1
|
Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. EUKARYOTIC CELL 2011; 10:672-82. [PMID: 21398508 DOI: 10.1128/ec.00303-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have previously shown that deletion of GOA1 (growth and oxidant adaptation) of Candida albicans results in a loss of mitochondrial membrane potential, ATP synthesis, increased sensitivity to oxidants and killing by human neutrophils, and avirulence in a systemic model of candidiasis. We established that translocation of Goa1p to mitochondria occurred during peroxide stress. In this report, we show that the goa1Δ (GOA31), compared to the wild type (WT) and a gene-reconstituted (GOA32) strain, exhibits sensitivity to inhibitors of the classical respiratory chain (CRC), including especially rotenone (complex I [CI]) and salicylhydroxamic acid (SHAM), an inhibitor of the alternative oxidase pathway (AOX), while potassium cyanide (KCN; CIV) causes a partial inhibition of respiration. In the presence of SHAM, however, GOA31 has an enhanced respiration, which we attribute to the parallel respiratory (PAR) pathway and alternative NADH dehydrogenases. Interestingly, deletion of GOA1 also results in a decrease in transcription of the alternative oxidase gene AOX1 in untreated cells as well as negligible AOX1 and AOX2 transcription in peroxide-treated cells. To explain the rotenone sensitivity, we measured enzyme activities of complexes I to IV (CI to CIV) and observed a major loss of CI activity in GOA31 but not in control strains. Enzymatic data of CI were supported by blue native polyacrylamide gel electrophoresis (BN-PAGE) experiments which demonstrated less CI protein and reduced enzyme activity. The consequence of a defective CI in GOA31 is an increase in reactive oxidant species (ROS), loss of chronological aging, and programmed cell death ([PCD] apoptosis) in vitro compared to control strains. The increase in PCD was indicated by an increase in caspase activity and DNA fragmentation in GOA31. Thus, GOA1 is required for a functional CI and partially for the AOX pathway; loss of GOA1 compromises cell survival. Further, the loss of chronological aging is new to studies of Candida species and may offer an insight into therapies to control these pathogens. Our observation of increased ROS production associated with a defective CI and PCD is reminiscent of mitochondrial studies of patients with some types of neurodegenerative diseases where CI and/or CIII dysfunctions lead to increased ROS and apoptosis.
Collapse
|
2
|
Abstract
The aim of this study was to investigate comparative effects of vitamin A deficiency on respiratory activity and structural integrity in liver and heart mitochondria. Male rats were fed a liquid control diet (control rats) or a liquid vitamin A-deficient diet (vitamin A-deficient rats) for 50 days. One group of vitamin-A deficient rats was refed a control diet for 15 days (vitamin A-recovered rats). To assess the respiratory function of mitochondria the contents of coenzyme Q (ubiquinone, CoQ), cytochrome c and the activities of the whole electron transport chain and of each of its respiratory complexes were evaluated. Chronic vitamin A deficiency promoted a significant increase in the endogenous coenzyme Q content in liver and heart mitochondria when compared with control values. Vitamin A deficiency induced a decrease in the activity of complex I (NADH–CoQ reductase) and complex II (succinate–CoQ reductase) and in the levels of complex I and cytochrome c in heart mitochondria. However, NADH and succinate oxidation rates were maintained at the control levels due to an increase in the CoQ content in accordance with the kinetic behaviour of CoQ as an homogeneous pool. On the contrary, the high CoQ content did not affect the electron-transfer rate in liver mitochondria, whose integrity was preserved from the deleterious effects of the vitamin A deficiency. Ultrastuctural assessment of liver and heart showed that vitamin A deficiency did not induce appreciable alterations in the morphology of their mitochondria. After refeeding the control diet, serum retinol, liver and heart CoQ content and the activity of complex I and complex II in heart mitochondria returned to normality. However, the activities of both whole electron transfer chain and complex I in liver were increased over the control values. The interrelationships between physiological antioxidants in biological membranes and the beneficial effects of their administration in mitochondrial diseases are discussed.
