1
|
Erdem C, Gross SM, Heiser LM, Birtwistle MR. MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms. Nat Commun 2023; 14:3991. [PMID: 37414767 PMCID: PMC10326020 DOI: 10.1038/s41467-023-39729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Robust identification of context-specific network features that control cellular phenotypes remains a challenge. We here introduce MOBILE (Multi-Omics Binary Integration via Lasso Ensembles) to nominate molecular features associated with cellular phenotypes and pathways. First, we use MOBILE to nominate mechanisms of interferon-γ (IFNγ) regulated PD-L1 expression. Our analyses suggest that IFNγ-controlled PD-L1 expression involves BST2, CLIC2, FAM83D, ACSL5, and HIST2H2AA3 genes, which were supported by prior literature. We also compare networks activated by related family members transforming growth factor-beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and find that differences in ligand-induced changes in cell size and clustering properties are related to differences in laminin/collagen pathway activity. Finally, we demonstrate the broad applicability and adaptability of MOBILE by analyzing publicly available molecular datasets to investigate breast cancer subtype specific networks. Given the ever-growing availability of multi-omics datasets, we envision that MOBILE will be broadly useful for identification of context-specific molecular features and pathways.
Collapse
Affiliation(s)
- Cemal Erdem
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Sean M Gross
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
2
|
Lim JH, Bae JS, Lee SK, Lee DH. Palmitoyl‑RGD promotes the expression of dermal‑epidermal junction components in HaCaT cells. Mol Med Rep 2022; 26:320. [PMID: 36043531 DOI: 10.3892/mmr.2022.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022] Open
Abstract
With age, the dermal‑epidermal junction (DEJ) becomes thinner and production of its protein components decreases; this may be associated with increased fragility and wrinkling of skin. Topical treatment with palmitoyl‑Arg‑Gly‑Asp (PAL‑RGD) improves facial wrinkles, skin elasticity and dermal density in humans. In the present study, the effect of PAL‑RGD on expression of DEJ components, such as laminin and collagen, was assessed. Human HaCaT keratinocytes were treated with PAL‑RGD. The protein expression levels of laminin‑332, collagen IV and collagen XVII were examined by western blotting. Reverse transcription-quantitative PCR was used to analyze laminin subunit (LAM)A3, LAMB3, LAMC2, collagen type IV α 1 chain (COL4A1) and COL17A1 mRNA expression levels. Western blot analysis showed that the expression levels of proteins comprising the DEJ, including laminin α3, β3 and γ2 and collagen IV and XVII demonstrated a significant dose‑dependent increase following PAL‑RGD treatment. Furthermore, PAL‑RGD treatment significantly enhanced LAMA3, LAMB3, LAMC2, COL4A1 and COL17A1 mRNA expression levels. PAL‑RGD may enhance the DEJ by inducing the expression of laminin‑332, collagen IV and collagen XVII.
Collapse
Affiliation(s)
- Joo Hyuck Lim
- Biotechnology Research Institute, Research and Development Division, Celltrion Inc., Incheon 22014, Republic of Korea
| | - Jung Soo Bae
- Biotechnology Research Institute, Research and Development Division, Celltrion Inc., Incheon 22014, Republic of Korea
| | - Seung Ki Lee
- Biotechnology Research Institute, Research and Development Division, Celltrion Inc., Incheon 22014, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Chen YJ, Chang JT, You GR, Huang CY, Fan KH, Cheng AJ. Panel biomarkers associated with cancer invasion and prognostic prediction for head-neck cancer. Biomark Med 2021; 15:861-877. [PMID: 34032473 DOI: 10.2217/bmm-2021-0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: Cell invasion leading to metastasis is a major cause of treatment failure in head-neck cancers (HNCs). Identifying prognostic molecules associated with invasiveness is imperative for clinical applications. Materials & methods: A systemic approach was used to globally survey invasion-related genes, including transcriptomic profiling, pathway analysis, data mining and prognostic assessment using TCGA-HNSC dataset. Results: Six functional pathways and six hub molecules (LAMA3, LAMC2, THBS1, IGF1R, PDGFB and TGFβ1) were identified that significantly contributed to cell invasion, leading to poor survival in HNC patients. Combinations of multiple biomarkers substantially increased the probability of accurately predicting prognosis. Conclusion: Our six defined invasion-related molecules may be used as a panel signature in precision medicine for prognostic indicators or molecular therapeutic targets for HNC.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical School, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Yu Huang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, 236017, Taiwan
| | - Ann-Joy Cheng
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|
4
|
Ishikawa T, Terashima J, Sasaki D, Shimoyama Y, Yaegashi T, Sasaki M. Establishment and use of a three-dimensional ameloblastoma culture model to study the effects of butyric acid on the transcription of growth factors and laminin β3. Arch Oral Biol 2020; 118:104845. [PMID: 32712305 DOI: 10.1016/j.archoralbio.2020.104845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to establish a three-dimensional (3D) culture method for ameloblastoma cell lines and to use the model to investigate the effect of butyric acid (BA), a periodontopathic bacterial metabolite, on the malignant transformation of ameloblastoma. DESIGN Three ameloblastoma cell lines (HAM1, HAM2, and HAM3) established from the same tumor were used in this study. A 3D culture model was established in low absorption dishes and was incubated for 48 h. The effects of BA on the transcription of growth factors and LMβ3 were examined by real-time reverse transcription PCR. Various BA concentrations (0.02, 0.2, 2, and 20 mM) were used to stimulate the cell cultures for 6 and 12 h. RESULTS A 3D culture model was established. Gene expression levels of epithelial growth factor (EGF), transforming growth factor beta 1 (TGFβ1), and laminin β3 (LMβ3) were higher in 3D than in 2D cultures. Cell morphology in 3D cultures did not change, while the transcription levels of EGF, TGFβ1, and LMβ3 were upregulated by BA in all cell lines. CONCLUSION The 3D culture model is more responsive to BA than the 2D culture model, and there is a possibility that the malignancy and progression of ameloblastoma via laminin 332 (LM332) is mediated by BA.
Collapse
Affiliation(s)
- Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan.
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Daisuke Sasaki
- Division of Periodontology, Department of Conservative Dentistry, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate, 020-8505, Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Takashi Yaegashi
- Division of Periodontology, Department of Conservative Dentistry, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka, Iwate, 020-8505, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| |
Collapse
|
5
|
Ishikawa T, Terashima J, Shimoyama Y, Ohashi Y, Mikami T, Takeda Y, Sasaki M. Effects of butyric acid, a bacterial metabolite, on the migration of ameloblastoma mediated by laminin 332. J Oral Sci 2020; 62:435-438. [PMID: 32879156 DOI: 10.2334/josnusd.19-0380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Ameloblastoma is a benign tumor that develops in the jawbone. Occasionally, however, it may become malignant and metastasize to other tissues. Although it has been suggested that various cytokines and several adhesion factors may play a role in its malignant transformation, the details have not been elucidated. In this context, it has been reported that butyric acid produced by periodontopathic bacteria causes progression of malignant tumors occurring in the mouth via podoplanin. However, the influence of butyric acid on ameloblastoma has not been clarified. In the present study, therefore, the expression of various cytokines and adhesion factors in ameloblastoma upon stimulation with butyric acid or cytokines was investigated using real-time reverse-transcription polymerase chain reaction. Three cell lines (HAM1, HAM2 and HAM3) established from the same ameloblastoma were used in the experiments. It was found that the expression of mRNAs for epidermal growth factor (EGF) and transforming growth factor beta 1 (TGFβ1) was increased in HAM2 and HAM3, respectively, upon stimulation with butyric acid. In addition, stimulation with EGF and TGFβ1 led to an increase in the expression of laminin β-3 mRNA in the respective cell lines. These results suggest that butyric acid may be involved in ameloblastoma exacerbation through the expression of laminin 332 (LM332) via EGF and TGFβ1 produced by ameloblastoma itself.
Collapse
Affiliation(s)
- Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University
| | - Yu Ohashi
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University
| | | | - Yasunori Takeda
- Division of Clinical Pathology, Department of Oral and Maxillofacial Reconstructive Surgery, School of Dentistry, Iwate Medical University
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University
| |
Collapse
|
6
|
Schreurs O, Balta MG, Karatsaidis A, Schenck K. Composition of hemidesmosomes in basal keratinocytes of normal buccal mucosa and oral lichen planus. Eur J Oral Sci 2020; 128:369-378. [PMID: 32870574 DOI: 10.1111/eos.12732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease displaying ultrastructural disturbances in epithelial hemidesmosomes. The expression of several key hemidesmosomal components in OLP as well as in normal buccal mucosa is, however, unknown. The aim of the study was therefore to examine intracellular and extracellular components involved in hemidesmosomal attachment, in OLP (n = 20) and in normal buccal mucosa (n = 10), by immunofluorescence. In normal buccal mucosa, laminin-α3γ2, integrin-α6β4, CD151, collagen α-1(XVII) chain, and dystonin showed linear expression along the basal membrane, indicating the presence of type I hemidesmosomes. Plectin stained most epithelial cell membranes and remained unphosphorylated at S4642. In OLP, most hemidesmosomal molecules examined showed disturbed expression consisting of discontinuous increases, apicolateral location, and/or intracellular accumulation. Plectin showed S4642-phosphorylation at the basement membrane, and deposits of laminin-α3 and laminin-γ2 were found within the connective tissue. The disturbed expression of hemidesmosomal proteins in OLP indicates deficient attachment of the basal cell layer, which can contribute to detachment and cell death of basal keratinocytes seen in the disease.
