and Harvard Medical School, 20 Staniford Street, Boston, MA 021114, USA
| |
Collapse
|
8
|
Davey GE, Murmann P, Heizmann CW. Intracellular Ca2+ and Zn2+ levels regulate the alternative cell density-dependent secretion of S100B in human glioblastoma cells. J Biol Chem 2001; 276:30819-26. [PMID: 11402046 DOI: 10.1074/jbc.m103541200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In recent years, protein translocation has been implicated as the mechanism that controls assembly of signaling complexes and induction of signaling cascades. Several members of the multifunctional Ca(2+)- (Zn(2+)- and Cu(2+))-binding S100 proteins appear to translocate upon cellular stimulation, and some are even secreted from cells, exerting extracellular functions. We transfected cells with S100B-green fluorescent fusion proteins and followed the relocation in real time. A small number of cells underwent translocation spontaneously. However, the addition of thapsigargin, which increases Ca(2+) levels, intensified ongoing translocation and secretion or induced these processes in resting cells. On the other hand, EGTA or BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), the Ca(2+)-chelating agents, inhibited these processes. In contrast, relocation of S100B seemed to be negatively dependent on Zn(2+) levels. Treatment of cells with TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), a Zn(2+)-binding drug, resulted in a dramatic redistribution and translocation of S100B. Secretion of S100B, when measured by ELISA, was dependent on cell density. As cells reached confluence the secretion drastically declined. However, an increase in Ca(2+) levels, and even more so, a decrease in Zn(2+) concentration, reactivated secretion of S100B. On the other hand, secretion did not decrease by treatment with brefeldin A, supporting the view that this process is independent of the endoplasmic reticulum-Golgi classical secretion pathway.
Collapse
Affiliation(s)
- G E Davey
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | |
Collapse
|
9
|
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are two Ca(2+) messengers derived from NAD and NADP, respectively. Although NAADP is a linear molecule, structurally distinct from the cyclic cADPR, it is synthesized by similar enzymes, ADP-ribosyl cyclase and its homolog, CD38. The crystal structure of the cyclase has been solved and its active site identified. These two novel nucleotides have now been shown to be involved in a wide range of cellular functions including: cell cycle regulation in Euglena, a protist; gene expression in plants; and in animal systems, from fertilization to neurotransmitter release and long-term depression in brain. A battery of pharmacological reagents have been developed, providing valuable tools for elucidating the physiological functions of these two novel Ca(2+) messengers. This article reviews these recent results and explores the implications of the existence of multiple Ca(2+) messengers and Ca(2+) stores in cells.
Collapse
Affiliation(s)
- H C Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
10
|
Davey GE, Murmann P, Hoechli M, Tanaka T, Heizmann CW. Calcium-dependent translocation of S100A11 requires tubulin filaments. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:220-32. [PMID: 11108965 DOI: 10.1016/s0167-4889(00)00098-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein translocation between different subcellular compartments might play a significant role in various signal transduction pathways. The S100 family is comprised of the multifunctional, small, acidic proteins, some of which translocate in the form of vesicle-like structures upon increase in intracellular Ca(2+) levels. Previously, cells were fixed before and after calcium activation in order to examine the possible relocation of S100 proteins. In this study, we were able to track the real-time translocation. We compared the localization of endogenous S100A11 to that of the S100A11-green fluorescent protein. The application of thapsigargin, an agent increasing intracellular Ca(2+) levels, resulted in the relocation of the S100A11. In contrast, addition of EGTA, which specifically binds Ca(2+), either inhibited the ongoing process of translocation or prevented its induction. Since translocation was not affected by treatment with brefeldin A, it appears that S100A11 relocates in an endoplasmic reticulum-Golgi-independent pathway. Furthermore, the depolymerization of actin filaments by amlexanox did not affect the capacity of S100A11 to translocate. However, the time course treatment with demecolcine, which depolymerizes tubulin filaments, resulted in cease of translocation, suggesting that the tubulin network is required for this process.
Collapse
Affiliation(s)
- G E Davey
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem J 1999. [PMID: 9882629 DOI: 10.1042/0264-6021:3370305] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ryanodine receptor (RyR) is the principal Ca2+-release channel in excitable cells, whereas the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) is primarily responsible for Ca2+ release in non-excitable cells, including epithelia. RyR also is expressed in a number of non-excitable cell types, but is thought to serve as an auxiliary or alternative Ca2+-release pathway in those cells. Here we use reverse transcription PCR to show that a polarized epithelium, the pancreatic acinar cell, expresses the type 2, but not the type 1 or 3, isoform of RyR. We furthermore use immunochemistry to demonstrate that the type 2 RyR is distributed throughout the basolateral and, to a lesser extent, the apical region of the acinar cell, but is excluded from the trigger zone, where cytosolic Ca2+ signals originate in this cell type. Since propagation of Ca2+ waves in acinar cells is sensitive to ryanodine, caffeine and Ca2+, these findings suggest that Ca2+ waves in this cell type result from the co-ordinated release of Ca2+, first from InsP3Rs in the trigger zone, then from RyRs elsewhere in the cell. RyR may play a fundamental role in Ca2+ signalling in polarized epithelia, including for Ca2+ signals initiated by InsP3.
