1
|
Steuber J, Fritz G. The Na +-translocating NADH:quinone oxidoreductase (Na +-NQR): Physiological role, structure and function of a redox-driven, molecular machine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149485. [PMID: 38955304 DOI: 10.1016/j.bbabio.2024.149485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Many bacterial processes are powered by the sodium motive force (smf) and in case of pathogens, the smf contributes to virulence. Vibrio cholerae, the causative agent of Cholera disease, possesses a Na+-translocating NADH:quinone oxidoreductase (NQR), a six-subunit membrane protein assembly. The 3D structure of NQR revealed the arrangement of the six subunits NqrABCDEF, the position of all redox cofactors (four flavins, two [2Fe-2S] centers) and the binding sites for the substrates NADH (in NqrF) and ubiquinone (in NqrB). Upon oxidation of NADH, electrons are shuttled twice across the membrane, starting with cytoplasmic FADNqrF and electron transfer to the [2Fe2S] clusterNqrF and from there to an intra-membranous [2Fe-2S] clusterNqrDE, periplasmic FMNNqrC, FMNNqrB and from there to riboflavinNqrB. This riboflavin is located at the cytoplasmic entry site of the sodium channel in NqrB, and it donates electrons to ubiquinone-8 positioned at the cytoplasmic side of NqrB. Targeting the substrate binding sites of NQR is a promising strategy to identify new inhibitors against many bacterial pathogens. Detailed structural information on the binding mode of natural inhibitors and small molecules in the active sites of NQR is now available, paving the way for the development of new antibiotics. The NQR shows different conformations as revealed in recent cryo-EM and crystallographic studies combined with spectroscopic analyses. These conformations represent distinct steps in the catalytic cycle. Considering the structural and functional data available, we propose a mechanism of Na+-NQR based on conformational coupling of electron transfer and Na+ translocation reaction steps.
Collapse
Affiliation(s)
- Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Impact of Na +-Translocating NADH:Quinone Oxidoreductase on Iron Uptake and nqrM Expression in Vibrio cholerae. J Bacteriol 2020; 202:JB.00681-19. [PMID: 31712283 DOI: 10.1128/jb.00681-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
The Na+ ion-translocating NADH:quinone oxidoreductase (NQR) from Vibrio cholerae is a membrane-bound respiratory enzyme which harbors flavins and Fe-S clusters as redox centers. The NQR is the main producer of the sodium motive force (SMF) and drives energy-dissipating processes such as flagellar rotation, substrate uptake, ATP synthesis, and cation-proton antiport. The NQR requires for its maturation, in addition to the six structural genes nqrABCDEF, a flavin attachment gene, apbE, and the nqrM gene, presumably encoding a Fe delivery protein. We here describe growth studies and quantitative real-time PCR for the V. cholerae O395N1 wild-type (wt) strain and its mutant Δnqr and ΔubiC strains, impaired in respiration. In a comparative proteome analysis, FeoB, the membrane subunit of the uptake system for Fe2+ (Feo), was increased in V. cholerae Δnqr In this study, the upregulation was confirmed on the mRNA level and resulted in improved growth rates of V. cholerae Δnqr with Fe2+ as an iron source. We studied the expression of feoB on other respiratory enzyme deletion mutants such as the ΔubiC mutant to determine whether iron transport is specific to the absence of NQR resulting from impaired respiration. We show that the nqr operon comprises, in addition to the structural nqrABCDEF genes, the downstream apbE and nqrM genes on the same operon and demonstrate induction of the nqr operon by iron in V. cholerae wt. In contrast, expression of the nqrM gene in V. cholerae Δnqr is repressed by iron. The lack of functional NQR has a strong impact on iron homeostasis in V. cholerae and demonstrates that central respiratory metabolism is interwoven with iron uptake and regulation.IMPORTANCE Investigating strategies of iron acquisition, storage, and delivery in Vibrio cholerae is a prerequisite to understand how this pathogen thrives in hostile, iron-limited environments such as the human host. In addition to highlighting the maturation of the respiratory complex NQR, this study points out the influence of NQR on iron metabolism, thereby making it a potential drug target for antibiotics.