Collapse
Affiliation(s)
- Olav Schreurs
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Maria G Balta
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | | - Karl Schenck
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
He L, Wei JY, Liu DX, Zhao WD, Chen YH. Atg7 Silencing Inhibits Laminin-5 Expression to Suppress Tube Formation by Brain Endothelial Cells. Anat Rec (Hoboken) 2019; 302:2255-2260. [PMID: 31265765 DOI: 10.1002/ar.24223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Cerebral angiogenesis is a key event during brain development and recovery from brain injury. We previously demonstrated that Atg7 knockout impaired angiogenesis in the mouse brain. However, the role of Atg7 in angiogenesis is not completely understood. In this study, we used human brain microvascular endothelial cells (HBMECs) to investigate the mechanism of Atg7-regulated cerebral angiogenesis. We found that Atg7 depletion specifically diminished the expression of the β3 and γ2 chains of laminin-5, a major component of the extracellular matrix. In contrast, autophagy inhibitors did not affect laminin-5 expression, suggesting that Atg7-regulated laminin-5 expression is autophagy-independent. We also found that Atg7-regulated laminin-5 expression occurred at the transcriptional level through NF-κB signaling. Exogenous laminin-5 or the NF-κB agonist betulinic acid effectively rescued tube formation by Atg7-deficient HBMECs. Taken together, our study identified a novel mechanism by which Atg7 regulates laminin-5 expression via NF-κB to modulate tube formation by brain endothelial cells during cerebral angiogenesis. Anat Rec, 302:2255-2260, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Lin He
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Yi Wei
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wang H, Yang Y, Zhou J, Cao J, He X, Li L, Gao S, Mao B, Tian P, Zhou A. Targeted next-generation sequencing identifies a novel mutation of LAMB3 in a Chinese neonatal patient presented with junctional epidermolysis bullosa. Medicine (Baltimore) 2018; 97:e13225. [PMID: 30544381 PMCID: PMC6310585 DOI: 10.1097/md.0000000000013225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/19/2018] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Epidermolysis bullosa (EB) refers to a group of rare inherited mechanobullous disorders that present with great clinical and genetic heterogeneity. Its severity ranges from mild blistering to life-threatening. However, the clinical symptoms of different types of EB overlap significantly, especially at an early stage. Thus it is important to clarify the diagnosis for prognostic implications, patient management, and genetic counseling. PATIENT CONCERNS Here, we report a 10-day-old male neonate from a nonconsanguineous Chinese family. He showed a bulla on the left lower limb lasting for 3 days, erosions around fingertips and toe tips at birth (predominantly on fingers), with the progressive spread of generalized blisters over the body as well as the development of the illness. DIAGNOSIS The patient was diagnosed with suspected epidermolysis bullosa according to the blisters and erosions of the body as well as the pyogenic fingernails and toenails. INTERVENTIONS The patient was performed targeted next-generation sequencing (NGS) with 9 candidate known genes, subsequently, his parents were screened for the mutations identified in the patient by Sanger sequencing. Then, prenatal diagnosis with amniotic fluid was performed in the subsequent pregnancy by Sanger sequencing. OUTCOMES Targeted NGS revealed a previously unreported splice site variant c.822+1G>A (IVS 8) and a known recurrent nonsense variant c.124C>T (p.Arg42Ter, exon 3) in LAMB3 gene. The patient's father possessed a heterozygous c.822+1G>A mutation, his mother possessed a heterozygous c.124C>T mutation. For the subsequent pregnancy, the analyses of amniotic fluid sample indicated that the fetus carried neither of the mutations. LESSONS Our finding will further enlarge LAMB3 genotype-phenotype correlations spectrum. Targeted capture sequencing is a valuable method to illustrate precise molecular pathology in patients with EB disorders, especially at an early stage of the clinical evaluation of complex disorders to avoid unnecessary and economically wasteful tests.
Collapse
Affiliation(s)
| | - Yun Yang
- BGI-Wuhan, BGI-Shenzhen, Wuhan, Hubei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Jieqiong Zhou
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Jiangxia Cao
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Xuelian He
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Long Li
- BGI-Wuhan, BGI-Shenzhen, Wuhan, Hubei
| | - Shuyang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong
| | - Bing Mao
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Tian
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| | - Aifen Zhou
- Department of Obstetrics and Gynecology, Wuhan Medical & Health Center for Women and Children, Wuhan, Hubei
| |
Collapse
|
9
|
Molecular mechanisms underlying TGF-ß/Hippo signaling crosstalks – Role of baso-apical epithelial cell polarity. Int J Biochem Cell Biol 2018; 98:75-81. [DOI: 10.1016/j.biocel.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
|
10
|
Caldeira J, Figueiredo J, Brás-Pereira C, Carneiro P, Moreira AM, Pinto MT, Relvas JB, Carneiro F, Barbosa M, Casares F, Janody F, Seruca R. E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade. Hum Mol Genet 2015; 24:5891-900. [PMID: 26246502 DOI: 10.1093/hmg/ddv312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023] Open
Abstract
Epithelial-cadherin (Ecad) deregulation affects cell-cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell-matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression.
Collapse
Affiliation(s)
- Joana Caldeira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, Andalusian Centre for Developmental Biology (CABD), Seville, Spain, Instituto de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S)
| | - Joana Figueiredo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, Instituto de Investigação e Inovação em Saúde (i3S)
| | | | - Patrícia Carneiro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, Instituto de Investigação e Inovação em Saúde (i3S)
| | - Ana M Moreira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, Instituto de Investigação e Inovação em Saúde (i3S)
| | - Marta T Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, Instituto de Investigação e Inovação em Saúde (i3S)
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fátima Carneiro
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, Instituto de Investigação e Inovação em Saúde (i3S), Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal, Centro Hospitalar São João, Porto, Portugal and
| | - Mário Barbosa
- Instituto de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Fernando Casares
- Andalusian Centre for Developmental Biology (CABD), Seville, Spain
| | | | - Raquel Seruca
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal, Instituto de Investigação e Inovação em Saúde (i3S), Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal,
| |
Collapse
|
11
|
Nallet-Staub F, Yin X, Gilbert C, Marsaud V, Ben Mimoun S, Javelaud D, Leof EB, Mauviel A. Cell density sensing alters TGF-β signaling in a cell-type-specific manner, independent from Hippo pathway activation. Dev Cell 2015; 32:640-51. [PMID: 25758862 DOI: 10.1016/j.devcel.2015.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/09/2014] [Accepted: 01/14/2015] [Indexed: 10/23/2022]
Abstract
Cell-cell contacts inhibit cell growth and proliferation in part by activating the Hippo pathway that drives the phosphorylation and nuclear exclusion of the transcriptional coactivators YAP and TAZ. Cell density and Hippo signaling have also been reported to block transforming growth factor β (TGF-β) responses, based on the ability of phospho-YAP/TAZ to sequester TGF-β-activated SMAD complexes in the cytoplasm. Herein, we provide evidence that epithelial cell polarization interferes with TGF-β signaling well upstream and independent of cytoplasmic YAP/TAZ. Rather, polarized basolateral presentation of TGF-β receptors I and II deprives apically delivered TGF-β of access to its receptors. Basolateral ligand delivery nonetheless remains entirely effective to induce TGF-β responses. These data demonstrate that cell-type-specific inhibition of TGF-β signaling by cell density is restricted to polarized epithelial cells and reflects the polarized distribution of TGF-β receptors, which thus affects SMAD activation irrespective of Hippo pathway activation.
Collapse
Affiliation(s)
- Flore Nallet-Staub
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Xueqian Yin
- Thoracic Disease Research Unit, Departments of Biochemistry/Molecular Biology and Medicine, Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Cristèle Gilbert
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Véronique Marsaud
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Saber Ben Mimoun
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Delphine Javelaud
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France
| | - Edward B Leof
- Thoracic Disease Research Unit, Departments of Biochemistry/Molecular Biology and Medicine, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.
| | - Alain Mauviel
- Institut Curie, Centre de Recherche, Team "TGF-β and Oncogenesis," Equipe Labellisée Ligue Contre le Cancer, 91400 Orsay, France; INSERM U1021, 91400 Orsay, France; CNRS UMR 3347, 91400 Orsay, France; Université Paris XI, 91400 Orsay, France.
| |
Collapse
|
12
|
Degen M, Natarajan E, Barron P, Widlund HR, Rheinwald JG. MAPK/ERK-dependent translation factor hyperactivation and dysregulated laminin γ2 expression in oral dysplasia and squamous cell carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2462-78. [PMID: 22546478 DOI: 10.1016/j.ajpath.2012.02.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 01/13/2023]
Abstract
Lesions displaying a variety of dysplastic changes precede invasive oral and epidermal squamous cell carcinoma (SCC); however, there are no histopathological criteria for either confirming or staging premalignancy. SCCs and dysplasias frequently contain cells that abnormally express the γ2 subunit of laminin-332. We developed cell culture models to investigate γ2 dysregulation. Normal human keratinocytes displayed density-dependent repression of γ2, whereas premalignant keratinocytes and SCC cells overexpressed γ2 and secreted laminin assembly intermediates. Neoplastic cells had hyperactive EGFR/MAPK(ERK) signaling coordinate with overexpressed γ2, and EGFR and MEK inhibitors normalized γ2 expression. Keratinocytes engineered to express HPV16 E6 or activated mutant HRAS, cRAF1, or MEK1 lost density repression of γ2 and shared with neoplastic cells signaling abnormalities downstream of ERK, including increased phosphorylation of S6 and eIF4 translation factors. Notably, qPCR results revealed that γ2 overexpression was not accompanied by increased γ2 mRNA levels, consistent with ERK-dependent, eIF4B-mediated translation initiation of the stem-looped, 5'-untranslated region of γ2 mRNA in neoplastic cells. Inhibitors of MEK, but not of TORC1/2, blocked S6 and eIF4B phosphorylation and γ2 overexpression. Immunostaining of oral dysplasias identified γ2 overexpression occurring within fields of basal cells that had elevated p-S6 levels. These results reveal a causal relationship between ERK-dependent translation factor activation and laminin γ2 dysregulation and identify new markers of preinvasive neoplastic change during progression to SCC.
Collapse
Affiliation(s)
- Martin Degen
- Department of Dermatology, Brigham and Women's Hospital and Harvard Skin Disease Research Center, Boston, MA, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Five different laminin (LM) alpha, four LM-beta, and three LM-gamma chains form the 15-16 currently known approximately 400-900 kDa heterodimeric LM-monomers, which self-assemble in the lamina lucida of the basement membrane (BM) to a network, connected with nidogens and perlecans with the underlying type IV collagen network. In labial salivary glands (LSG), the structurally organizing/polarizing BM separates the tubuloacinar epithelium from the connective tissue stroma but plays regulatory roles as well. Tissue distribution of LM-alpha, -beta, and -gamma chains is described, and application of the known combinatorial rules allows some conclusions also on the corresponding distribution of the LM-trimers. Currently, known integrin (Int) and non integrin (e.g., dystroglycans and Lutheran blood group antigens) LM-receptors are described. LMs are regulated at transcriptional, translational, and posttranslational levels, together with the regulation of alternative splicing, binding partners (assembly), secretion, and degradation. In LSGs, LM-alpha1, -alpha2, and -alpha4 are only found in the acinar (not ductal) BM, LM-alpha4 also in the periductal/ interstitial stroma. Pattern recognition disclosed irregular expression in the acinar BM, suggesting some dynamic and/or regulatory role. It seems that in a female-dominant autoimmune exocrinopathy, Sjögren's syndrome (SS), LM-alpha1 and -alpha2 are decreased, together with their Int alpha1beta1 and alpha2beta1 receptors. Because LM-111/211-to-Int-alpha1beta1/alpha2beta1 interactions play a crucial role in the transdifferentiation of the intercalated duct progenitors to secretory acinar cells, acinar remodeling is impaired in SS. Disturbed hemidesmosomal Int alpha6beta4/LM-332 interactions in SS may lead to acinar cell anoikis. Interestingly, dehydroepiandrosterone (DHEA) prohormone and its intracrine androgenic dihydrotestosterone (DHT) end product upregulate at least Int alpha1beta1/alpha2beta1, whereas LM-alpha1 is upregulated by outside-in LM-111/211-to-Int-alpha1beta1/alpha2beta1 signaling. It seems that LM alterations precede the lymphocyte infiltration, suggesting that acinar BM-Int pathology, perhaps related to endo- and intracrine sex steroid metabolism, represents an early pathogenic phases in SS.