Collapse
|
12
|
Churchill GC, Louis CF. Imaging of intracellular calcium stores in single permeabilized lens cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C426-34. [PMID: 9950770 DOI: 10.1152/ajpcell.1999.276.2.c426] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular Ca2+ stores in permeabilized sheep lens cells were imaged with mag-fura 2 to characterize their distribution and sensitivity to Ca2+-releasing agents. Inositol 1,4,5-trisphosphate (IP3) or cyclic ADP-ribose (cADPR) released Ca2+ from intracellular Ca2+ stores that were maintained by an ATP-dependent Ca2+ pump. The IP3 antagonist heparin inhibited IP3- but not cADPR-mediated Ca2+ release, whereas the cADPR antagonist 8-amino-cADPR inhibited cADPR- but not IP3-mediated Ca2+ release, indicating that IP3 and cADPR were operating through separate mechanisms. A Ca2+ store sensitive to IP3, cADPR, and thapsigargin appeared to be distributed throughout all intracellular regions. In some cells a Ca2+ store insensitive to IP3, cADPR, thapsigargin, and 2,4-dinitrophenol, but not ionomycin, was present in a juxtanuclear region. We conclude that lens cells contain intracellular Ca2+ stores that are sensitive to IP3, cADPR, and thapsigargin, as well as a Ca2+ store that appears insensitive to all these agents.
Collapse
Affiliation(s)
- G C Churchill
- Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
13
|
Yamaki H, Morita K, Kitayama S, Imai Y, Itadani K, Akagawa Y, Dohi T. Cyclic ADP-ribose induces Ca2+ release from caffeine-insensitive Ca2+ pools in canine salivary gland cells. J Dent Res 1998; 77:1807-16. [PMID: 9786637 DOI: 10.1177/00220345980770100801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cyclic ADP-ribose (cADPR), a novel putative messenger of the ryanodine receptor, was examined regarding its ability to mobilize Ca2+ from intracellular Ca2+ stores in isolated cells of parotid and submandibular glands of the dog. cADPR induced a rapid and transient Ca2+ release in the digitonin-permeabilized cells of salivary glands. cADPR-induced Ca2+ release was inhibited by ryanodine receptor antagonists ruthenium red, ryanodine, benzocaine, and imperatoxin inhibitor but not by the inositol 1,4,5-trisphosphate (IP3)-receptor antagonist heparin. Thapsigargin, at a concentration of 3 to 30 microM, inhibited IP3-induced Ca2+ release, while higher concentrations were required to inhibit cADPR-induced Ca2+ release. Cross-potentiation was observed between cADPR and ryanodine or SrCl2, suggesting that cADPR sensitizes the Ca2+-induced Ca2+ release mechanism. Cyclic AMP plays a stimulatory role on cADPR- and IP3-induced Ca2+ release in digitonin-permeabilized cells. Calmodulin also potentiated cADPR-induced Ca2+ release, but inhibited IP3-induced Ca2+ release. Acetylcholine and ryanodine caused the rise in intracellular free Ca2+ concentration ([Ca2+]i) in intact submandibular and parotid cells. Caffeine did not produce any increase in Ca2+ release or [Ca2+]i rise in any preparation. ADP-ribosyl cyclase activity was found in the centrifuged particulate fractions of the salivary glands. These results suggest that cADPR serves as an endogenous modulator of Ca2+ release from Ca2+ pools through a caffeine-insensitive ryanodine receptor channel, which are different from IP3-sensitive pools in canine salivary gland cells. This system is positively regulated by cyclic AMP and calmodulin.