Collapse
|
3
|
Lenaz G, Genova ML. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 2006; 292:C1221-39. [PMID: 17035300 DOI: 10.1152/ajpcell.00263.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence, mainly based on native electrophoresis, has suggested that the mitochondrial respiratory chain is organized in the form of supercomplexes, due to the aggregation of the main respiratory chain enzymatic complexes. This evidence strongly contrasts the previously accepted model, the Random Diffusion Model, largely based on kinetic studies, stating that the complexes are randomly distributed in the lipid bilayer of the inner membrane and functionally connected by lateral diffusion of small redox molecules, i.e., coenzyme Q and cytochrome c. This review critically examines the experimental evidence, both structural and functional, pertaining to the two models and attempts to provide an updated view of the organization of the respiratory chain and of its kinetic consequences. The conclusion that structural respiratory assemblies exist is overwhelming, whereas the expected functional consequence of substrate channeling between the assembled enzymes is controversial. Examination of the available evidence suggests that, although the supercomplexes are structurally stable, their kinetic competence in substrate channeling is more labile and may depend on the system under investigation and the assay conditions.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica "G. Moruzzi," Via Irnerio 48, 40126 Bologna, Italy.
| | | |
Collapse
|
4
|
Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 2006; 66:6087-96. [PMID: 16778181 DOI: 10.1158/0008-5472.can-06-0171] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncocytic tumors are characterized by cells with an aberrant accumulation of mitochondria. To assess mitochondrial function in neoplastic oncocytic cells, we studied the thyroid oncocytic cell line XTC.UC1 and compared it with other thyroid non-oncocytic cell lines. Only XTC.UC1 cells were unable to survive in galactose, a condition forcing cells to rely solely on mitochondria for energy production. The rate of respiration and mitochondrial ATP synthesis driven by complex I substrates was severely reduced in XTC.UC1 cells. Furthermore, the enzymatic activity of complexes I and III was dramatically decreased in these cells compared with controls, in conjunction with a strongly enhanced production of reactive oxygen species. Osteosarcoma-derived transmitochondrial cell hybrids (cybrids) carrying XTC.UC1 mitochondrial DNA (mtDNA) were generated to discriminate whether the energetic failure depended on mitochondrial or nuclear DNA mutations. In galactose medium, XTC.UC1 cybrid clones showed reduced viability and ATP content, similarly to the parental XTC.UC1, clearly pointing to the existence of mtDNA alterations. Sequencing of XTC.UC1 mtDNA identified a frameshift mutation in ND1 and a nonconservative substitution in cytochrome b, two mutations with a clear pathogenic potential. In conclusion, this is the first demonstration that mitochondrial dysfunction of XTC.UC1 is due to a combined complex I/III defect associated with mtDNA mutations, as proven by the transfer of the defective energetic phenotype with the mitochondrial genome into the cybrids.
Collapse
Affiliation(s)
- Elena Bonora
- Unità di Genetica Medica, Policlinico Universitario S. Orsola-Malpighi, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lenaz G, Baracca A, Fato R, Genova ML, Solaini G. New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal 2006; 8:417-37. [PMID: 16677088 DOI: 10.1089/ars.2006.8.417] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review covers some novel findings on mitochondrial biochemistry and discusses diseases due to mitochondrial DNA mutations as a model of the changes occurring during physiological aging. The random collision model of organization of the mitochondrial respiratory chain has been recently challenged on the basis of findings of supramolecular organization of respiratory chain complexes. The source of superoxide in Complex I is discussed on the basis of laboratory experiments using a series of specific inhibitors and is presumably iron sulfur center N2. Maternally inherited diseases due to mutations of structural genes in mitochondrial DNA are surveyed as a model of alterations mimicking those occurring during normal aging. The molecular defects in senescence are surveyed on the basis of the "Mitochondrial Theory of Aging", establishing mitochondrial DNA somatic mutations, caused by accumulation of oxygen radical damage, to be at the basis of cellular senescence. Mitochondrial production of reactive oxygen species increases with aging and mitochondrial DNA mutations and deletions accumulate and may be responsible for oxidative phosphorylation defects. Evidence is presented favoring the mitochondrial theory, with primary mitochondrial alterations, although the problem is made more complex by changes in the cross-talk between nuclear and mitochondrial DNA.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Giorgio Lenaz
- Dipartimento Di Biochemica, Universita Di Bologna, Italy
| | | | | | | |
Collapse
|
7
|
Uyemura SA, Luo S, Vieira M, Moreno SNJ, Docampo R. Oxidative Phosphorylation and Rotenone-insensitive Malate- and NADH-Quinone Oxidoreductases in Plasmodium yoelii yoelii Mitochondria in Situ. J Biol Chem 2004; 279:385-93. [PMID: 14561763 DOI: 10.1074/jbc.m307264200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Respiration, membrane potential, and oxidative phosphorylation of mitochondria of Plasmodium yoelii yoelii trophozoites were assayed in situ after permeabilization with digitonin. ADP induced an oligomycin-sensitive transition from resting to phosphorylating respiration in the presence of oxidizable substrates. A functional respiratory chain was demonstrated. In addition, the ability of the parasite to oxidize exogenous NADH, as well as the insensitivity of respiration to rotenone and its sensitivity to flavone, suggested the presence of an alternative NADH-quinone (NADH-Q) oxidoreductase. Rotenone-insensitive respiration and membrane potential generation in the presence of malate suggested the presence of a malate-quinone oxidoreductase. These results are in agreement with the presence of genes in P. yoelii encoding for proteins with homology to NADH-Q oxidoreductases of bacteria, plant, fungi, and protozoa and malate-quinone oxidoreductases of bacteria. The complete inhibition of respiration by antimycin A and cyanide excluded the presence of an alternative oxidase as described in other parasites. An uncoupling effect of fatty acids was partly reversed by bovine serum albumin and GTP but was unaffected by carboxyatractyloside. These results provide the first biochemical evidence of the presence of an alternative NADH-Q oxidoreductase and a malate-quinone oxidoreductase and confirm the operation of oxidative phosphorylation in malaria parasites.