Collapse
|
14
|
Wei W, Barron PD, Rheinwald JG. Modulation of TGF-β-inducible hypermotility by EGF and other factors in human prostate epithelial cells and keratinocytes. In Vitro Cell Dev Biol Anim 2010; 46:841-55. [PMID: 21042878 PMCID: PMC3568941 DOI: 10.1007/s11626-010-9353-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Keratinocytes migrating from a wound edge or initiating malignant invasion greatly increase their expression of the basement membrane protein Laminin-322 (Lam332). In culture, keratinocytes initiate sustained directional hypermotility when plated onto an incompletely processed form of Lam332 (Lam332') or when treated with transforming growth factor beta (TGF-β), an inducer of Lam332 expression. The development and tissue architecture of stratified squamous and prostate epithelia are very different, yet the basal cells of both express p63, α6β4 integrin, and Lam332. Keratinocytes and prostate epithelial cells grow well in nutritionally optimized culture media with pituitary extract and certain mitogens. We report that prostate epithelial cells display hypermotility responses indistinguishable from those of keratinocytes. Several culture medium variables attenuated TGF-β-induced hypermotility, including Ca(++), serum, and some pituitary extract preparations, without impairing growth, TGF-β growth inhibition, or hypermotility on Lam322'. Distinct from its role as a mitogen, EGF proved to be a required cofactor for TGF-β-induced hypermotility and could not be replaced by HGF or KGF. Prostate epithelial cells have a short replicative lifespan, restricted both by p16(INK4A) and telomere-related mechanisms. We immortalized the normal prostate epithelial cell line HPrE-1 by transduction to express bmi1 and TERT. Prostate epithelial cells lose expression of p63, β4 integrin, and Lam332 when they transform to invasive carcinoma. In contrast, HPrE-1/bmi1/TERT cells retained expression of these proteins and normal TGF-β signaling and hypermotility for >100 doublings. Thus, keratinocytes and prostate epithelial cells possess common hypermotility and senescence mechanisms and immortalized prostate cell lines can be engineered using defined methods to yield cells retaining normal properties.
Collapse
Affiliation(s)
- Wei Wei
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China, 250012
| | - Patricia D. Barron
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - James G. Rheinwald
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Moyano JV, Greciano PG, Buschmann MM, Koch M, Matlin KS. Autocrine transforming growth factor-{beta}1 activation mediated by integrin {alpha}V{beta}3 regulates transcriptional expression of laminin-332 in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 2010; 21:3654-68. [PMID: 20844080 PMCID: PMC2965683 DOI: 10.1091/mbc.e10-06-0523] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/23/2010] [Accepted: 09/02/2010] [Indexed: 11/17/2022] Open
Abstract
Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2-Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury.
Collapse
Affiliation(s)
- Jose V Moyano
- Department of Surgery, Committee on Cell Physiology, and Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
16
|
Tsubota Y, Ogawa T, Oyanagi J, Nagashima Y, Miyazaki K. Expression of laminin gamma2 chain monomer enhances invasive growth of human carcinoma cells in vivo. Int J Cancer 2010; 127:2031-41. [PMID: 20143393 DOI: 10.1002/ijc.25231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Laminin gamma2 chain is a subunit of the heterotrimeric basement membrane protein laminin-332 (alpha3beta3gamma2). The gamma2 chain is highly expressed by human cancers at the invasion fronts and this expression correlates with poor prognosis of the cancers. Our previous study showed that the gamma2 chain is expressed as a monomer form in invading carcinoma cells. However, the role of the gamma2 protein in tumor invasion remains unknown. Here, we demonstrate that the monomeric gamma2 chain promotes invasive growth of human cancer cells in vivo. First, we analyzed regulatory factors for the gamma2 chain expression using 2 gastric carcinoma cell lines. It was found that tumor necrosis factor-alpha, by itself or in a combination with transforming growth factor-beta1, strongly induced the secretion of the monomeric gamma2 chain. In addition, epidermal growth factor families appeared to function as the gamma2 chain inducers in human cancers. Next, we established T-24 bladder carcinoma cell lines expressing the full-length or the short arm of the laminin gamma2 chain. When these cell lines were i.p. injected into nude mice, they produced larger tumors in the abdominal cavity and showed much stronger invasive growth onto the diaphragms than the control cell line. The gamma2-expressing T-24 cells often produced ascites fluid, but scarcely the control cells. In culture, the gamma2-expressing cells migrated through Matrigel more efficiently than the control cells. These findings imply that the gamma2 monomer is induced in human cancers by inflammatory and stromal cytokines and promotes their invasive growth in vivo.
Collapse
Affiliation(s)
- Yoshiaki Tsubota
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan
| | | | | | | | | |
Collapse
|
17
|
Hamill KJ, Paller AS, Jones JCR. Adhesion and migration, the diverse functions of the laminin alpha3 subunit. Dermatol Clin 2010; 28:79-87. [PMID: 19945619 DOI: 10.1016/j.det.2009.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The laminins are a secreted family of heterotrimeric molecules essential for basement membrane formation, structure, and function. It is now well established that the alpha3 subunit of laminins-332, -321, and -311 plays an important role in mediating epidermal-dermal integrity and is essential for the skin to withstand mechanical stresses. These laminins also regulate cell migration and mechanosignal transduction. This article provides an overview of the gene, transcripts, and protein structures of laminin alpha3. Also discussed are the proposed functions for the alpha3 subunit-containing laminins.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Tarry 8-746, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
18
|
Armanet M, Wojtusciszyn A, Morel P, Parnaud G, Rousselle P, Sinigaglia C, Berney T, Bosco D. Regulated laminin-332 expression in human islets of Langerhans. FASEB J 2009; 23:4046-55. [PMID: 19667121 DOI: 10.1096/fj.08-127142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Laminin-332 (LN-332) is a basement membrane component known to exert a beneficial effect on rat pancreatic beta cells in vitro. In this work, we analyzed the expression of LN-332 in human islets, its expression after inflammatory insults by cytokines, and the molecular mechanisms responsible for this effect. By Western blotting and RT-PCR, we showed that LN-332 was expressed in isolated human islets. By immunofluorescence on pancreas sections, we observed that labeling was confined to endocrine cells in islets. Confocal microscopy analysis on isolated islet cells revealed that labeling was granular but did not colocalize with hormone secretory granules. LN-332 was most abundant in cultured islets compared to freshly isolated islets and was found in culture medium, which suggests that it was secreted by islets. When islets were exposed to interleukin (IL)-1beta, expression and secretion of LN-332 increased as compared to control. No effect was observed with tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma. LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K) activity, inhibited culture- and IL-1beta-induced LN-332 expression in islets. These results show that LN-332, known to have some beneficial effect on beta cells in vitro, is produced and secreted by endocrine islet cells and is up-regulated by stressing conditions such as culture and IL-1beta-exposure.
Collapse
Affiliation(s)
- Mathieu Armanet
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, 1211 Geneva-4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Oka T, Yamamoto H, Sasaki S, Ii M, Hizaki K, Taniguchi H, Adachi Y, Imai K, Shinomura Y. Overexpression of beta3/gamma2 chains of laminin-5 and MMP7 in biliary cancer. World J Gastroenterol 2009; 15:3865-73. [PMID: 19701966 PMCID: PMC2731248 DOI: 10.3748/wjg.15.3865] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/15/2009] [Accepted: 07/22/2009] [Indexed: 02/06/2023] Open
Abstract
AIM To clarify the clinicopathological significance of laminin-5 gamma2 (LNgamma2) and beta3 (LNbeta3) chains and MMP7 expression in biliary tract cancer. METHODS We analyzed the association between immunohistochemically detected LNgamma2, LNbeta3, and MMP7 expression in biliary tract cancer and clinicopathological characteristics. Activity of MMP7 was analyzed by casein zymography. An in vitro invasion assay after treatment with MMP7-specific siRNA was performed. RESULTS LNgamma2 expression was predominantly observed in carcinoma cells at the invasive front. LNgamma2 expression was seen in 57% of patients with biliary tract cancer, and was associated with depth of invasion, histologic type, and advanced stage. The expression pattern of LNbeta3 was classified into two types: invasive front dominant type (38%) and diffuse type (28%). The invasive front dominant type was associated with histologic type and advanced stage. MMP7 positivity was correlated with LNgamma2 or LNbeta3 expression but not with clinicopathological characteristics. Active MMP7 detected by casein zymography was correlated with depth of invasion and advanced stage. Downregulation of MMP7 expression by siRNA resulted in a significant decrease in biliary tract cancer cell invasion in vitro. CONCLUSION Our results suggest that LNgamma2 and LNbeta3, in conjunction with MMP7, play a key role in the progression of biliary tract cancer.
Collapse
|
20
|
Zboralski D, Böckmann M, Zapatka M, Hoppe S, Schöneck A, Hahn SA, Schmiegel W, Schwarte-Waldhoff I. Divergent mechanisms underlie Smad4-mediated positive regulation of the three genes encoding the basement membrane component laminin-332 (laminin-5). BMC Cancer 2008; 8:215. [PMID: 18664273 PMCID: PMC2525660 DOI: 10.1186/1471-2407-8-215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Functional inactivation of the tumor suppressor Smad4 in colorectal and pancreatic carcinogenesis occurs coincident with the transition to invasive growth. Breaking the basement membrane (BM) barrier, a prerequisite for invasive growth, can be due to tumor induced proteolytic tissue remodeling or to reduced synthesis of BM molecules by incipient tumor cells. Laminin-332 (laminin-5), a heterotrimeric BM component composed of alpha 3-, beta 3- and gamma 2-chains, has recently been identified as a target structure of Smad4 and represents the first example for expression control of an essential BM component by a tumor and invasion suppressor. Biochemically Smad4 is a transmitter of signals of the TGFbeta superfamily of cytokines. We have reported previously, that Smad4 functions as a positive transcriptional regulator of constitutive and of TGFbeta-induced transcription of all three genes encoding Laminin-332, LAMA3, LAMB3 and LAMC2. METHODS Promoter-reporter constructs harboring 4 kb upstream regions, each of the three genes encoding Laminin-322 as well as deletion and mutations constructs were established. Promoter activities and TGFbeta induction were assayed through transient transfections in Smad4-negative human cancer cells and their stable Smad4-positive derivatives. Functionally relevant binding sites were subsequently confirmed through chromatin immunoprecipitation. RESULTS Herein, we report that Smad4 mediates transcriptional regulation through three different mechanisms, namely through Smad4 binding to a functional SBE site exclusively in the LAMA3 promoter, Smad4 binding to AP1 (and Sp1) sites presumably via interaction with AP1 family components and lastly a Smad4 impact on transcription of AP1 factors. Whereas Smad4 is essential for positive regulation of all three genes, the molecular mechanisms are significantly divergent between the LAMA3 promoter as compared to the LAMB3 and LAMC2 promoters. CONCLUSION We hypothesize that this divergence in modular regulation of the three promoters may lay the ground for uncoupled regulation of Laminin-332 in Smad4-deficient tumor cells in response to stromally expressed cytokines acting on budding tumor cells.