Collapse
|
3
|
Flavin transferase: the maturation factor of flavin-containing oxidoreductases. Biochem Soc Trans 2018; 46:1161-1169. [PMID: 30154099 DOI: 10.1042/bst20180524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Flavins, cofactors of many enzymes, are often covalently linked to these enzymes; for instance, flavin adenine mononucleotide (FMN) can form a covalent bond through either its phosphate or isoalloxazine group. The prevailing view had long been that all types of covalent attachment of flavins occur as autocatalytic reactions; however, in 2013, the first flavin transferase was identified, which catalyzes phosphoester bond formation between FMN and Na+-translocating NADH:quinone oxidoreductase in certain bacteria. Later studies have indicated that this post-translational modification is widespread in prokaryotes and is even found in some eukaryotes. Flavin transferase can occur as a separate ∼40 kDa protein or as a domain within the target protein and recognizes a degenerate DgxtsAT/S motif in various target proteins. The purpose of this review was to summarize the progress already achieved by studies of the structure, mechanism, and specificity of flavin transferase and to encourage future research on this topic. Interestingly, the flavin transferase gene (apbE) is found in many bacteria that have no known target protein, suggesting the presence of yet unknown flavinylation targets.
Collapse
|
4
|
Kulik LV, Bertsova YV, Bogachev AV. EPR evidence for a fast-relaxing iron center in Na +-translocating NADH:quinone-oxidoreductase. J Inorg Biochem 2018; 184:15-18. [PMID: 29635097 DOI: 10.1016/j.jinorgbio.2018.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
A paramagnetic Cys4[Fe] center was detected by pulse EPR in Na+-translocating NADH:quinone-oxidoreductase (Na+-NQR) by influence of this center on transverse and longitudinal spin relaxation of Na+-NQR flavin radicals. The oxidation state of the Cys4[Fe] center was Fe3+ in the oxidized and Fe2+ in the reduced Na+-NQR, as deduced from the temperature dependence of spin relaxation rates of different flavin radicals. A high-spin state of iron in the Cys4[Fe] center was assigned to both forms of Na+-NQR.
Collapse
Affiliation(s)
- Leonid V Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
5
|
Dibrov P, Dibrov E, Pierce GN. Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiol Rev 2017; 41:653-671. [PMID: 28961953 DOI: 10.1093/femsre/fux032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
The recent breakthrough in structural studies on Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae creates a perspective for the systematic design of inhibitors for this unique enzyme, which is the major Na+ pump in aerobic pathogens. Widespread distribution of Na+-NQR among pathogenic species, its key role in energy metabolism, its relation to virulence in different species as well as its absence in eukaryotic cells makes this enzyme especially attractive as a target for prospective antibiotics. In this review, the major biochemical, physiological and, especially, the pharmacological aspects of Na+-NQR are discussed to assess its 'target potential' for drug development. A comparison to other primary bacterial Na+ pumps supports the contention that NQR is a first rate prospective target for a new generation of antimicrobials. A new, narrowly targeted furanone inhibitor of NQR designed in our group is presented as a molecular platform for the development of anti-NQR remedies.
Collapse
Affiliation(s)
- Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Canada.,Department of Physiology and Pathophysiology, Colleges of Medicine and Pharmacy, Faculty of Health Sciences, Winnipeg, Canada
| |
Collapse
|
6
|
NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase. J Bacteriol 2015; 198:655-63. [PMID: 26644436 DOI: 10.1128/jb.00757-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na(+) translocation across the membrane. Na(+)-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na(+)-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na(+)-NQR, resulted in an enzyme incapable of Na(+)-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na(+)-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na(+)-NQR, which could be recovered by an nqrM-containing plasmid. The Na(+)-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na(+)-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na(+)-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na(+)-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na(+)-translocating NADH:quinone oxidoreductase complex (Na(+)-NQR) is a unique primary Na(+) pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio parahaemolyticus, Haemophilus influenzae, Neisseria gonorrhoeae, Pasteurella multocida, Porphyromonas gingivalis, Enterobacter aerogenes, and Yersinia pestis. Production of Na(+)-NQR in bacteria requires Na(+)-NQR-specific maturation factors. We earlier identified one such factor (ApbE) that covalently attaches flavin residues to Na(+)-NQR. Here we identify the other protein factor, designated NqrM, and show that NqrM and ApbE suffice to produce functional Na(+)-NQR from the Vibrio harveyi nqr operon. NqrM may be involved in Fe delivery to a unique Cys4[Fe] center during Na(+)-NQR assembly. Besides highlighting Na(+)-NQR biogenesis, these findings suggest a novel drug target to combat Na(+)-NQR-containing bacteria.