Collapse
Affiliation(s)
- H Yamaki
- Department of Removable Prosthodontics, Hiroshima University School of Dentistry, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Dartt DA, Hodges RR, Zoukhri D. Signal transduction pathways activated by cholinergic and alpha 1-adrenergic agonists in the lacrimal gland. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 438:113-21. [PMID: 9634873 DOI: 10.1007/978-1-4615-5359-5_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D A Dartt
- Schepens Eye Research Institute, Boston, Massachusetts, USA
| | | | | |
Collapse
|
15
|
Ohlmann P, Leray C, Ravanat C, Hallia A, Cassel D, Cazenave JP, Gachet C. cADP-ribose formation by blood platelets is not responsible for intracellular calcium mobilization. Biochem J 1998; 331 ( Pt 2):431-6. [PMID: 9531481 PMCID: PMC1219372 DOI: 10.1042/bj3310431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human platelet CD38 is a multifunctional ectoenzyme catalysing the synthesis and hydrolysis of cADP-ribose (cADPR), a recently identified calcium-mobilizing agent that acts independently of D-myo-inositol 1,4,5-trisphosphate and is known to be expressed by human platelets. The present work shows that ADP-ribosyl cyclase activity is exclusively a membrane activity, of which the major part is located in plasma membranes and a small part in internal membranes. In broken cells, cyclase activity was insensitive to the presence of calcium and was not modulated by agonists such as thrombin or ADP, whereas in intact cells thrombin increased cADPR formation by 30%, an effect due to fusion of granules with the plasma membrane. In order to assess the role of cADPR as a calcium-mobilizing agent, vesicles were prepared from internal membranes and loaded with 45CaCl2. These vesicles were efficiently discharged by IP3 in a dose-dependent manner, but were not responsive to cADPR or ryanodine in the presence or absence of calmodulin. Thus cADPR is unlikely to play a role in intracellular calcium release in human blood platelets.
Collapse
Affiliation(s)
- P Ohlmann
- INSERM U.311, Biologie et Pharmacologie des Interactions du Sang avec les Vaisseaux et les Biomatériaux, Etablissement de Transfusion Sanguine, 10 rue Spielmann, B.P. no 36, F-67065 Strasbourg Cédex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Mothet JP, Fossier P, Meunier FM, Stinnakre J, Tauc L, Baux G. Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J Physiol 1998; 507 ( Pt 2):405-14. [PMID: 9518701 PMCID: PMC2230796 DOI: 10.1111/j.1469-7793.1998.405bt.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Presynaptic injection of cyclic ADP-ribose (cADPR), a modulator of the ryanodine receptor, increased the postsynaptic response evoked by a presynaptic spike at an identified cholinergic synapse in the buccal ganglion of Aplysia californica. 2. The statistical analysis of long duration postsynaptic responses evoked by square depolarizations of the voltage-clamped presynaptic neurone showed that the number of evoked acetylcholine (ACh) quanta released was increased following cADPR injection. 3. Overloading the presynaptic neurone with cADPR led to a transient increase of ACh release followed by a depression. 4. cADPR injections did not modify the presynaptic Ca2+ current triggering ACh release. 5. Ca2+ imaging with the fluorescent dye rhod-2 showed that cADPR injection rapidly increased the free intracellular Ca2+ concentration indicating that the effects of cADPR on ACh release might be related to Ca2+ release from intracellular stores. 6. Ryanodine and 8-amino-cADPR, a specific antagonist of cADPR, decreased ACh release. 7. ADP-ribosyl cyclase, which cyclizes NAD+ into cADPR, was present in the presynaptic neurone as shown by reverse transcriptase-polymerase chain reaction experiments. 8. Application of NAD+, the substrate of ADP-ribosyl cyclase, increased ACh release and this effect was prevented by both ryanodine and 8-amino-cADPR. 9. These results support the view that Ca(2+)-induced Ca2+ release might be involved in the build-up of the Ca2+ concentration which triggers ACh release, and thus that cADPR might have a role in transmitter release modulation.
Collapse
Affiliation(s)
- J P Mothet
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
17
|
Missiaen L, Parys JB, De Smedt H, Sienaert I, Sipma H, Vanlingen S, Maes K, Kunzelmann K, Casteels R. Inhibition of inositol trisphosphate-induced calcium release by cyclic ADP-ribose in A7r5 smooth-muscle cells and in 16HBE14o- bronchial mucosal cells. Biochem J 1998; 329 ( Pt 3):489-95. [PMID: 9445374 PMCID: PMC1219068 DOI: 10.1042/bj3290489] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ca2+ release from intracellular stores occurs via two families of intracellular channels, each with their own specific agonist: Ins(1, 4,5)P3 for the Ins(1,4,5)P3 receptor and cyclic ADP-ribose (cADPR) for the ryanodine receptor. We now report that cADPR inhibited Ins(1, 4,5)P3-induced Ca2+ release in permeabilized A7r5 cells with an IC50 of 20 microM, and in permeabilized 16HBE14o- bronchial mucosal cells with an IC50 of 35 microM. This inhibition was accompanied by an increase in specific [3H]Ins(1,4,5)P3 binding. 8-Amino-cADPR, but not 8-bromo-cADPR, antagonized this effect of cADPR. The inhibition was prevented by a whole series of inositol phosphates (10 microM) that did not affect Ins(1,4,5)P3-induced Ca2+ release, and by micromolar concentrations of PPi and various nucleotide di- or triphosphates. We propose that cADPR must interact with a novel regulatory site on the Ins(1,4,5)P3 receptor or on an associated protein. This site is neither the Ins(1,4,5)P3-binding domain, which prefers Ins(1,4,5)P3 and only binds nucleotides and PPi in the millimolar range, nor the stimulatory adenine nucleotide binding site.