Collapse
Affiliation(s)
- Sergio A Uyemura
- Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|
8
|
Detaille D, Guigas B, Leverve X, Wiernsperger N, Devos P. Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. Biochem Pharmacol 2002; 63:1259-72. [PMID: 11960602 DOI: 10.1016/s0006-2952(02)00858-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
From recent findings about the indirect effect of metformin (MET) targeted on the respiratory chain complex I, we reconsidered this question and tried to determine the causality of any alteration at this enzymatic level using Xenopus laevis oocytes. Addition of MET (50 microM) reduced by 40% the rotenone-sensitive activity of complex I only in incubating intact oocytes but not in mitochondria isolated by differential centrifugation. The drug prior injected inside these cells had also no measurable effect. In spite of this and the weak binding of MET to the mitochondrial fraction, there was a fairly good correlation between the marked inhibitory action of MET on complex I and its progressive appearance within the oocyte cytoplasm. The intriguing observation that MET as a liposomal form was again able to exert its role when added directly to isolated mitochondria is in accordance with a membrane-mediated uptake and vesicular routing of MET. Furthermore, a temperature-dependent effect was clearly shown. At 4 degrees, oocytes failed to take up efficiently MET and accordingly its subsequent action on respiration was therefore lost. Likewise, MET transport was hindered and inhibition of complex I totally disappeared when a structural analog, asymmetrical dimethylarginine (ADMA), was placed together with MET either at an identical concentration or in excess. These data strongly support the view that MET may recognise some specific membranous sites, likely belonging to effector systems, before penetrating the cell in a bound state via an obscure endocytotic event which still has to be identified.
Collapse
Affiliation(s)
- Dominique Detaille
- Laboratory of Comparative Biochemistry and Physiology, University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
9
|
Ventura B, Genova ML, Bovina C, Formiggini G, Lenaz G. Control of oxidative phosphorylation by Complex I in rat liver mitochondria: implications for aging. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:249-60. [PMID: 11997134 DOI: 10.1016/s0005-2728(01)00246-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We compared NAD-dependent state 4 and state 3 respiration, NADH oxidation and Complex I specific activity in liver mitochondria from 4- and 30-month-old rats. All the activities examined were significantly decreased with aging. In both groups of animals, the flux control coefficients measured by rotenone titration indicated that Complex I is largely rate controlling upon NADH aerobic oxidation while, in state 3 respiration, it shares the control with other steps in the pathway. Moreover, we observed a trend wherein flux control coefficients of Complex I became higher with age. This indication was strengthened by examining the rotenone inhibition thresholds showing that Complex I becomes more rate controlling, over all the examined activities, during aging. Our results point out that age-related alterations of the mitochondrial functions are also present in tissues considered less prone to accumulate mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Barbara Ventura
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | | | | | | |
Collapse
|
10
|
Fang J, Wang Y, Beattie DS. Isolation and characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, from the procyclic forms ofTrypanosoma brucei. ACTA ACUST UNITED AC 2001; 268:3075-82. [PMID: 11358527 DOI: 10.1046/j.1432-1327.2001.02205.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.