Collapse
|
7
|
Belevich NP, Bertsova YV, Verkhovskaya ML, Baykov AA, Bogachev AV. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:141-149. [PMID: 26655930 DOI: 10.1016/j.bbabio.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane.
Collapse
Affiliation(s)
- Nikolai P Belevich
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina L Verkhovskaya
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
8
|
Borshchevskiy V, Round E, Bertsova Y, Polovinkin V, Gushchin I, Ishchenko A, Kovalev K, Mishin A, Kachalova G, Popov A, Bogachev A, Gordeliy V. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi. PLoS One 2015; 10:e0118548. [PMID: 25734798 PMCID: PMC4348036 DOI: 10.1371/journal.pone.0118548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium.
Collapse
Affiliation(s)
- Valentin Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ekaterina Round
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Yulia Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vitaly Polovinkin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Andrii Ishchenko
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
| | - Kirill Kovalev
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Galina Kachalova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (AB); (VG)
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Research Centre Jülich GmbH, Jülich, Germany
- Univ. Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- * E-mail: (AB); (VG)
| |
Collapse
|
9
|
Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature 2015; 516:62-7. [PMID: 25471880 DOI: 10.1038/nature14003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/24/2014] [Indexed: 11/08/2022]
Abstract
NADH oxidation in the respiratory chain is coupled to ion translocation across the membrane to build up an electrochemical gradient. The sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a membrane protein complex widespread among pathogenic bacteria, consists of six subunits, NqrA, B, C, D, E and F. To our knowledge, no structural information on the Na(+)-NQR complex has been available until now. Here we present the crystal structure of the Na(+)-NQR complex at 3.5 Å resolution. The arrangement of cofactors both at the cytoplasmic and the periplasmic side of the complex, together with a hitherto unknown iron centre in the midst of the membrane-embedded part, reveals an electron transfer pathway from the NADH-oxidizing cytoplasmic NqrF subunit across the membrane to the periplasmic NqrC, and back to the quinone reduction site on NqrA located in the cytoplasm. A sodium channel was localized in subunit NqrB, which represents the largest membrane subunit of the Na(+)-NQR and is structurally related to urea and ammonia transporters. On the basis of the structure we propose a mechanism of redox-driven Na(+) translocation where the change in redox state of the flavin mononucleotide cofactor in NqrB triggers the transport of Na(+) through the observed channel.
Collapse
|
10
|
Shea ME, Mezic KG, Juárez O, Barquera B. A mutation in Na(+)-NQR uncouples electron flow from Na(+) translocation in the presence of K(+). Biochemistry 2014; 54:490-6. [PMID: 25486106 DOI: 10.1021/bi501266e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sodium-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is a bacterial respiratory enzyme that obtains energy from the redox reaction between NADH and ubiquinone and uses this energy to create an electrochemical Na(+) gradient across the cell membrane. A number of acidic residues in transmembrane helices have been shown to be important for Na(+) translocation. One of these, Asp-397 in the NqrB subunit, is a key residue for Na(+) uptake and binding. In this study, we show that when this residue is replaced with asparagine, the enzyme acquires a new sensitivity to K(+); in the mutant, K(+) both activates the redox reaction and uncouples it from the ion translocation reaction. In the wild-type enzyme, Na(+) (or Li(+)) accelerates turnover while K(+) alone does not activate. In the NqrB-D397N mutant, K(+) accelerates the same internal electron transfer step (2Fe-2S → FMNC) that is accelerated by Na(+). This is the same step that is inhibited in mutants in which Na(+) uptake is blocked. NqrB-D397N is able to translocate Na(+) and Li(+), but when K(+) is introduced, no ion translocation is observed, regardless of whether Na(+) or Li(+) is present. Thus, this mutant, when it turns over in the presence of K(+), is the first, and currently the only, example of an uncoupled Na(+)-NQR. The fact the redox reaction and ion pumping become decoupled from each other only in the presence of K(+) provides a switch that promises to be a useful experimental tool.
Collapse
Affiliation(s)
- Michael E Shea
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | | | |
Collapse
|
11
|
The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump. J Bioenerg Biomembr 2014; 46:289-98. [PMID: 25052842 DOI: 10.1007/s10863-014-9565-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.