Collapse
MESH Headings
- Adenine Nucleotides/metabolism
- Adenosine Diphosphate Ribose/analogs & derivatives
- Adenosine Diphosphate Ribose/metabolism
- Adenosine Diphosphate Ribose/physiology
- Animals
- Aorta
- Binding Sites
- Bronchi/cytology
- Bronchi/drug effects
- Bronchi/metabolism
- Caffeine/metabolism
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Calcium Channels/metabolism
- Cell Line
- Cyclic ADP-Ribose
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Mucous Membrane/cytology
- Mucous Membrane/drug effects
- Mucous Membrane/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
Collapse
Affiliation(s)
- L Missiaen
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ashida Y, Ueno A, Miwa Y, Miyoshi K, Inoue H. Putrescine-stimulated intracellular Ca2+ release for invasiveness of rat ascites hepatoma cells. Jpn J Cancer Res 1998; 89:67-75. [PMID: 9510478 PMCID: PMC5921585 DOI: 10.1111/j.1349-7006.1998.tb00481.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our previous study showed that treatment of highly invasive rat ascites hepatoma (LC-AH) cells with alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, decreased both their intracellular level of putrescine and their in vitro invasion of a monolayer of calf pulmonary arterial endothelial (CPAE) cells, and that both these decreases were completely reversed by exogenous putrescine, but not spermidine or spermine. Here we show that all adhering control (DFMO-untreated) cells migrated beneath CPAE monolayer with morphological change from round to cauliflower-shaped cells (migratory cells). DFMO treatment increased the number of cells that remained round without migration (nonmigratory cells). Exogenous putrescine, but not spermidine or spermine, induced transformation of all nonmigratory cells to migratory cells with a concomitant increase in their intracellular Ca2+ level, [Ca2+]i. The putrescine-induced increase in their [Ca2+]i preceded their transformation and these effects of putrescine were not affected by antagonists of the voltage-gated Ca2+ channel, but were completely suppressed by ryanodine, which also suppressed the invasiveness of the control cells. The DFMO-induced decreases in both [Ca2+]i and the invasiveness of the cells were restored by thapsigargin, which elevated [Ca2+]i by inhibiting endoplasmic Ca2+-ATPase, indicating that thapsigargin mimics the effects of putrescine. These results support the idea that putrescine is a cofactor for Ca2+ release through the Ca2+ channel in the endoplasmic reticulum that is inhibited by ryanodine, this release being initiated by cell adhesion and being a prerequisite for tumor cell invasion.
Collapse
Affiliation(s)
- Y Ashida
- Department of Biochemistry, School of Dentistry, Tokushima University
| | | | | | | | | |
Collapse
|
19
|
Abstract
Ca2+ mobilization as a signaling mechanism has been placed on center stage with the discovery of the first Ca2+ messenger, inositol trisphosphate (IP3). This article focuses on two new Ca2+ release activators, which mobilize internal Ca2+ stores via mechanisms totally independent of IP3. They are cyclic ADP-ribose (cADPR) and nicotinic acid dinucleotide phosphate (NAADP), metabolites derived respectively from NAD and NADP. Major advances in the past decade in the understanding of these two novel signaling mechanisms are chronologically summarized.
Collapse
Affiliation(s)
- H C Lee
- Department of Physiology, University of Minnesota, Minneapolis 55455, USA.