Collapse
Affiliation(s)
- Dirk Zboralski
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
| | - Miriam Böckmann
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
| | - Marc Zapatka
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
- Department of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany
| | - Sabine Hoppe
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
| | - Anna Schöneck
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
| | - Stephan A Hahn
- Department of Internal Medicine, Molecular Oncology, Ruhr-University of Bochum, Bochum, Germany
| | - Wolff Schmiegel
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
- Department of Gastroenterology and Hepatology, Kliniken Bergmannsheil, Ruhr-University of Bochum, Bochum, Germany
| | - Irmgard Schwarte-Waldhoff
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
21
|
Sun T, McMinn P, Coakley S, Holcombe M, Smallwood R, MacNeil S. An integrated systems biology approach to understanding the rules of keratinocyte colony formation. J R Soc Interface 2008; 4:1077-92. [PMID: 17374590 PMCID: PMC2396345 DOI: 10.1098/rsif.2007.0227] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Closely coupled in vitro and in virtuo models have been used to explore the self-organization of normal human keratinocytes (NHK). Although it can be observed experimentally, we lack the tools to explore many biological rules that govern NHK self-organization. An agent-based computational model was developed, based on rules derived from literature, which predicts the dynamic multicellular morphogenesis of NHK and of a keratinocyte cell line (HaCat cells) under varying extracellular Ca++ concentrations. The model enables in virtuo exploration of the relative importance of biological rules and was used to test hypotheses in virtuo which were subsequently examined in vitro. Results indicated that cell-cell and cell-substrate adhesions were critically important to NHK self-organization. In contrast, cell cycle length and the number of divisions that transit-amplifying cells could undergo proved non-critical to the final organization. Two further hypotheses, to explain the growth behaviour of HaCat cells, were explored in virtuo-an inability to differentiate and a differing sensitivity to extracellular calcium. In vitro experimentation provided some support for both hypotheses. For NHKs, the prediction was made that the position of stem cells would influence the pattern of cell migration post-wounding. This was then confirmed experimentally using a scratch wound model.
Collapse
Affiliation(s)
- Tao Sun
- Department of Engineering Materials, University of SheffieldKroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Phil McMinn
- Department of Computer Science, University of SheffieldKroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Simon Coakley
- Department of Computer Science, University of SheffieldKroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Mike Holcombe
- Department of Computer Science, University of SheffieldKroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Rod Smallwood
- Department of Computer Science, University of SheffieldKroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - Sheila MacNeil
- Department of Engineering Materials, University of SheffieldKroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
- Author for correspondence ()
| |
Collapse
|
22
|
Lyons AJ, Jones J. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg 2007; 36:671-9. [PMID: 17643963 DOI: 10.1016/j.ijom.2007.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 03/18/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
Carcinomas are characterized by invasion of malignant cells into the underlying connective tissue and migration of malignant cells to form metastases at distant sites. These processes require alterations in cell-cell and cell-extracellular matrix interactions. As cell adhesion molecules play a role in cell-cell and cell-extracellular matrix adhesion and interactions they are involved in the process of tumour invasion and metastases. In epithelial tissues, receptors of the integrin family mediate adhesion to the adjacent matrix whereas cadherins largely mediate intercellular adhesion. These and other cell adhesion molecules such as intercellular adhesion molecule-1, CD44, dystroglycans and selectins, are involved and undergo changes in carcinomas, which provide possible targets for anti-cancer drug treatments. In the extracellular matrix that is associated with tumours, laminin 5, oncofetal fibronectin and tenascin C appear. The degree of expression of some of these moieties indicates prognosis in oral cancer and offer targets for antibody-directed radiotherapy. Metalloproteases which degrade the extracellular matrix are increased in carcinomas, and their activity is necessary for tumour angiogenesis and consequent invasion and metastases. Metalloprotease inhibitors have begun to produce decreases in mortality in clinical trials. This report provides a brief overview of our current understanding of cell adhesion molecules, the extracellular matrix, tumour invasion and metastasis.
Collapse
Affiliation(s)
- A J Lyons
- Department of Oral & Maxillofacial Surgery, Guy's Hospital, London SE1 9RT, UK
| | | |
Collapse
|
23
|
Franz M, Richter P, Geyer C, Hansen T, Acuña LD, Hyckel P, Böhmer FD, Kosmehl H, Berndt A. Mesenchymal cells contribute to the synthesis and deposition of the laminin-5 gamma2 chain in the invasive front of oral squamous cell carcinoma. J Mol Histol 2007; 38:183-90. [PMID: 17390227 DOI: 10.1007/s10735-007-9086-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/02/2007] [Indexed: 12/25/2022]
Abstract
Tumour progression in oral squamous cell carcinoma (OSCC) is associated with a reorganisation of extracellular matrix. Laminin-5 (Ln-5) plays an important role for tumour migration and shows an increased expression in areas of direct tumour/stroma interactions. We have previously shown stromal spot like Ln-5/gamma2 chain deposits distant from the basement membrane region. In this study we have analysed which cell type is responsible for Ln-5/gamma2 chain synthesis in situ. Furthermore, we studied its spatial relation to TGF-beta1 as well as the Ln-5 modulating enzymes matrix metalloproteinase (MMP) 2, membrane type-1 (MT1-) MMP and bone morphogenetic protein (BMP-) 1 by different techniques including triple immunofluorescence labelling and in situ hybridisation in OSCC. We found that the stromal spot-like Ln-5 deposits occurred in the invasive front in the vicinity of mesenchymal cells and vessel structures. In particular, not only carcinoma cells but also mesenchymal cells were shown to express the Ln-5/gamma2 chain mRNA. Moreover, stromal Ln-5 deposits showed a spatial association with TGF-beta1 as well as with MT1-MMP and BMP-1. Based on these findings we suggest that mesenchymal cells contribute to the promotion of tumour cell migration as well as vessel formation in OSCC by providing and organising promigratory Ln-5 fragments.
Collapse
Affiliation(s)
- Marcus Franz
- Institute of Pathology, Friedrich Schiller University, Ziegelmühlenweg 1, 07740 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zapatka M, Zboralski D, Radacz Y, Böckmann M, Arnold C, Schöneck A, Hoppe S, Tannapfel A, Schmiegel W, Simon-Assmann P, Schwarte-Waldhoff I. Basement membrane component laminin-5 is a target of the tumor suppressor Smad4. Oncogene 2007; 26:1417-27. [PMID: 16953227 DOI: 10.1038/sj.onc.1209918] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/13/2006] [Accepted: 07/18/2006] [Indexed: 12/15/2022]
Abstract
The tumor suppressor Smad4 is involved in carcinogenesis mainly of the pancreas and colon. Functional inactivation of Smad4 is a genetically late event that occurs upon transition from premalignant stages to invasive and metastatic growth. Smad4 encodes an intracellular messenger common to all signalling cascades induced by members of the transforming growth factor-beta (TGF-beta) superfamily of cytokines. Despite extensive knowledge about the mechanisms of TGF-beta/Smad signal transduction, little is known about Smad4 targets involved in the transition to malignancy. The hallmark of invasive growth is a breakdown of the basement membrane (BM), a specialized sheet of extracellular matrix produced through cooperation of epithelial and stromal cells. Laminin-5, a heterotrimeric epithelial-derived BM component, is commonly lost in carcinomas but not in premalignant tumors. Herein, we report that in human colon and pancreatic tumor cells, Smad4 functions as a positive transcriptional regulator of all three genes encoding laminin-5. Coordinate re-expression of the three laminin-5 chains induced by reconstitution of Smad4 leads to secretion and deposition of the heterotrimeric molecule in BM-like structures. These data define the expression control of an essential BM component as a novel function for the tumor suppressor Smad4.
Collapse
Affiliation(s)
- M Zapatka
- Department of Internal Medicine, Knappschaftskrankenhaus, IMBL, Ruhr-University of Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mak GZ, Kavanaugh GM, Buschmann MM, Stickley SM, Koch M, Goss KH, Waechter H, Zuk A, Matlin KS. Regulated synthesis and functions of laminin 5 in polarized madin-darby canine kidney epithelial cells. Mol Biol Cell 2006; 17:3664-77. [PMID: 16775009 PMCID: PMC1525223 DOI: 10.1091/mbc.e05-11-1070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 05/31/2005] [Accepted: 06/01/2006] [Indexed: 01/11/2023] Open
Abstract
Renal tubular epithelial cells synthesize laminin (LN)5 during regeneration of the epithelium after ischemic injury. LN5 is a truncated laminin isoform of particular importance in the epidermis, but it is also constitutively expressed in a number of other epithelia. To investigate the role of LN5 in morphogenesis of a simple renal epithelium, we examined the synthesis and function of LN5 in the spreading, proliferation, wound-edge migration, and apical-basal polarization of Madin-Darby canine kidney (MDCK) cells. MDCK cells synthesize LN5 only when subconfluent, and they degrade the existing LN5 matrix when confluent. Through the use of small-interfering RNA to knockdown the LN5 alpha3 subunit, we were able to demonstrate that LN5 is necessary for cell proliferation and efficient wound-edge migration, but not apical-basal polarization. Surprisingly, suppression of LN5 production caused cells to spread much more extensively than normal on uncoated surfaces, and exogenous keratinocyte LN5 was unable to rescue this phenotype. MDCK cells also synthesized laminin alpha5, a component of LN10, that independent studies suggest may form an assembled basal lamina important for polarization. Overall, our findings indicate that LN5 is likely to play an important role in regulating cell spreading, migration, and proliferation during reconstitution of a continuous epithelium.