Collapse
|
12
|
Strickland M, Juárez O, Neehaul Y, Cook DA, Barquera B, Hellwig P. The conformational changes induced by ubiquinone binding in the Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) are kinetically controlled by conserved glycines 140 and 141 of the NqrB subunit. J Biol Chem 2014; 289:23723-33. [PMID: 25006248 DOI: 10.1074/jbc.m114.574640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Na(+)-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na(+)-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na(+)-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active.
Collapse
Affiliation(s)
- Madeleine Strickland
- From the Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS Université de Strasbourg, Strasbourg, France, 67000 and
| | - Oscar Juárez
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Yashvin Neehaul
- From the Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS Université de Strasbourg, Strasbourg, France, 67000 and
| | - Darcie A Cook
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Blanca Barquera
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Petra Hellwig
- From the Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS Université de Strasbourg, Strasbourg, France, 67000 and
| |
Collapse
|
13
|
Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase. PLoS One 2014; 9:e96696. [PMID: 24809444 PMCID: PMC4014512 DOI: 10.1371/journal.pone.0096696] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022] Open
Abstract
The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.
Collapse
|
14
|
Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na(+)-translocating NADH:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1122-9. [PMID: 24361839 DOI: 10.1016/j.bbabio.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/04/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022]
Abstract
The Klebsiella pneumoniae genome contains genes for two putative flavin transferase enzymes (ApbE1 and ApbE2) that add FMN to protein Thr residues. ApbE1, but not ApbE2, has a periplasm-addressing signal sequence. The genome also contains genes for three target proteins with the Dxx(s/t)gAT flavinylation motif: two subunits of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), and a 99.5kDa protein, KPK_2907, with a previously unknown function. We show here that KPK_2907 is an active cytoplasmically-localized fumarate reductase. K. pneumoniae cells with an inactivated kpk_2907 gene lack cytoplasmic fumarate reductase activity, while retaining this activity in the membrane fraction. Complementation of the mutant strain with a kpk_2907-containing plasmid resulted in a complete recovery of cytoplasmic fumarate reductase activity. KPK_2907 produced in Escherichia coli cells contains 1mol/mol each of covalently bound FMN, noncovalently bound FMN and noncovalently bound FAD. Lesion in the ApbE1 gene in K. pneumoniae resulted in inactive Na(+)-NQR, but cytoplasmic fumarate reductase activity remained unchanged. On the contrary, lesion in the ApbE2 gene abolished the fumarate reductase but not the Na(+)-NQR activity. Both activities could be restored by transformation of the ApbE1- or ApbE2-deficient K. pneumoniae strains with plasmids containing the Vibrio cholerae apbE gene with or without the periplasm-directing signal sequence, respectively. Our data thus indicate that ApbE1 and ApbE2 bind FMN to Na(+)-NQR and fumarate reductase, respectively, and that, contrary to the presently accepted view, the FMN residues are on the periplasmic side of Na(+)-NQR. A new, "electron loop" mechanism is proposed for Na(+)-NQR, involving an electroneutral Na(+)/electron symport. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
15
|
Bertsova YV, Fadeeva MS, Kostyrko VA, Serebryakova MV, Baykov AA, Bogachev AV. Alternative pyrimidine biosynthesis protein ApbE is a flavin transferase catalyzing covalent attachment of FMN to a threonine residue in bacterial flavoproteins. J Biol Chem 2013; 288:14276-14286. [PMID: 23558683 DOI: 10.1074/jbc.m113.455402] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) contains two flavin residues as redox-active prosthetic groups attached by a phosphoester bond to threonine residues in subunits NqrB and NqrC. We demonstrate here that flavinylation of truncated Vibrio harveyi NqrC at Thr-229 in Escherichia coli cells requires the presence of a co-expressed Vibrio apbE gene. The apbE genes cluster with genes for Na(+)-NQR and other FMN-binding flavoproteins in bacterial genomes and encode proteins with previously unknown function. Experiments with isolated NqrC and ApbE proteins confirmed that ApbE is the only protein factor required for NqrC flavinylation and also indicated that the reaction is Mg(2+)-dependent and proceeds with FAD but not FMN. Inactivation of the apbE gene in Klebsiella pneumoniae, wherein the nqr operon and apbE are well separated in the chromosome, resulted in a complete loss of the quinone reductase activity of Na(+)-NQR, consistent with its dependence on covalently bound flavin. Our data thus identify ApbE as a novel modifying enzyme, flavin transferase.