| |
Collapse
|
20
|
Tojyo Y, Tanimura A, Matsumoto Y. Imaging of intracellular Ca2+ waves induced by muscarinic receptor stimulation in rat parotid acinar cells. Cell Calcium 1997; 22:455-62. [PMID: 9502195 DOI: 10.1016/s0143-4160(97)90073-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in cytosolic Ca2+ concentration ([Ca2+]i) following muscarinic receptor stimulation were studied with digital imaging microscopy in small clusters of Fura-2 loaded rat parotid acinar cells. In the absence of extracellular Ca2+, the increase in [Ca2+]i evoked by a high concentration (10 microM) of carbachol (CCh) was initiated in the apical pole of the acinar cells about 0.4 s after stimulation and then rapidly spread as a Ca2+ wave toward the basolateral region. The [Ca2+]i reached the maximum high level throughout the cells 1-2 s after stimulation. As Ca2+ was eliminated from the extracellular medium, the Ca2+ wave was a result of Ca2+ release from intracellular stores. The magnitude and velocity of the Ca2+ wave decreased with decreasing concentration of CCh, and the increase in [Ca2+]i induced by low CCh concentrations (< or = 0.5 microM) was always larger in the apical region of acinar cells than in the basal region. The Ca2+ wave was also observed in isolated single acinar cells, indicating that the maintenance of acinar structure is not essential for the development of the Ca2+ wave. Thapsigargin (ThG), an inhibitor of the endoplasmic reticulum Ca2+ pump, caused a slow and homogeneous increase in [Ca2+]i throughout the cells. Addition of ThG after CCh, or addition of CCh after ThG, did not stimulate further increases in [Ca2+]i, suggesting that the inositol-1,4,5-trisphosphate (InsP3) and ThG-sensitive Ca2+ stores overlap in parotid acinar cells. The present study supports the hypothesis that formation of InsP3 is essential to trigger the Ca2+ wave and that the development of the Ca2+ wave may be attributed to regional differences in InsP3 sensitivity of Ca2+ stores. The agonist-induced Ca2+ wave is probably a general phenomenon in exocrine acinar cells.
Collapse
Affiliation(s)
- Y Tojyo
- Department of Dental Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| | | | | |
Collapse
|
21
|
Tojyo Y, Tanimura A, Matsumoto Y. Monitoring of Ca2+ release from intracellular stores in permeabilized rat parotid acinar cells using the fluorescent indicators Mag-fura-2 and calcium green C18. Biochem Biophys Res Commun 1997; 240:189-95. [PMID: 9367908 DOI: 10.1006/bbrc.1997.7584] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The operation of intracellular Ca2+ stores in saponin-permeabilized rat parotid acinar cells was studied by monitoring the Ca2+ concentration within organelles loaded with the low affinity Ca2+ indicator Mag-fura-2. Inositol 1, 4, 5-trisphosphate (InsP3) caused a decrease in the Mag-fura-2 ratio in a dose-dependent manner, and this effect was reversed by a removal of InsP3 or by an addition of the InsP3 receptor antagonist heparin. The changes in Mag-fura-2 ratio indicate the Ca2+ release from InsP3-sensitive Ca2+ stores and Ca2+ re-uptake into the stores in permeabilized acinar cells. The decrease in Mag-fura-2 ratio induced by InsP3 was observed at all regions of the acinar cells, suggesting that the InsP3-sensitive Ca2+ stores are located throughout the cells. The InsP3-induced Ca2+ release was also monitored using the membrane-bound Ca2+ indicator Calcium Green C18 which is sensitive to the changes in Ca2+ concentration immediately adjacent to the membrane of intracellular Ca2+ stores. InsP3 caused a large increase in the Calcium Green C18 fluorescence reflecting Ca2+ release from the stores. The Ca2+ pump inhibitor thapsigargin (ThG) itself had little or no effect on the Mag-fura-2 ratio or Calcium Green C18 fluorescence, but combined application of ThG with a low concentration of InsP3 evoked a significant decrease in the Mag-fura-2 ratio. This result supports the hypothesis that the ThG-induced Ca2+ release is due to InsP3-sensitive Ca2+ release which is mediated by the resting levels of InsP3. Further, none of cyclic ADP-ribose, caffeine or ryanodine changed the Mag-fura-2 ratio and Calcium Green C18 fluorescence, leading to the assumption that the ryanodine-sensitive Ca2+ stores are minor in rat parotid acinar cells.
Collapse
Affiliation(s)
- Y Tojyo
- Department of Dental Pharmacology, School of Dentistry, Health Sciences, University of Hokkaido, Japan.
| | | | | |
Collapse
|
22
|
Morita K, Kitayama S, Dohi T. Stimulation of cyclic ADP-ribose synthesis by acetylcholine and its role in catecholamine release in bovine adrenal chromaffin cells. J Biol Chem 1997; 272:21002-9. [PMID: 9261101 DOI: 10.1074/jbc.272.34.21002] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclic ADP-ribose (cADPR) is suggested to be a novel messenger of ryanodine receptors in various cellular systems. However, the regulation of its synthesis in response to cell stimulation and its functional roles are still unclear. We examined the physiological relevance of cADPR to the messenger role in stimulation-secretion coupling in cultured bovine adrenal chromaffin cells. Sensitization of Ca2+-induced Ca2+ release (CICR) and stimulation of catecholamine release by cADPR in permeabilized cells were demonstrated along with the contribution of CICR to intracellular Ca2+ dynamics and secretory response during stimulation of intact chromaffin cells. ADP-ribosyl cyclase was activated in the membrane preparation from chromaffin cells stimulated with acetylcholine (ACh), excess KCl depolarization, and 8-bromo-cyclic-AMP. ACh-induced activation of ADP-ribosyl cyclase was dependent on the influx of Ca2+ into cells and on the activation of cyclic AMP-dependent protein kinase. These and previous findings that ACh activates adenylate cyclase by Ca2+ influx in chromaffin cells suggested that ACh induces activation of ADP-ribosyl cyclase through Ca2+ influx and cyclic AMP-mediated pathways. These results provide evidence that the synthesis of cADPR is regulated by cell stimulation, and the cADPR/CICR pathway forms a significant signal transduction for secretion.