Collapse
Affiliation(s)
- Grace Z. Mak
- *Laboratory of Epithelial Pathobiology, Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0581
| | - Gina M. Kavanaugh
- *Laboratory of Epithelial Pathobiology, Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0581
| | - Mary M. Buschmann
- *Laboratory of Epithelial Pathobiology, Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0581
| | - Shaun M. Stickley
- *Laboratory of Epithelial Pathobiology, Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0581
| | - Manuel Koch
- Center for Biochemistry, Center for Molecular Medicine, and Department of Dermatology, University of Cologne, Cologne 50923, Germany; and
| | - Kathleen Heppner Goss
- *Laboratory of Epithelial Pathobiology, Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0581
| | - Holly Waechter
- *Laboratory of Epithelial Pathobiology, Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0581
| | - Anna Zuk
- Genzyme Corporation, Framingham, MA 01701
| | - Karl S. Matlin
- *Laboratory of Epithelial Pathobiology, Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0581
| |
Collapse
|
26
|
Zinn M, Aumailley M, Krieg T, Smola H. Expression of laminin 5 by parental and c-Ha-ras-transformed HaCaT keratinocytes in organotypic cultures. Eur J Cell Biol 2006; 85:333-43. [PMID: 16460839 DOI: 10.1016/j.ejcb.2005.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 12/01/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022] Open
Abstract
Tumor cells traverse the basement membrane zone and gain access to the underlying mesenchyme to eventually form metastases. Laminin 5 is a major component of the basement membrane and connects keratinocytes at the level of hemidesmosomes to the mesenchyme. Underneath invading tumor cells anti-laminin 5 staining is diminished, and laminin 5 degradation products can stimulate cell migration and epidermal growth factor (EGF) receptor signaling. To investigate laminin 5 expression in parental HaCaT and tumorigenic c-Ha-ras-transformed HaCaT II-4rt keratinocytes, the cells were cultivated under monolayer and organotypic culture conditions. In monolayer cultures, HaCaT and c-Ha-ras-transformed HaCaT II-4rt keratinocytes secreted comparable amounts of laminin 5. After 7 days of organotypic cultures, collagen IV, beta4-integrin, nidogen and laminin 5 were detected along the epithelial-mesenchymal interface of parental HaCaT keratinocytes, while staining for these proteins was patchy or absent in the organotypic cultures with c-Ha-ras-transformed HaCaT II-4rt cells. Immunoblotting analysis confirmed absence of laminin 5 deposition in organotypic cultures of c-Ha-ras-transformed HaCaT II-4rt while the protein was detected in organotypic cultures of HaCaT keratinocytes. Surprisingly, however, the alpha3 and gamma2 laminin chain transcripts were strongly induced in c-Ha-ras-transformed HaCaT II-4rt cells by organotypic culture conditions, indicating that invasive epidermal tumor cells retain high mRNA levels for laminin 5 chains and suggesting an autocrine/paracrine induction of the laminin chain mRNAs. Moreover, as laminin 5 was absent in organotypic cultures of c-Ha-ras-transformed HaCaT II-4rt cells, it suggests immediate degradation of the protein. Degradation products may further contribute to the malignant phenotype by enhancing cellular migration and EGF-receptor activation.
Collapse
Affiliation(s)
- Michaela Zinn
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
27
|
Marionnet C, Pierrard C, Vioux-Chagnoleau C, Sok J, Asselineau D, Bernerd F. Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin. J Invest Dermatol 2006; 126:971-9. [PMID: 16528360 DOI: 10.1038/sj.jid.5700230] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
De novo dermal epidermal junction morphogenesis was studied in a skin model including dermal fibroblasts and epidermal keratinocytes. Sequential gene expression, protein deposition, and localization of basement membrane zone components were studied during 15 days. The morphogenesis of dermal epidermal junction is characterized by an implementation of the different components and then a subsequent plateau phase occurring at day 11. Three groups of genes were identified depending on cellular origin and expression profile: 1/genes of fibroblastic origin (col I alpha1, col III alpha1, nidogen, and fibrillin 1); 2/genes expressed in fibroblasts and keratinocytes with symmetrical expression pattern between both cell types (col IV alpha1, col VII alpha1, and tenascin C); 3/laminin beta3 only expressed in keratinocytes. Use of modified organotypic models excluding one cell type revealed a tight interplay between fibroblasts and keratinocytes for synthesis and localization of the components of dermal epidermal junction. Keratinocytes downregulated mRNA and proteins of fibroblastic origin, upregulated col VII in fibroblasts and were absolutely required for dermal-epidermal junction localization of fibroblastic proteins. Fibroblasts downregulated mRNA of keratinocytes and were needed for extracellular secretion and correct localization of type VII collagen and laminin 5.
Collapse
Affiliation(s)
- Claire Marionnet
- L'Oréal Recherche, Centre de Recherche C. Zviak, 90 rue du général Roguet, 92583 Clichy Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Lu W, Ebihara N, Miyazaki K, Murakami A. Reduced expression of laminin-5 in corneal epithelial cells under high glucose condition. Cornea 2006; 25:61-7. [PMID: 16331044 DOI: 10.1097/01.ico.0000179932.21104.3c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Laminin-5 (alpha3, beta3, gamma2 chains) is a major component of corneal basement membrane and has a crucial role in corneal epithelial cell adhesion. On the other hand, diabetic keratopathy has a varied degree of adhesive disturbance in corneal epithelial cells. Therefore, in this study, we investigated whether a high glucose condition altered the expression of laminin-5 in corneal epithelial cells in vitro. METHODS Human corneal epithelial (HCE) cells were cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium for 5 passages before being used in experiments. We first examined the effect of a high glucose condition on the expression of mRNA and proteins for 3 chains of laminin-5 in HCE cells by semiquantitative reverse transcriptase-polymerase chain reaction, Western blotting analysis, and immunofluorescence staining. Second, we tried a cell detachment assay. After 5 days of incubation in high or normal glucose medium, HCE cells were treated with a solution of 0.05% trypsin and EDTA (0.2 mmol/L), pH = 8. The number of detached cells at different times after treatment was determined using a cell count machine. RESULTS We found that alpha3 chain expression was reduced at the mRNA level in a high glucose condition, whereas beta3 and gamma2 chains showed no change. The high glucose condition induced the inhibition in the synthesis of 190-kd, 160-kd alpha3 chain and 105-kd gamma2 chain proteins of laminin-5. The adhesion capacity of HCE cells in the high glucose medium was weaker than that of HCE cells in normal glucose medium. Soluble laminin-5 rescued the detachment of HCE cells in high glucose medium. CONCLUSION The loss of homeostatic levels of laminin-5 under a high glucose condition may correlate to weaken epithelial cell adhesion, resulting in the clinical manifestation of diabetic keratopathy.
Collapse
Affiliation(s)
- WenNan Lu
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Lund R, Ahlfors H, Kainonen E, Lahesmaa AM, Dixon C, Lahesmaa R. Identification of genes involved in the initiation of human Th1 or Th2 cell commitment. Eur J Immunol 2005; 35:3307-19. [PMID: 16220538 DOI: 10.1002/eji.200526079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The differentiation of naïve T helper (Th) cells is induced by TCR activation and IL-12/STAT4 or IL-4/STAT6 signaling pathways, forming Th1 and Th2 cells, respectively. In this study, oligonucleotide arrays were used to identify genes regulated during the initiation of human Th1 and Th2 cell differentiation at 2 and 6 h in presence or absence of immunosuppressive TGF-beta. As a result the immediate targets of IL-12, IL-4 and TGF-beta were identified. The effects of IL-12 at this early stage were minimal and consistent with the known kinetics of IL-12Rbeta2 expression. IL-4, however, was observed to rapidly regulate 63 genes, 26 of which were differentially expressed at both the 2- and 6-h time points. Of these IL-4 regulated genes, one-third have previously been observed to display expression changes in the later phases of the polarization process. Similarly to the key regulators, TBX21 and GATA3, the transcription factors SATB1, TCF7 and BCL6 were differentially regulated at the protein level during early Th1 and Th2 cell polarization. Moreover, the developing Th1 and Th2 cells were demonstrated to be responsive to the immunosuppressive TGF-beta and IL-10. In this study, a panel of novel factors that may be important regulators of the differentiation process was identified.
Collapse
Affiliation(s)
- Riikka Lund
- Turku Centre for Biotechnology, University of Turku/Abo Akademi University, Turku, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Fukai Y, Masuda N, Kato H, Fukuchi M, Miyazaki T, Nakajima M, Sohda M, Kuwano H, Nakajima T. Correlation between laminin-5 gamma2 chain and epidermal growth factor receptor expression in esophageal squamous cell carcinomas. Oncology 2005; 69:71-80. [PMID: 16103736 DOI: 10.1159/000087477] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 01/29/2005] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Laminin-5 gamma2 chain (LN-5 gamma2) is an extracellular matrix protein that plays an important role in cell migration and tumor invasion. We evaluated the association of LN-5 gamma2 and epidermal growth factor receptor (EGFR) expression in esophageal squamous cell carcinoma (SCC). METHODS LN-5 gamma2 and EGFR expression was evaluated in 110 esophageal SCC patients by immunohistochemistry, and was confirmed using esophageal SCC cell lines by Western blot analysis. RESULTS LN-5 gamma2 expression in the invasive front of the tumor was correlated with the depth of invasion (p = 0.0001), lymph node metastasis (p = 0.0011) and pathological stage (p = 0.0001). The strong expression of EGFR was also correlated with lymph node metastasis (p = 0.0456) and the pathological stage (p = 0.0055). In patient survival, LN-5 gamma2 positivity and/or strong EGFR expression showed a significantly low survival rate as compared with those with lesser expression of LN-5 gamma2 and EGFR. Immunohistochemically, LN-5 gamma2 expression was significantly correlated with EGFR expression (p < 0.0001). Western blot analysis also confirmed the correlated expression of LN-5 gamma2 and EGFR in SCC cell lines except 2 of the 5 cell lines. CONCLUSIONS This study suggests that coexpression of LN-5 gamma2 and EGFR is closely related to the progression and poor prognosis of esophageal SCC.