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Maria S Fadeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Vitaly A Kostyrko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
16
|
Verkhovsky MI, Bogachev AV, Pivtsov AV, Bertsova YV, Fedin MV, Bloch DA, Kulik LV. Sodium-dependent movement of covalently bound FMN residue(s) in Na(+)-translocating NADH:quinone oxidoreductase. Biochemistry 2012; 51:5414-21. [PMID: 22697411 DOI: 10.1021/bi300322n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a component of respiratory electron-transport chain of various bacteria generating redox-driven transmembrane electrochemical Na(+) potential. We found that the change in Na(+) concentration in the reaction medium has no effect on the thermodynamic properties of prosthetic groups of Na(+)-NQR from Vibrio harveyi, as was revealed by the anaerobic equilibrium redox titration of the enzyme's EPR spectra. On the other hand, the change in Na(+) concentration strongly alters the EPR spectral properties of the radical pair formed by the two anionic semiquinones of FMN residues bound to the NqrB and NqrC subunits (FMN(NqrB) and FMN(NqrC)). Using data obtained by pulse X- and Q-band EPR as well as by pulse ENDOR and ELDOR spectroscopy, the interspin distance between FMN(NqrB) and FMN(NqrC) was found to be 15.3 Å in the absence and 20.4 Å in the presence of Na(+), respectively. Thus, the distance between the covalently bound FMN residues can vary by about 5 Å upon changes in Na(+) concentration. Using these results, we propose a scheme of the sodium potential generation by Na(+)-NQR based on the redox- and sodium-dependent conformational changes in the enzyme.
Collapse
Affiliation(s)
- Michael I Verkhovsky
- Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
17
|
Gaytán I, Peña C, Núñez C, Córdova MS, Espín G, Galindo E. Azotobacter vinelandii lacking the Na+-NQR activity: a potential source for producing alginates with improved properties and at high yield. World J Microbiol Biotechnol 2012; 28:2731-40. [DOI: 10.1007/s11274-012-1084-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022]
|
18
|
Juárez O, Neehaul Y, Turk E, Chahboun N, DeMicco JM, Hellwig P, Barquera B. The role of glycine residues 140 and 141 of subunit B in the functional ubiquinone binding site of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J Biol Chem 2012; 287:25678-85. [PMID: 22645140 DOI: 10.1074/jbc.m112.366088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glycine 140 and glycine 141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues altered the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140 almost completely abolished the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na(+)-NQR with its electron acceptor, ubiquinone.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Neehaul Y, Juárez O, Barquera B, Hellwig P. Thermodynamic contribution to the regulation of electron transfer in the Na(+)-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 2012; 51:4072-7. [PMID: 22533880 DOI: 10.1021/bi300343u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is a fundamental enzyme of the oxidative phosphorylation metabolism and ionic homeostasis in several pathogenic and marine bacteria. To understand the mechanism that couples electron transfer with sodium translocation in Na(+)-NQR, the ion dependence of the redox potential of the individual cofactors was studied using a spectroelectrochemical approach. The redox potential of one of the FMN cofactors increased 90 mV in the presence of Na(+) or Li(+), compared to the redox potentials measured in the presence of other cations that are not transported by the enzyme, such as K(+), Rb(+), and NH(4)(+). This shift in redox potential of one FMN confirms the crucial role of the FMN anionic radicals in the Na(+) pumping mechanism and demonstrates that the control of the electron transfer rate has both kinetic (via conformational changes) and thermodynamic components.