Collapse
Affiliation(s)
- K Morita
- Department of Pharmacology, Hiroshima University School of Dentistry, 1-2-3 Kasumi, Minami-ku, Hiroshima 734, Japan
| | | | | |
Collapse
|
23
|
Noguchi N, Takasawa S, Nata K, Tohgo A, Kato I, Ikehata F, Yonekura H, Okamoto H. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem 1997; 272:3133-6. [PMID: 9013543 DOI: 10.1074/jbc.272.6.3133] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclic ADP-ribose (cADPR) is a second messenger for Ca2+ mobilization via the ryanodine receptor (RyR) from islet microsomes for insulin secretion (Takasawa, S., Nata, K., Yonekura, H., and Okamoto, H. (1993) Science 259, 370-373). In the present study, FK506, an immunosuppressant that prolongs allograft survival, as well as cADPR were found to induce the release of Ca2+ from islet microsomes. After islet microsomes were treated with FK506, the Ca2+ release by cADPR from microsomes was reduced. cADPR as well as FK506 bound to FK506-binding protein 12.6 (FKBP12.6), which we also found occurs naturally in islet microsomes. When islet microsomes were treated with cADPR, FKBP12.6 dissociated from the microsomes and moved to the supernatant, releasing Ca2+ from the intracellular stores. The microsomes that were then devoid of FKBP12.6 did not show Ca2+ release by cADPR. These results strongly suggest that cADPR may be the ligand for FKBP12.6 in islet RyR and that the binding of cADPR to FKBP12.6 frees the RyR from FKBP12.6, causing it to release Ca2+.
Collapse
Affiliation(s)
- N Noguchi
- Department of Biochemistry, Tohoku University School of Medicine, Sendai 980-77, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim YK, Cho HJ, Kim WT, Cho KS. Caffeine- and inositol 1,4,5-trisphosphate-induced 45Ca2+ releases in the microsomes of tracheal epithelial cells. Biochem Biophys Res Commun 1997; 230:247-50. [PMID: 9016758 DOI: 10.1006/bbrc.1996.5936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Major parts of microsomes prepared from the epithelial cells of porcine trachea were tight-sealed vesicles since they showed a saturation of 45Ca2+ uptake and spontaneous releases of stored 45Ca2+ by the treatments of Ca2+-ionophore and Ca2+ channel agonists. In the presence of caffeine (10 mM), the maximal release of microsomal 45Ca2+ was observed at the extramicrosomal Ca2+ concentrations between 0.1 approximately 1 microM and at below or above this range of Ca2+ concentration the releases were decreased, forming a bell-shaped curve. These results indicate that the microsomal 45Ca2+ releases were mediated by ryanodine receptor, a caffeine-sensitive Ca2+ channel. Caffeine (10 mM) released 30.2 +/- 5.9% of microsomal 45Ca2+ while inositol 1,4,5-trisphosphate (InsP3, 10 microM) released 18.4 +/- 3.0% of the stored 45Ca2+. Caffeine-induced and InsP3-induced 45Ca2+ releases were additive, implying that these two types of 45Ca2+ releases are from physically distinct microsomes. Procaine, an antagonist of ryanodine receptor, selectively blocked the effect of caffeine but not the effect of InsP3. The results suggest that the epithelial cells of porcine trachea have caffeine-sensitive Ca2+ store in addition to InsP3-sensitive one.