Collapse
Affiliation(s)
- Yasuyuki Fukai
- Department of Tumor Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Akutsu N, Amano S, Nishiyama T. Quantitative analysis of laminin 5 gene expression in human keratinocytes. Exp Dermatol 2005; 14:329-35. [PMID: 15854126 DOI: 10.1111/j.0906-6705.2005.00275.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To examine the expression of laminin 5 genes (LAMA3, LAMB3, and LAMC2) encoding the three polypeptide chains alpha3, beta3, and gamma2, respectively, in human keratinocytes, we developed novel quantitative polymerase chain reaction (PCR) methods utilizing Thermus aquaticus DNA polymerase, specific primers, and fluorescein-labeled probes with the ABI PRISM 7700 sequence detector system. Gene expression levels of LAMA3, LAMB3, and LAMC2 and glyceraldehyde-3-phosphate dehydrogenase were quantitated reproducibly and sensitively in the range from 1 x 10(2) to 1 x 10(8) gene copies. Basal gene expression level of LAMB3 was about one-tenth of that of LAMA3 or LAMC2 in human keratinocytes, although there was no clear difference among immunoprecipitated protein levels of alpha3, beta3, and gamma2 synthesized in radio-labeled keratinocytes. Human serum augmented gene expressions of LAMA3, LAMB3, and LAMC2 in human keratinocytes to almost the same extent, and this was associated with an increase of the laminin 5 protein content measured by a specific sandwich enzyme-linked immunosorbent assay. These results demonstrate that the absolute mRNA levels generated from the laminin 5 genes do not determine the translated protein levels of the laminin 5 chains in keratinocytes, and indicate that the expression of the laminin 5 genes may be controlled by common regulation mechanisms.
Collapse
Affiliation(s)
- Nobuko Akutsu
- Shiseido Life Science Research Center, Fukuura, Kanazawa-ku, Yokohama, Japan.
| | | | | |
Collapse
|
32
|
Amano S, Akutsu N, Ogura Y, Nishiyama T. Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids. Br J Dermatol 2004; 151:961-70. [PMID: 15541073 DOI: 10.1111/j.1365-2133.2004.06175.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Laminin 5 is known to induce the adhesion, spreading and migration of human keratinocytes. In skin wound healing, laminin 5 deposition beneath migrating keratinocytes occurs early and is followed by the formation of hemidesmosomes and then basement membrane. OBJECTIVES To identify factors that regulate the synthesis and secretion of laminin 5 by human keratinocytes during acute wound healing. METHODS Laminin 5 synthesis by human keratinocytes was determined by a specific sandwich enzyme-linked immunosorbent assay. To determine the total amount of laminin 5 synthesized, laminin 5 deposited on culture dishes and inside cells was solubilized by detergent solution and determined separately from conditioned medium, and the total laminin 5 synthesis was calculated. A quantitative polymerase chain reaction method was used to measure the expression levels of laminin 5 genes, LAMA3, LAMB3 and LAMC2, which correspond to the alpha3, beta3 and gamma2 chains of laminin 5. We also examined the effects of lysophospholipids, proinflammatory cytokines and growth factors, which are components in acute wound fluids, on laminin 5 synthesis in keratinocytes. RESULTS Human acute wound fluid at days 1, 2 and 3 stimulated laminin 5 synthesis in cultured human keratinocytes in a concentration-dependent manner, although findings are restricted to one case. Human serum also increased laminin 5 production by human keratinocytes as strongly as the wound fluid did, suggesting that the major active components in acute wound fluid may be derived from those in human serum. Lysophospholipids such as lysophosphatidic acid (LPA), lysophosphatidylcholines (LPCs) and sphingosine-1-phosphate (S1P) increased laminin 5 synthesis in a concentration-dependent manner. Among growth factors, epidermal growth factor, insulin-like growth factor-1, interferon-gamma and keratinocyte growth factor increased laminin 5 production in keratinocytes, while platelet-derived growth factor, hepatocyte growth factor and basic fibroblast growth factor were ineffective. Although interleukin-1alpha had no effect, transforming growth factor (TGF)-alpha, tumour necrosis factor (TNF)-alpha and TGF-beta1 also stimulated laminin 5 synthesis, and TGF-alpha and TGF-beta1 showed a synergistic effect. Neutralizing antibodies to TGF-alpha and TGF-beta1 markedly inhibited the enhanced laminin 5 synthesis by human serum, suggesting that TGF-alpha and TGF-beta1 are important components to increase laminin 5 in human serum. In line with the increase of laminin 5 synthesis, the expression levels of all three laminin 5 genes were also augmented by TGF-alpha and TGF-beta1. CONCLUSIONS Laminin 5 synthesis in human keratinocytes was augmented by inflammatory cytokines and growth factors such as TGF-alpha, TGF-beta1 and TNF-alpha, and lysophospholipids such as S1P, LPA and LPCs, which are supposed to be present in acute wound fluid. The increased laminin 5 protein in the wound area presumably enhances wound repair by stimulating adhesion and migration of keratinocytes on the wound bed and by facilitating basement membrane formation at the dermal-epidermal junction.
Collapse
Affiliation(s)
- S Amano
- Skin Biology Research Laboratories, Shiseido Life Science Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan.
| | | | | | | |
Collapse
|
33
|
Capt A, Spirito F, Guyon R, André C, Ortonne JP, Meneguzzi G. Cloning of laminin gamma2 cDNA and chromosome mapping of the genes for the dog adhesion ligand laminin 5. Biochem Biophys Res Commun 2003; 312:1256-65. [PMID: 14652009 DOI: 10.1016/j.bbrc.2003.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Overexpression of the gamma2 chain of laminin-5 has been linked to tumor invasion and an unfavorable prognostic value, but the role of this adhesion molecule in cancer progression remains unclear. Because dog models of human cancers provide the opportunity of clarifying the relation between laminin-5 and tumor malignancy we have isolated and characterized the cDNA of dog gamma2 chain. Comparative analysis of the nucleotide sequence revealed high identity between the dog and the human gamma2, including the intermolecular molecule binding sites and the regulatory promoter sequences. Moreover, expression of a recombinant human gamma2 chain in dog keratinocytes results in assembly and secretion of hybrid laminin-5 molecules, which underscore the functional relevance of the gamma2 conserved domains. We have also determined the syntenic location of the dog laminin-5 loci on CFA7. Our study provides a basis for therapeutical approaches of epithelial cancers of gamma2 using dogs as large animal models.
Collapse
|
34
|
Jonson T, Heidenblad M, Håkansson P, Gorunova L, Johansson B, Fioretos T, Höglund M. Pancreatic carcinoma cell lines with SMAD4 inactivation show distinct expression responses to TGFB1. Genes Chromosomes Cancer 2003; 36:340-52. [PMID: 12619158 DOI: 10.1002/gcc.10179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor beta-1 (TGFB1)-induced gene expression was studied in five pancreatic carcinoma cell lines and one known TGFB1-sensitive cell line (HaCaT) by use of high-density filter-based cDNA microarrays representing over 4,000 human genes. The results indicate a complex cellular response to TGFB1 with 10% of the investigated genes showing altered expression after 3 or 48 hr of TGFB1 exposure. The tumor cell lines displayed a gradually inversed gene expression pattern, which correlated with reduced sensitivity to TGFB1, as compared to the HaCaT cell line. In the HaCaT cells, several proapoptotic genes showed increased expression in response to TGFB1, whereas the expression of antiapoptotic genes was decreased. In contrast, two pancreatic carcinoma cell lines, previously found to be growth stimulated by TGFB1, displayed an expression pattern opposite to that of these genes. Similarly, the expression of other functional groups of genes, such as cell cycle and transcription factor related genes, was almost completely reversed in these two tumor cell lines. Importantly, three of the five investigated pancreatic carcinoma cell lines responded to TGFB1, although they had SMAD4 inactivations, suggesting that the observed gene expression changes in these cell lines must be accomplished by SMAD-independent pathways.
Collapse
Affiliation(s)
- Tord Jonson
- Department of Clinical Genetics, Lund University Hospital, SE-221 85 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Olsen J, Kirkeby LT, Brorsson MM, Dabelsteen S, Troelsen JT, Bordoy R, Fenger K, Larsson LI, Simon-Assmann P. Converging signals synergistically activate the LAMC2 promoter and lead to accumulation of the laminin gamma 2 chain in human colon carcinoma cells. Biochem J 2003; 371:211-21. [PMID: 12519076 PMCID: PMC1223269 DOI: 10.1042/bj20021454] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Revised: 12/04/2002] [Accepted: 01/09/2003] [Indexed: 11/17/2022]
Abstract
The trimeric extracellular matrix molecule laminin-5 and its constituent chains (alpha 3, beta 3, gamma 2) are normally not detectable intracellularly in intestinal epithelial cells but the laminin gamma 2 chain can be detected in cancer cells at the invasive front of a subset of colon carcinomas. These cells are subjected to cytokines such as transforming growth factor beta 1 (TGF-beta 1) and hepatocyte growth factor (HGF), produced by the tumour cells or by the surrounding stromal cells. The purpose of the present work was to investigate whether TGF-beta 1 and HGF, known to stimulate the LAMC2 gene encoding the laminin gamma 2 chain, might synergize to activate the LAMC2 promoter, and to identify the promoter elements involved. We find evidence for synergy between TGF-beta and HGF with respect to laminin gamma 2 chain expression and promoter activation and demonstrate that this requires the 5' activator protein-1 (AP-1) element of the promoter and an additional upstream element which is also responsive to co-expression of the Smad3 protein from the TGF-beta signalling pathway. The transcripts encoding the other laminin-5 chains are not synergistically activated by HGF and TGF-beta. Thus the synergistic activation of the LAMC2 gene is mediated via different cis-elements and results in an overproduction of the laminin gamma 2 chain relative to the other laminin-5 constituent chains. This difference may explain why laminin gamma 2 chains accumulate in the cells at the invasive front of colon carcinomas.
Collapse
Affiliation(s)
- Jørgen Olsen
- Department of Medical Biochemistry & Genetics, Biochemistry Laboratory C, University of Copenhagen, The Panum Institute Bldg. 6.4., Blegdamsvej 3, DK-2200N, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Décline F, Okamoto O, Mallein-Gerin F, Helbert B, Bernaud J, Rigal D, Rousselle P. Keratinocyte motility induced by TGF-beta1 is accompanied by dramatic changes in cellular interactions with laminin 5. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:64-80. [PMID: 12451596 DOI: 10.1002/cm.10086] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) has the ability to induce epithelial cell migration while stopping proliferation. In this study, we show that, concomitant to promoting migration of normal human keratinocytes in vitro, TGF-beta1 induced a marked decrease in their adhesion capacity to processed alpha3-containing laminin 5-coated surfaces. Indeed, the expression levels of alpha3 and alpha6 integrin subunit mRNA and protein, as well as the cell surface alpha3beta1 and alpha6beta4 integrins, were down-regulated. Recent studies showed that keratinocytes over express and deposit laminin 5 during migration and we have shown that laminin 5 found in the matrix of TGF-beta1 induced migrating keratinocytes is present in its unprocessed form [Décline and Rousselle, 2001: J. Cell Sci. 114:811-823]. We show here that TGF-beta1 treatment of the cells promoted a significant increase in their adhesion to the alpha3 chain carboxy-terminal LG4/5 subdomain and that this interaction is likely to be mediated by a heparan sulfate proteoglycan type of receptor. Our results indicate that alpha6beta4 and alpha3beta1 integrin interactions with laminin 5 are diminished during migration while a specific interaction occurs between an additional cellular receptor and the alpha3 LG4/5 module present on unprocessed laminin 5.