Collapse
Affiliation(s)
- Yashvin Neehaul
- Laboratoire de spectroscopie vibrationnelle et electrochimie des biomolecules, Institut de Chimie, UMR 7177, Université de Strasbourg-CNRS, 67070 Strasbourg, France
| | | | | | | |
Collapse
|
20
|
Insights into the mechanism of electron transfer and sodium translocation of the Na(+)-pumping NADH:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1823-32. [PMID: 22465856 DOI: 10.1016/j.bbabio.2012.03.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
Abstract
Na(+)-NQR is a unique energy-transducing complex, widely distributed among marine and pathogenic bacteria. It converts the energy from the oxidation of NADH and the reduction of quinone into an electrochemical Na(+)-gradient that can provide energy for the cell. Na(+)-NQR is not homologous to any other respiratory protein but is closely related to the RNF complex. In this review we propose that sodium pumping in Na(+)-NQR is coupled to the redox reactions by a novel mechanism, which operates at multiple sites, is indirect and mediated by conformational changes of the protein. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
21
|
Fadeeva MS, Bertsova YV, Euro L, Bogachev AV. Cys377 residue in NqrF subunit confers Ag(+) sensitivity of Na+-translocating NADH:quinone oxidoreductase from Vibrio harveyi. BIOCHEMISTRY (MOSCOW) 2011; 76:186-95. [PMID: 21568851 DOI: 10.1134/s0006297911020040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a component of the respiratory chain of various bacteria that generates a redox-driven transmembrane electrochemical Na(+) potential. The Na(+)-NQR activity is known to be specifically inhibited by low concentrations of silver ions. Replacement of the conserved Cys377 residue with alanine in the NqrF subunit of Na(+)-NQR from Vibrio harveyi resulted in resistance of the enzyme to Ag(+) and to other heavy metal ions. Analysis of the catalytic activity also showed that the rate of electron input into the mutant Na(+)-NQR decreased by about 14-fold in comparison to the wild type enzyme, whereas all other properties of (NqrF)C377A Na(+)-NQR including its stability remained unaffected.
Collapse
Affiliation(s)
- M S Fadeeva
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | | | | |
Collapse
|
22
|
Fadeeva MS, Bertsova YV, Verkhovsky MI, Bogachev AV. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase. BIOCHEMISTRY (MOSCOW) 2011; 73:123-9. [DOI: 10.1134/s0006297908020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Meuric V, Rouillon A, Chandad F, Bonnaure-Mallet M. Putative respiratory chain of Porphyromonas gingivalis. Future Microbiol 2010; 5:717-34. [PMID: 20441545 DOI: 10.2217/fmb.10.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electron transfer chain in Porphyromonas gingivalis, or periodontopathogens, has not yet been characterized. P. gingivalis, a strict anaerobic bacteria and the second colonizer of the oral cavity, is considered to be a major causal agent involved in periodontal diseases. Primary colonizers create a favorable environment for P. gingivalis growth by decreasing oxygen pressure. Oxygen does not appear to be the final electron acceptor of the respiratory chain. Fumarate and cytochrome b have been implicated as major components of the respiratory activity. However, the P. gingivalis genome shows many other enzymes that could be implicated in aerobic or nitrite respiration. Using bioinformatic tools and literature studies of respiratory pathways, the ATP synthesis mechanism from the sodium cycle and nutrients metabolism, the putative respirasome of P. gingivalis has been proposed.
Collapse
Affiliation(s)
- Vincent Meuric
- Equipe de Microbiologie, UPRES-EA 1254, Université Européenne de Bretagne, Université de Rennes I, UFR Odontologie, Bâtiment 15, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | |
Collapse
|
24
|
Energy transducing redox steps of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 2010; 107:12505-10. [PMID: 20616050 DOI: 10.1073/pnas.1002866107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Na(+)-NQR is a unique respiratory enzyme that couples the free energy of electron transfer reactions to electrogenic pumping of sodium across the cell membrane. This enzyme is found in many marine and pathogenic bacteria where it plays an analogous role to the H(+)-pumping complex I. It has generally been assumed that the sodium pump of Na(+)-NQR operates on the basis of thermodynamic coupling between reduction of a single redox cofactor and the binding of sodium at a nearby site. In this study, we have defined the coupling to sodium translocation of individual steps in the redox reaction of Na(+)-NQR. Sodium uptake takes place in the reaction step in which an electron moves from the 2Fe-2S center to FMN(C), while the translocation of sodium across the membrane dielectric (and probably its release into the external medium) occurs when an electron moves from FMN(B) to riboflavin. This argues against a single-site coupling model because the redox steps that drive these two parts of the sodium pumping process do not have any redox cofactor in common. The significance of these results for the mechanism of coupling is discussed, and we proposed that Na(+)-NQR operates through a novel mechanism based on kinetic coupling, mediated by conformational changes.