Collapse
Affiliation(s)
- Y K Kim
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Korea.
| | | | | | | |
Collapse
|
25
|
|
26
|
Ziegler M, Jorcke D, Schweiger M. Metabolism of cyclic ADP-ribose: a new role for NAD+ glycohydrolases. Rev Physiol Biochem Pharmacol 1997; 131:89-126. [PMID: 9204690 DOI: 10.1007/3-540-61992-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Ziegler
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
27
|
Muir SR, Sanders D. Pharmacology of Ca2+ release from red beet microsomes suggests the presence of ryanodine receptor homologs in higher plants. FEBS Lett 1996; 395:39-42. [PMID: 8849685 DOI: 10.1016/0014-5793(96)01000-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclic ADP-ribose (cADPR) is known to release Ca2+ from plant vacuoles, implying that this NAD+ metabolite may possess a second messenger role in plants. The degree to which the plant cADPR-gated Ca2+ release mechanism resembles cADPR action in animals has been evaluated. cADPR-elicited Ca2+ release from red beet microsomes was inhibited by 1 mM procaine but insensitive to heparin. Furthermore, pre-release of Ca2+ from red beet vesicles by either 5 mM caffeine or micromolar levels of ryanodine precluded further Ca2+ mobilisation by cADPR. Thus, this study argues strongly for conservation between the plant and animal cADPR-elicited Ca2+ release mechanisms.
Collapse
Affiliation(s)
- S R Muir
- The Plant Laboratory, University of York, UK.
| | | |
Collapse
|
28
|
Dousa TP, Chini EN, Beers KW. Adenine nucleotide diphosphates: emerging second messengers acting via intracellular Ca2+ release. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1007-24. [PMID: 8897805 DOI: 10.1152/ajpcell.1996.271.4.c1007] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Release of Ca2+ from intracellular stores is a widespread mechanism in regulation of cell function. Two hitherto unknown adenine diphosphonucleotides were recently identified, which trigger Ca2+ release from intracellular stores via channels that are distinct from the well-known receptor/channel controlled by inositol 1,4,5,-trisphosphate (IP3): cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). Here we review synthesis of cADPR from beta-NAD, its hydrolysis to adenosine diphosphoribose (noncyclic) by cADPR glycohydrolase, as well as our knowledge about the metabolism of NAADP. The Ca2+ release triggered by cADPR, NAADP, or IP3 can be distinguished by the action of inhibitors and by desensitization studies. Evidence now emerges that cADPR synthesis from beta-NAD can be stimulated, at least in some cell types by all-trans-retinoic acid as a first messenger. We then review the properties of cADPR and NAADP as potential second messengers in the intracrine regulation of cell functions. Although their exact role in signaling sequences is not yet known, cADPR and NAADP are likely to play important intracellular regulatory functions, as extensively documented for the process of egg fertilization.
Collapse
Affiliation(s)
- T P Dousa
- Department of Physiology and Biophysics, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
29
|
Jorgensen TD, Dissing S, Gromada J. Cyclic GMP potentiates phenylephrine but not cyclic ADP-ribose-evoked calcium release from rat lacrimal acinar cells. FEBS Lett 1996; 391:117-20. [PMID: 8706897 DOI: 10.1016/0014-5793(96)00715-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, we describe a role for cyclic GMP (cGMP) in the signalling pathway that leads from alpha-adrenergic receptor activation to intracellular Ca2+ mobilization in rat lacrimal acinar cells. The alpha-adrenergic agonist, phenylephrine, stimulates intracellular Ca2+ release which is blocked by inhibitors of guanylate cyclase and cGMP-dependent protein kinase Ia. The membrane-permeable cGMP analogues, dibutyryl-cGMP and 8-bromo-cGMP, potentiate ( approximately 5-fold) the Ca2+ response to submaximal phenylephrine stimulation. In contrast, the same cGMP analogues have no effect on cyclic ADP-ribose-evoked Ca2+ release from permeabilized lacrimal acinar cells. Collectively, these findings suggest that cGMP, via cGMP-dependent protein kinase I alpha , is required for intracellular Ca2+ release following alpha-adrenergic receptor activation in lacrimal acinar cells.