Collapse
Affiliation(s)
- J Fang
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506-9142, USA
| | | | | |
Collapse
|
11
|
Torres-Mendoza CE, Albert A, de la Cruz Arriaga MJ. Molecular study of the rat liver NADH: cytochrome c oxidoreductase complex during development and ageing. Mol Cell Biochem 1999; 195:133-42. [PMID: 10395077 DOI: 10.1023/a:1006983206653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanisms involved in ageing are yet to be fully understood but it is thought that changes produced in energy transfer pathways occurring in the mitochondria may be responsible for the lack of energy typical of the later stages of life. The aim of the present investigation was to determine the enzymatic activity of the liver NADH cytochrome c oxidoreductase complex (Complex I-III) in mitochondria isolated from the liver of rats of 3 different age groups: lactating, animals (15-17 days), adult females (3-5 months) and old animals (26-30 months). The activities of the unbound Complexes I and III were also determined. An increase in Complex I-III activity was detected during development (142 +/- 10 vs. 447 +/- 23 micromol cyt. c/mg/min, p < 0.001) ang ageing (447 +/- 23 vs. 713 +/- 45 micromol cyt. c/mg/min, p < 0.001). However, unbound Complex I showed a reduction in activity during the ageing period whilst Complex III activity moderately increased. Immunological studies indicated only a moderate increase in the amount of Complex I-III and studies on the purified complex suggested that the increase in activity was due to effects other than an increase in enzyme quantity. The analysis of protein bands and the quantification of prosthetic groups showed particular reductions in the relative concentrations of Complex I subunits including the 51 kDa unit, which binds FMN, confirmed by a similar reduction in levels of the nucleotide. In contrast, 4 of the 5 subunits which increased during the lifetime of the animals corresponded to those of Complex III. These subunits are responsible for the binding of catalytic groups. The results suggest that, in addition to the increase in the amount of enzyme, binding factors between Complexes I and III may also play an important role in the observed increase in Complex I-III activity.
Collapse
Affiliation(s)
- C E Torres-Mendoza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universidad Complutense, Ciudad Universitaria s/n, Madrid, Spain
| | | | | |
Collapse
|
12
|
Abstract
This review considers the interaction of Complex I with different redox acceptors, mainly homologs and analogs of the physiological acceptor, hydrophobic Coenzyme Q. After examining the physical properties of the different quinones and their efficacy in restoring mitochondrial respiration, a survey ensues of the advantages and drawbacks of the quinones commonly used in Complex I activity determination and of their kinetic properties. The available evidence is then displayed on structure-activity relationships of various quinone compounds in terms of electron transfer activity and proton translocation, and the present knowledge is discussed in terms of the nature of multiple quinone-binding sites in the Complex.
Collapse
Affiliation(s)
- G Lenaz
- Dipartimento di Biochimica 'G. Moruzzi', University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Pallotti F, Genova M, Pich M, Zucchini C, Carraro S, Tesei M, Bovina C, Lenaz G. Mitochondrial dysfunction and brain disorders. Arch Gerontol Geriatr 1998. [DOI: 10.1016/s0167-4943(98)80056-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Lenaz G, Cavazzoni M, Genova ML, D'Aurelio M, Merlo Pich M, Pallotti F, Formiggini G, Marchetti M, Parenti Castelli G, Bovina C. Oxidative stress, antioxidant defences and aging. Biofactors 1998; 8:195-204. [PMID: 9914819 DOI: 10.1002/biof.5520080305] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis and aging share common mechanisms in oxidative stress and mitochondrial involvement. Treatment of cultured neuroblastoma cells with a radical initiator induced apoptosis; raise in hydrogen peroxide and release of cytochrome c from mitochondria preceded collapse of mitochondrial potential and cell death. In rat hepatocytes treated with adriamycin incubation with exogenous Coenzyme Q10 counteracted the drug-induced increase of hydrogen peroxide and the fall of the mitochondrial potential, thus demonstrating the quinone antioxidant effect. Complex I activity and its rotenone sensitivity decreased in brain cortex non-synaptic mitochondria from old rats; a 5 kb mitochondrial DNA deletion was found only in the old rats. A similar behavior was found in human platelets from old individuals. The postulated energy decline was confirmed by the inhibitor sensitivities of platelet aggregation and lactate production. The lack of the 5 kb deletion in platelets throws doubts on mitochondrial DNA lesions as the only causes of mitochondrial dysfunction in aging.