Collapse
|
25
|
Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:738-46. [PMID: 20056102 DOI: 10.1016/j.bbabio.2009.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/17/2009] [Accepted: 12/24/2009] [Indexed: 11/20/2022]
Abstract
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) is a component of the respiratory chain of various bacteria. This enzyme is an analogous but not homologous counterpart of mitochondrial Complex I. Na+-NQR drives the same chemistry and also uses released energy to translocate ions across the membrane, but it pumps Na+ instead of H+. Most likely the mechanism of sodium pumping is quite different from that of proton pumping (for example, it could not accommodate the Grotthuss mechanism of ion movement); this is why the enzyme structure, subunits and prosthetic groups are completely special. This review summarizes modern knowledge on the structural and catalytic properties of bacterial Na+-translocating NADH:quinone oxidoreductases. The sequence of electron transfer through the enzyme cofactors and thermodynamic properties of those cofactors is discussed. The resolution of the intermediates of the catalytic cycle and localization of sodium-dependent steps are combined in a possible molecular mechanism of sodium transfer by the enzyme.
Collapse
|
26
|
Juárez O, Athearn K, Gillespie P, Barquera B. Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae involved in sodium translocation. Biochemistry 2009; 48:9516-24. [PMID: 19694431 DOI: 10.1021/bi900845y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae and many other marine and pathogenic bacteria possess a unique respiratory complex, the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR), which pumps Na(+) across the cell membrane using the energy released by the redox reaction between NADH and ubiquinone. To function as a selective sodium pump, Na(+)-NQR must contain structures that (1) allow the sodium ion to pass through the hydrophobic core of the membrane and (2) provide cation specificity to the translocation system. In other sodium-transporting proteins, the structures that carry out these roles frequently include aspartate and glutamate residues. The negative charge of these residues facilitates binding and translocation of sodium. In this study, we have analyzed mutants of acid residues located in the transmembrane helices of subunits B, D, and E of Na(+)-NQR. The results are consistent with the participation of seven of these residues in the translocation process of sodium. Mutations at NqrB-D397, NqrD-D133, and NqrE-E95 produced a decrease of approximately >or=10-fold in the apparent affinity of the enzyme for sodium (Km(app)(Na+)), which suggests that these residues may form part of a sodium-binding site. Mutation at other residues, including NqrB-E28, NqrB-E144, NqrB-E346, and NqrD-D88, had a strong effect on the quinone reductase activity of the enzyme and its sodium sensitivity, but a weaker effect on the apparent sodium affinity, consistent with a possible role in sodium conductance pathways.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
27
|
Bogachev AV, Kulik LV, Bloch DA, Bertsova YV, Fadeeva MS, Verkhovsky MI. Redox properties of the prosthetic groups of Na(+)-translocating nadh:quinone oxidoreductase. 1. Electron paramagnetic resonance study of the enzyme. Biochemistry 2009; 48:6291-8. [PMID: 19496621 DOI: 10.1021/bi900524m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Redox properties of all EPR-detectable prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from Vibrio harveyi were studied at pH 7.5 using cryo-EPR spectroelectrochemistry. Titration shows five redox transitions. One with E(m) = -275 mV belongs to the reduction of the [2Fe-2S] cluster, and the four others reflect redox transitions of flavin cofactors. Two transitions (E(m)(1) = -190 mV and E(m)(2) = -275 mV) originate from the formation of FMN anion radical, covalently bound to the NqrC subunit, and its subsequent reduction. The remaining two transitions arise from the two other flavin cofactors. A high potential (E(m) = -10 mV) transition corresponds to the reduction of riboflavin neutral radical, which is stable at rather high redox potentials. An E(m) = -130 mV transition reflects the formation of FMN anion radical from a flavin covalently bound to the NqrB subunit, which stays as a radical down to very low potentials. Taking into account the EPR-silent, two-electron transition of noncovalently bound FAD located in the NqrF subunit, there are four flavins in Na(+)-NQR all together. Defined by dipole-dipole magnetic interaction measurements, the interspin distance between the [2Fe-2S](+) cluster and the NqrB subunit-bound FMN anion radical is found to be 22.5 +/- 1.5 A, which means that for the functional electron transfer between these two centers another cofactor, most likely FMN bound to the NqrC subunit, should be located.