Collapse
|
37
|
Patel V, Aldridge K, Ensley JF, Odell E, Boyd A, Jones J, Gutkind JS, Yeudall WA. Laminin-gamma2 overexpression in head-and-neck squamous cell carcinoma. Int J Cancer 2002; 99:583-8. [PMID: 11992550 DOI: 10.1002/ijc.10403] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To identify molecular markers for the progression of head-and-neck squamous cell carcinoma (HNSCC), we used RNA arbitrarily primed (RAP) PCR to determine the qualitative and quantitative differences in gene expression between normal epithelial cells, those derived from dysplastic oral mucosa and invasive and metastatic HNSCC. Three differentially expressed DNA fragments (RAP20, RAP21, RAP26) that were upregulated in a tumor cell line (T45) were identified as being regions of the gamma2 subunit of human laminin-5. Northern blot analysis of total cellular RNA revealed overexpression of these transcripts in 6 of 7 HNSCC cell lines compared with normal epidermal keratinocytes. In contrast, no differences were observed in HeLa (cervical carcinoma) or HCT116 (colon carcinoma) cells. Immunostaining of HNSCC cells derived from primary (HN4) and metastatic (HN12) tumors indicated elevated levels of endogenous laminin-gamma2 protein. Furthermore, HNSCC tissues demonstrated strong laminin-gamma2 staining, particularly in the peripheral basaloid cells of tumor islands at the invasion front. In contrast, only minimal staining of laminin-gamma2 was detected in basal cells of the normal epithelium. The data indicate that laminin-gamma2 is frequently overexpressed in HNSCCs and derivative cell lines and that its overexpression is likely to be useful as a marker of head-and-neck squamous malignancy.
Collapse
Affiliation(s)
- Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Virolle T, Coraux C, Ferrigno O, Cailleteau L, Ortonne JP, Pognonec P, Aberdam D. Binding of USF to a non-canonical E-box following stress results in a cell-specific derepression of the lama3 gene. Nucleic Acids Res 2002; 30:1789-98. [PMID: 11937633 PMCID: PMC113197 DOI: 10.1093/nar/30.8.1789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the lama3 gene, encoding the laminin alpha3A chain, is restricted to specialized epithelia. We previously showed that lama3 gene expression is controlled by an epithelial enhancer through the cooperative effect of AP-1 binding sites. In fibroblasts, there is no lama3 expression because of the recruitment of a repressor complex absent or inactive in epithelial cells. In this paper, we show evidence that this repression of the lama3 gene is relieved by exogenous and UV-induced USF-1 through its interaction with a non-canonical E-box site. Using a chromatin immunoprecipitation assay, we find that UV stress induces USF to bind to the lama3 promoter in vivo. We further demonstrate that this loss of cell specificity is directly related to the accessibility of the E-box, resulting in a strong induction in fibroblasts, while expression remains constitutively high in keratinocytes. This accessibility appears to be dependent upon the recruitment of a fibroblastic repressor complex. Therefore, we speculate that anchorage of this repressor complex in fibroblasts modifies the enhancer geometry, allowing USF to interact under stress-inducing conditions with its heptameric binding site.
Collapse
Affiliation(s)
- Thierry Virolle
- U385 INSERM, Faculté de Médecine, 06107 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Moriya Y, Niki T, Yamada T, Matsuno Y, Kondo H, Hirohashi S. Increased expression of laminin-5 and its prognostic significance in lung adenocarcinomas of small size. An immunohistochemical analysis of 102 cases. Cancer 2001; 91:1129-41. [PMID: 11267958 DOI: 10.1002/1097-0142(20010315)91:6<1129::aid-cncr1109>3.0.co;2-c] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Laminin-5 plays an important role in cell migration during tissue remodeling and tumor invasion. METHODS The authors studied the expression of laminin-5 immunohistochemically in 102 cases of small-sized lung adenocarcinoma (maximum dimension < or = 2 cm) using a monoclonal antibody against the laminin gamma2 chain, and they also investigated the associations of laminin-5 with clinicopathologic characteristics. Prognostic significance of increased laminin-5 expression was evaluated using the Kaplan-Meier method and the Cox proportional hazard model. RESULTS Overall, laminin-5 expression was observed in 82 cases (80.4%): 7 of 18 (38.9%) bronchioloalveolar carcinomas and 75 of 84 (89.3%) invasive adenocarcinomas. Laminin-5 was preferentially localized in the cytoplasm of tumor cells at the tumor-stromal interface, where budding or dissociation of cancer cells was frequently observed. Overexpression of laminin-5 (24 cases, 23.5%) was associated with vascular invasion (P = 0.021) and stromal fibroblastic reaction (P = 0.005) but not with nodal involvement, lymphatic invasion, or pleural invasion. Survival analysis revealed that overexpression of laminin-5 was associated with shorter patient survival (P = 0.0027 by log rank test). On multivariate analysis, overexpression of laminin-5 was an independent prognostic factor (P = 0.030), as were nodal involvement (P < 0.0001), vascular invasion (P = 0.047), and lymphatic invasion (P = 0.0047) in a whole cohort of patients. Moreover, when patients with Stage I (International Union Against Cancer [UICC] staging system) disease were considered in multivariate analysis, overexpression of laminin-5 was the only significant prognostic factor (P = 0.022), whereas vascular invasion had a marginally significant impact (P = 0.07) on patient survival. CONCLUSIONS The authors' results showed that laminin-5 is frequently expressed by cancer cells at the invasive front of lung adenocarcinoma. The study concluded that overexpression of laminin-5 may be a useful prognostic factor in patients with small-sized lung adenocarcinoma, especially in Stage I cases.
Collapse
Affiliation(s)
- Y Moriya
- Diagnostic Pathology, Clinical Laboratory Division, National Cancer Center Hospital, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Decline F, Rousselle P. Keratinocyte migration requires alpha2beta1 integrin-mediated interaction with the laminin 5 gamma2 chain. J Cell Sci 2001; 114:811-23. [PMID: 11171386 DOI: 10.1242/jcs.114.4.811] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Keratinocyte migration is an absolute requirement for correct epithelialization during the process of wound healing. This process requires changes in extracellular matrix ligand expression as well as changes in ligand-binding affinity of the corresponding cellular integrins. In this study, we attempt to understand the role of laminin 5 in migration by investigating the integrin-mediated interactions of migrating keratinocytes with their newly synthesized laminin 5. We chose to induce migration of freshly isolated NHK in vitro by exposing them to TGF-beta1 which, in addition to promoting epithelial cell migration, is also known to prevent cell proliferation. This important feature allowed the study to be focused on cell migration without interfering with cell proliferation. We confirm that keratinocyte migration on plastic, fibronectin or collagen IV substrates requires endogenous laminin 5 deposition, which is predominantly detected under its unprocessed form. Despite a crucial role for laminin 5 in migration, we show that this process is accompanied by a significant decrease in adhesion to purified laminin 5. Moreover, we provide evidence that the alpha2beta1 integrin interaction with newly synthesized laminin 5 renders the cells more adherent and retards migration. Conversely, we provide evidence that the alpha2beta1 integrin-laminin 5 interaction is absolutely required for keratinocyte migration and that the alpha2beta1 integrin is responsible for cell spreading on laminin 5. Finally, we demonstrate that the alpha2beta1 integrin binding to laminin 5 occurs within the short arm of the gamma2 subunit.
Collapse
Affiliation(s)
- F Decline
- Institut de Biologie et Chimie des Protéines, UMR 5086, 7, passage du Vercors, 69367 Lyon cedex 07, France
| | | |
Collapse
|
41
|
Kagesato Y, Mizushima H, Koshikawa N, Kitamura H, Hayashi H, Ogawa N, Tsukuda M, Miyazaki K. Sole expression of laminin gamma 2 chain in invading tumor cells and its association with stromal fibrosis in lung adenocarcinomas. Jpn J Cancer Res 2001; 92:184-92. [PMID: 11223548 PMCID: PMC5926700 DOI: 10.1111/j.1349-7006.2001.tb01081.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Laminin-5 (LN-5), an important basement membrane (BM) protein consisting of laminin alpha3, beta3 and gamma 2 chains, has been suggested to be involved in tumor cell invasion and tissue repair. In this study, the distribution of the LN-5 subunits in atypical adenomatous hyperplasia (AAH) and different types of adenocarcinomas of the lung was examined by immunohistochemical analysis. In AAH and non-sclerosing, well-differentiated adenocarcinomas, the LN gamma 2 chain was frequently detected along with the continuous BMs. These BMs were also positive for both LN alpha3 and beta3 chains, suggesting that LN-5 had been deposited. In contrast, the cytoplasmic staining for the LN gamma 2 chain was frequently observed in tumor cells of sclerosing, well-differentiated adenocarcinomas, as well as of moderately and poorly differentiated adenocarcinomas, without any evidence of co-expression of the LN alpha3 and beta3 chains. This staining pattern of the LN gamma 2 chain was prominent in carcinoma cells invading into interstitial stroma and was associated with the formation of a central scar in the tumor tissues. These results suggest that the LN gamma 2 chain monomer could be an important indicator of progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Y Kagesato
- Division of Cell Biology, Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Laminins are the most abundant structural non-collagenous glycoproteins ubiquitously present in basement membranes. They are multidomain molecules consisting of of alpha, beta, and gamma chains. Although the precise functional differences between the laminin variants are not well understood, the diversity of laminin isoforms may reflect the formation of distinct basement membranes. The laminins display a remarkable restricted expression profile, suggesting a fine regulation of their genes. In this review, we focus on the most recent developments of laminin biology, centering on transcriptional and posttranscriptional controls. We discuss only those laminin chains whose gene organization and promoter elements have been characterized and proved to be functional. When possible, we correlate the effects of growth factors, cytokines, retinoids, and transcription factors on laminin gene expression with the identity of cis-acting elements in their genomic control regions.