Collapse
Affiliation(s)
- T D Jorgensen
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
30
|
van de Put FH, Elliott AC. Imaging of intracellular calcium stores in individual permeabilized pancreatic acinar cells. Apparent homogeneous cellular distribution of inositol 1,4,5-trisphosphate-sensitive stores in permeabilized pancreatic acinar cells. J Biol Chem 1996; 271:4999-5006. [PMID: 8617776 DOI: 10.1074/jbc.271.9.4999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Several lines of evidence suggest that the existence of a heterogeneous population of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ stores underlies the polarized agonist-induced rise in cytosolic Ca2+ concentration ([Ca2+]i) in pancreatic acinar cells (Kasai, H., Li, Y. X., and Miyashita, Y. (1993) Cell 74, 669-677; Thorn, P., Lawrie, A. M., Smith, P. M., Gallacher, D. V., and Petersen, O. H. (1993) Cell 74, 661-668). To investigate whether the apical pole of acinar cells contains Ca2+ stores which are relatively more sensitive to Ins(1,4,5)P3 than those in basolateral areas, we studied Ca2+ handling by Ca2+ stores in individual streptolysin O (SLO) permeabilized cells using the low affinity Ca2+ indicator Magfura-2 and an in situ imaging technique. The uptake of Ca2+ by intracellular Ca2+ stores was ATP-dependent. A steady-state level was reached within 10 min, and the free Ca2+ concentration inside loaded Ca2+ stores was estimated to be 70 microM. Ins(1,4,5)P3 induced Ca2+ release in a dose-dependent, "quantal" fashion. The kinetics of this release were similar to those reported for suspensions of permeabilized pancreatic acinar cells. Interestingly, the permeabilized acinar cells showed no intercellular variation in Ins(1,4,5)P3 sensitivity. Although SLO treatment is known to result in a considerable loss of cytosolic factors, permeabilization did not result in a redistribution of zymogen granules, as judged by electron microscope analysis. These results suggest that Ins(1,4,5)P3-sensitive Ca2+ stores are unlikely to be redistributed as a result of SLO treatment. The effects of Ins(1,4,5)P3 were therefore subsequently studied at the subcellular level. Detailed analysis demonstrated that no regional differences in Ins(1,4,5)P3 sensitivity exist in this permeabilized cell system. Therefore, we propose that additional cytosolic factors and/or the involvement of ryanodine receptors underlie the polarized pattern of agonist-induced Ca2+ signaling in intact pancreatic acinar cells.
Collapse
Affiliation(s)
- F H van de Put
- School of Biological Sciences, G. 38 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
31
|
Willmott N, Sethi JK, Walseth TF, Lee HC, White AM, Galione A. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem 1996; 271:3699-705. [PMID: 8631983 DOI: 10.1074/jbc.271.7.3699] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a potent endogenous calcium-mobilizing agent synthesized from beta-NAD+ by ADP-ribosyl cyclases in sea urchin eggs and in several mammalian cells (Galione, A., and White, A. (1994) Trends Cell Biol. 4, 431 436). Pharmacological studies suggest that cADPR is an endogenous modulator of Ca2+-induced Ca2+ release mediated by ryanodine-sensitive Ca2+ release channels. An unresolved question is whether cADPR can act as a Ca2+-mobilizing intracellular messenger. We show that exogenous application of nitric oxide (NO) mobilizes Ca2+ from intracellular stores in intact sea urchin eggs and that it releases Ca2+ and elevates cADPR levels in egg homogenates. 8-Amino-cADPR, a selective competitive antagonist of cADPR-mediated Ca2+ release, and nicotinamide, an inhibitor of ADP-ribosyl cyclase, inhibit the Ca2+-mobilizing actions of NO, while, heparin, a competitive antagonist of the inositol 1,4,5-trisphosphate receptor, did not affect NO-induced Ca2+ release. Since the Ca2+-mobilizing effects of NO can be mimicked by cGMP, are inhibited by the cGMP-dependent-protein kinase inhibitor, Rp-8-pCPT-cGMPS, and in egg homogenates show a requirement for the guanylyl cyclase substrate, GTP, we suggest a novel action of NO in mobilizing intracellular calcium from microsomal stores via a signaling pathway involving cGMP and cADPR. These results suggest that cADPR has the capacity to act as a Ca2+-mobilizing intracellular messenger.
Collapse
Affiliation(s)
- N Willmott
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Gromada J, Dissing S. Membrane potential and cytosolic free calcium levels modulate acetylcholine-induced inositol phosphate production in insulin-secreting BTC3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1310:145-8. [PMID: 9244188 DOI: 10.1016/0167-4889(95)00139-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Effects of membrane potential and cytosolic free Ca2+ concentrations ([Ca2+]i) on acetycholine (ACh)-induced inositol phosphate production were investigated in insulin secreting betaTC3 cells. ACh (10 microM) caused a rapid inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) production and increase in [Ca2+]i reaching a maximum within 5 s. The rise in Ins(1,4,5)P3 production was reduced by 79 +/- 5% when [Ca2+]i was kept low in cells loaded with the Ca2+ chelator BAPTA. The ACh-evoked Ins(1,4,5)P3 production also depended on the membrane potential as it was reduced by 31 +/- 6% in cells hyperpolarized by diazoxide, an opener of ATP-sensitive K+ channels. The Ca2+ ionophore ionomycin caused a rapid increase in [Ca2+]i and in the cellular Ins(1,4,5)P3 content. We conclude that stimulation-induced changes in membrane potential and [Ca2+]i play an important role in controlling Ins(1,4,5)P3 production in insulin-secreting betaTC3 cells.
Collapse
Affiliation(s)
- J Gromada
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|