Collapse
Affiliation(s)
- G Lenaz
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Genova ML, Bovina C, Marchetti M, Pallotti F, Tietz C, Biagini G, Pugnaloni A, Viticchi C, Gorini A, Villa RF, Lenaz G. Decrease of rotenone inhibition is a sensitive parameter of complex I damage in brain non-synaptic mitochondria of aged rats. FEBS Lett 1997; 410:467-9. [PMID: 9237684 DOI: 10.1016/s0014-5793(97)00638-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated NADH oxidation in non-synaptic and synaptic mitochondria from brain cortex of 4- and 24-month-old rats. The NADH oxidase activity was significantly lower in non-synaptic mitochondria from aged rats; we also found a significant decrease of sensitivity of NADH oxidation to the specific Complex I inhibitor, rotenone. Since the rotenone-binding site encompasses Complex I subunits encoded by mtDNA, these results are in accordance with the mitochondrial theory of aging, whereby somatic mtDNA mutations are at the basis of cellular senescence. Accordingly, a 5 kb deletion was detected only in the cortex of the aged animals.
Collapse
Affiliation(s)
- M L Genova
- Department of Biochemistry, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Estornell E, Tormo JR, Barber T. A deficiency in respiratory complex I in heart mitochondria from vitamin A-deficient rats is counteracted by an increase in coenzyme Q. Biochem Biophys Res Commun 1997; 233:451-4. [PMID: 9144556 DOI: 10.1006/bbrc.1997.6480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Defects of NADH:coenzyme Q oxidoreductase (complex I) of mitochondria have been described in many congenital and acquired diseases. Administration of coenzyme Q (CoQ, ubiquinone) has been shown to benefit patients with some of these diseases. However, the mechanisms by which CoQ exerts the therapeutic effects are not clearly understood. A reason could be the lack of saturation of CoQ, in kinetic terms, for complex I activity. However, this hypothesis has not been proved in vivo because of the difficulty to incorporate CoQ into the mitochondrial membranes. We have found a deficiency in respiratory complex I in heart mitochondria from vitamin A-deficient rats which was accompanied by high CoQ content. The defect in complex I activity was compensated by the increase in CoQ to maintain the mitochondrial electron transfer rate. This finding supports, for the first time in an in vivo experimental approach, the kinetic hypothesis to explain the short-term therapeutic effects of CoQ.
Collapse
Affiliation(s)
- E Estornell
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia,Universitat de València, Burjassot, Spain.
| | | | | |
Collapse
|
17
|
Fato R, Estornell E, Di Bernardo S, Pallotti F, Parenti Castelli G, Lenaz G. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles. Biochemistry 1996; 35:2705-16. [PMID: 8611577 DOI: 10.1021/bi9516034] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reduction kinetics of coenzyme Q (CoQ, ubiquinone) by NADH:ubiquinone oxidoreductase (complex I, EC 1.6.99.3) was investigated in bovine heart mitochondrial membranes using water-soluble homologs and analogs of the endogenous ubiquinone acceptor CoQ10 [the lower homologs from CoQ0 to CoQ3, the 6-pentyl (PB) and 6-decyl (DB) analogs, and duroquinone]. By far the best substrates in bovine heart submitochondrial particles are CoQ1 and PB. The kinetics of NADH-CoQ reductase was investigated in detail using CoQ1 and PB as acceptors. The kinetic pattern follows a ping-pong mechanism; the Km for CoQ1 is in the range of 20 microM but is reversibly increased to 60 microM by extraction of the endogenous CoQ10. The increased Km in CoQ10-depleted membranes indicates that endogenous ubiquinone not only does not exert significant product inhibition but rather is required for the appropriate structure of the acceptor site. The much lower Vmax with CoQ2 but not with DB as acceptor, associated with an almost identical Km, suggests that the sites for endogenous ubiquinone bind 6-isoprenyl- and 6-alkylubiquinones with similar affinity, but the mode of electron transfer is less efficient with CoQ2. The Kmin (kcat/Km) for CoQ1 is 4 orders of magnitude lower than the bimolecular collisional constant calculated from fluorescence quenching of membrane probes; moreover, the activation energy calculated from Arrhenius plots of kmin is much higher than that of the collisional quenching constants. These observations strongly suggest that the interaction of the exogenous quinones with the enzyme is not diffusion-controlled. Contrary to other systems, in bovine submitochondrial particles, CoQ1 usually appears to be able to support a rate approaching that of endogenous CoQ10, as shown by application of the "pool equation" [Kröger, A., & Klingenberg, M. (1973) Eur. J. Biochem. 39, 313-323] relating the rate of ubiquinone reduction to the rate of ubiquinol oxidation and the overall rate through the ubiquinone pool.
Collapse
Affiliation(s)
- R Fato
- Dipartimento di Biochimica, Universita' di Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|