Collapse
|
43
|
Olsen J, Lefebvre O, Fritsch C, Troelsen JT, Orian-Rousseau V, Kedinger M, Simon-Assmann P. Involvement of activator protein 1 complexes in the epithelium-specific activation of the laminin gamma2-chain gene promoter by hepatocyte growth factor (scatter factor). Biochem J 2000; 347:407-17. [PMID: 10749670 PMCID: PMC1220973 DOI: 10.1042/0264-6021:3470407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Laminin-5 is a trimer of laminin alpha3, beta3 and gamma2 chains that is found in the intestinal basement membrane. Deposition of the laminin gamma2 chain at the basement membrane is of great interest because it undergoes a developmental shift in its cellular expression. Here we study the regulatory elements that control basal and cytokine-activated transcriptional expression of the LAMC2 gene, which encodes the laminin gamma2 chain. By using transient transfection experiments we demonstrated the presence of constitutive and cytokine-responsive cis-elements. Comparison of the transcriptional activity of the LAMC2 promoter in the epithelial HT29mtx cells with that in small-intestinal fibroblastic cells (C20 cells) led us to conclude that two regions with constitutive epithelium-specific activity are present between positions -1.2 and -0.12 kb. This was further validated by transfections of primary foetal intestinal endoderm and mesenchyme. A 2.5 kb portion of the LAMC2 5' flanking region was equally responsive to PMA and hepatocyte growth factor (HGF), whereas it was less responsive to transforming growth factor beta1. A minimal promoter limited to the initial 120 bp upstream of the transcriptional start site maintained inducibility by PMA and HGF. This short promoter fragment contains two activator protein 1 (AP-1) elements and the 5'-most of these is a composite AP-1/Sp1 element. The 5'AP-1 element is crucial to the HGF-mediated activity of the promoter; analysis of interacting nuclear proteins demonstrated that AP-1 proteins containing JunD mediate the response to HGF.
Collapse
Affiliation(s)
- J Olsen
- INSERM U.381, 3 avenue Molière, 67200 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D. Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 1999; 81:1071-9. [PMID: 10576667 PMCID: PMC2362955 DOI: 10.1038/sj.bjc.6690809] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expression of laminin and fibronectin isoforms varies with cellular maturation and differentiation and these differences may well influence cellular processes such as adhesion and motility. The basement membrane (BM) of fetal oral squamous epithelium contains the laminin chains, alpha2, alpha3, alpha5, beta1, beta2, beta3, gamma1 and gamma2. The BM of adult normal oral squamous epithelium comprises the laminin chains, alpha3, alpha5, beta1, beta3, gamma1 and gamma2. A re-expression of the laminin alpha2 and beta2 chains could be shown in adult hyperproliferative, dysplastic and carcinomatous lesions. In dysplasia and oral squamous cell carcinoma (OSCC), multifocal breaks of the BM are present as indicated by laminin chain antibodies. These breaks correlate to malignancy grade in their extent. Moreover, in the invasion front the alpha3 and gamma2 chain of laminin-5 can immunohistochemically be found outside the BM within the cytoplasm of budding carcinoma cells and in the adjacent stroma. The correlation between the morphological pattern of invasive tumour clusters and a laminin-5 immunostaining in the adjacent stroma may suggest, first, that a laminin-5 deposition outside the BM is an immunohistochemical marker for invasion and second, that OSCC invasion is guided by the laminin-5 matrix. Expression of oncofetal fibronectins (IIICS de novo glycosylated fibronectin and ED-B fibronectin) could be demonstrated throughout the stromal compartment. However, the ED-B fibronectin synthesizing cells (RNA/RNA in situ hybridization) are confined to small stroma areas and to single stroma and inflammatory cells in the invasion front. A correlation of the number of ED-B fibronectin synthesizing cells to malignancy grade could not be seen. ED-B fibronectin mRNA-positive cells seem to be concentrated in areas of fibrous stroma recruitment with a linear alignment of stromal fibro-/myofibroblasts (desmoplasia). Double staining experiments (ED-B fibronectin in situ hybridization and alpha-smooth muscle actin immunohistochemistry) indicated that the stroma myofibroblasts are a preferential source of ED-B fibronectin. In conclusion, in OSCC, a fetal extracellular matrix conversion is demonstrable. Tumour cells (laminin alpha2 and beta2 chain) and recruited stromal myofibroblasts (oncofetal ED-B fibronectin) contribute to the fetal extracellular matrix milieu.
Collapse
Affiliation(s)
- H Kosmehl
- Institute of Pathology, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
A sandwich ELISA for laminin 5 was developed by using two monoclonal antibodies specific for human laminin 5, basement membrane (BM)165 and 6F12, which were raised against the laminin alpha3 chain and the laminin beta3 chain, respectively. Laminin 5 was purified from squamous carcinoma cell (SCC) 25-conditioned medium, using 6F12-conjugated Sepharose. This preparation was used as the standard for the ELISA. This sandwich ELISA was sensitive enough to detect reproducibly as little as 125 pg of laminin 5. This assay could detect laminin 5 produced by human keratinocytes but not other laminins produced by human fibroblasts. A portion of the laminin 5 that was secreted by the keratinocytes was deposited around the cells, and the rest was released into the medium. To measure total synthesized laminin 5, the intracellular and deposited laminin 5 was solubilized by treatment with a mixture of several kinds of detergents that did not interfere with the sandwich ELISA, and the laminin in both the culture medium and the solubilized cell layer was quantified. The amount of laminin 5 synthesis by keratinocytes depended on the cell number, the duration of culture, and the extracellular matrix proteins on which keratinocytes were plated.
Collapse
Affiliation(s)
- S Amano
- Skin Biology Research Laboratories, Shiseido Life Science Research Center, Yokohama, Japan.
| | | | | |
Collapse
|
46
|
Virolle T, Monthouel MN, Djabari Z, Ortonne JP, Meneguzzi G, Aberdam D. Three activator protein-1-binding sites bound by the Fra-2.JunD complex cooperate for the regulation of murine laminin alpha3A (lama3A) promoter activity by transforming growth factor-beta. J Biol Chem 1998; 273:17318-25. [PMID: 9651314 DOI: 10.1074/jbc.273.28.17318] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several lines of evidence suggest a role for laminin-5 in skin wound healing. We report here that transforming growth factor-beta (TGF-beta), which elicits various responses during cutaneous healing, stimulates transcription of the mouse laminin alpha3A (lama3A) gene. To identify the TGF-beta-responsive elements (TGFbeta-REs) on the lama3A promoter, we have generated a series of 5'-deletions of the promoter upstream of the beta-galactosidase reporter gene. Transient cell transfection assays using mouse PAM212 keratinocytes revealed that TGFbeta-REs lie between nucleotides -297 and -54 relative to the transcription start site. Insertion of the TGFbeta-RE in front of the unresponsive minimal SV40 promoter conferred TGF-beta inducibility. Computer analysis of the promoter sequence identified three canonical activator protein-1 (AP-1) sites located at nucleotides -277 (AP-1A), -125 (AP-1B), and -69 (AP-1C). Site-directed mutagenesis of either the AP-1A or AP-1C site did not drastically alter the basal activity of the lama3A promoter, but reduced TGF-beta responsiveness by 50%. Simultaneous mutation of these two AP-1 sites resulted in a 65% decline in the response to TGF-beta, suggesting a cooperative contribution of each site to the overall promoter activity. In contrast, mutation of the AP-1B site markedly reduced the basal activity of the lama3A promoter, indicating that this AP-1 site is essential for gene expression. Mobility shift assays demonstrated specific binding of Fra-2 and JunD to the AP-1 sites, suggesting for the first time a possible regulatory function for the Fra-2.JunD AP-1 complex in a basal keratinocyte-specific gene.
Collapse
Affiliation(s)
- T Virolle
- INSERM U385, Faculté de Médecine, 06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
47
|
Kainulainen T, Hakkinen L, Hamidi S, Larjava K, Kallioinen M, Peltonen J, Salo T, Larjava H, Oikarinen A. Laminin-5 expression is independent of the injury and the microenvironment during reepithelialization of wounds. J Histochem Cytochem 1998; 46:353-60. [PMID: 9487117 DOI: 10.1177/002215549804600309] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We examined the expression of laminin-5 and its integrin receptors during reepithelialization of human wounds. We used suction blisters of skin as a model of keratinocyte migration on a basement membrane matrix and mucosal full-thickness wounds as a model in which keratinocytes migrate in a provisional matrix. An animal model, in which human epidermal keratinocytes were injected into the back of athymic mice, was used to follow the deposition of the basement membrane components. In 4-day-old blisters, about 20-50 cells at the leading edge of the migrating tongue showed cytoplasmic laminin-5 immunostaining. Laminin-5 mRNA was detected in 15-30 cells at the leading edge of the migrating epidermis. alpha3beta1 and alpha6beta4 integrins were found in membrane projections of the migrating basal cells and also in suprabasal cell layers, suggesting their combined role in binding laminin-5. In mucosal wounds, laminin-5 was the only basement membrane zone component that was deposited between the clot and the migrating keratinocytes. In the animal model, linear deposition of laminin-5 and alpha6beta4 integrin was already seen on Day 2, whereas the other basement membrane zone components were not yet organized. The results suggest that, regardless of the injury and the microenvironment, laminin-5 plays an essential role in the interaction between wound keratinocytes and the surrounding matrix.
Collapse
Affiliation(s)
- T Kainulainen
- Department of Oral and Maxillofacial Surgery, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee S, Solow-Cordero DE, Kessler E, Takahara K, Greenspan DS. Transforming growth factor-beta regulation of bone morphogenetic protein-1/procollagen C-proteinase and related proteins in fibrogenic cells and keratinocytes. J Biol Chem 1997; 272:19059-66. [PMID: 9228090 DOI: 10.1074/jbc.272.30.19059] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) induces increased extracellular matrix deposition. Bone morphogenetic protein-1 (BMP-1) also plays key roles in regulating vertebrate matrix deposition; it is the procollagen C-proteinase (PCP) that processes procollagen types I-III, and it may also mediate biosynthetic processing of lysyl oxidase and laminin 5. Here we show that BMP-1 is itself up-regulated by TGF-beta1 and that secreted BMP-1, induced by TGF-beta1, is either processed to an active form or remains as unprocessed proenzyme, in a cell type-dependent manner. In MG-63 osteosacrcoma cells, TGF-beta1 elevated levels of BMP-1 mRNA approximately 7-fold and elevated levels of mRNA for mammalian tolloid (mTld), an alternatively spliced product of the BMP1 gene, to a lesser extent. Induction of RNA was dose- and time-dependent and cycloheximide-inhibitable. Secreted BMP-1 and mTld, induced by TGF-beta1 in MG-63 and other fibrogenic cell cultures, were predominantly in forms in which proregions had been removed to yield activated enzyme. TGF-beta1 treatment also induced procollagen N-proteinase activity in fibrogenic cultures, while expression of the procollagen C-proteinase enhancer (PCPE), a glycoprotein that stimulates PCP activity, was unaffected. In contrast to fibrogenic cells, keratinocytes lacked detectable PCPE under any culture conditions and were induced by TGF-beta1 to secrete BMP-1 and mTld predominantly as unprocessed proenzymes.
Collapse
Affiliation(s)
- S Lee
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|