Collapse
Affiliation(s)
- Alexander V Bogachev
- Department of Molecular Energetics of Microorganisms, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Bogachev AV, Bloch DA, Bertsova YV, Verkhovsky MI. Redox properties of the prosthetic groups of Na(+)-translocating NADH:quinone oxidoreductase. 2. Study of the enzyme by optical spectroscopy. Biochemistry 2009; 48:6299-304. [PMID: 19496622 DOI: 10.1021/bi900525v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox titration of the electronic spectra of the prosthetic groups of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from Vibrio harveyi at different pH values showed five redox transitions corresponding to the four flavin cofactors of the enzyme and one additional transition reflecting oxidoreduction of the [2Fe-2S] cluster. The pH dependence of the measured midpoint redox potentials showed that the two-electron reduction of the FAD located in the NqrF subunit was coupled with the uptake of only one H(+). The one-electron reduction of neutral semiquinone of riboflavin and the formation of anion flavosemiquinone from the oxidized FMN bound to the NqrB subunit were not coupled to any proton uptake. The two sequential one-electron reductions of the FMN residue bound to the NqrC subunit showed pH-independent formation of anion radical in the first step and the formation of fully reduced flavin coupled to the uptake of one H(+) in the second step. All four flavins stayed in the anionic form in the fully reduced enzyme. None of the six redox transitions in Na(+)-NQR showed dependence of its midpoint redox potential on the concentration of sodium ions. A model of the sequence of electron transfer steps in the enzyme is suggested.
Collapse
Affiliation(s)
- Alexander V Bogachev
- Department of Molecular Energetics of Microorganisms, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | | | | |
Collapse
|
29
|
Juárez O, Morgan JE, Barquera B. The Electron Transfer Pathway of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae. J Biol Chem 2009; 284:8963-72. [PMID: 19155212 PMCID: PMC2659253 DOI: 10.1074/jbc.m809395200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/12/2009] [Indexed: 12/16/2022] Open
Abstract
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the only respiratory enzyme that operates as a Na(+) pump. This redox-driven Na(+) pump is amenable to experimental approaches not available for H(+) pumps, providing an excellent system for mechanistic studies of ion translocation. An understanding of the internal electron transfer steps and their Na(+) dependence is an essential prerequisite for such studies. To this end, we analyzed the reduction kinetics of the wild type Na(+)-NQR, as well as site-directed mutants of the enzyme, which lack specific cofactors. NADH and ubiquinol were used as reductants in separate experiments, and a full spectrum UV-visible stopped flow kinetic method was employed. The results make it possible to define the complete sequence of redox carriers in the electrons transfer pathway through the enzyme. Electrons flow from NADH to quinone through the FAD in subunit F, the 2Fe-2S center, the FMN in subunit C, the FMN in subunit B, and finally riboflavin. The reduction of the FMN(C) to its anionic flavosemiquinone state is the first Na(+)-dependent process, suggesting that reduction of this site is linked to Na(+) uptake. During the reduction reaction, two FMNs are transformed to their anionic flavosemiquinone in a single kinetic step. Subsequently, FMN(C) is converted to the flavohydroquinone, accounting for the single anionic flavosemiquinone radical in the fully reduced enzyme. A model of the electron transfer steps in the catalytic cycle of Na(+)-NQR is presented to account for the kinetic and spectroscopic data.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | | | | |
Collapse
|
30
|
Schmidt S, Biegel E, Müller V. The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:691-6. [PMID: 19167341 DOI: 10.1016/j.bbabio.2008.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/15/2022]
Abstract
The acetogenic bacterium Acetobacterium woodii uses a transmembrane electrochemical sodium ion potential for bioenergetic reactions. A primary sodium ion potential is established during carbonate (acetogenesis) as well as caffeate respiration. The electrogenic Na(+) pump connected to the Wood-Ljungdahl pathway (acetogenesis) still remains to be identified. The pathway of caffeate reduction with hydrogen as electron donor was investigated and the only membrane-bound activity was found to be a ferredoxin-dependent NAD(+) reduction. This exergonic electron transfer reaction may be catalyzed by the membrane-bound Rnf complex that was discovered recently and is suggested to couple exergonic electron transfer from ferredoxin to NAD(+) to the vectorial transport of Na(+) across the cytoplasmic membrane. Rnf may also be involved in acetogenesis. The electrochemical sodium ion potential thus generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. The ATP synthase is a member of the F(1)F(O) class of enzymes but has an unusual and exceptional feature. Its membrane-embedded rotor is a hybrid made of F(O) and V(O)-like subunits in a stoichiometry of 9:1. This stoichiometry is apparently not variable with the growth conditions. The structure and function of the Rnf complex and the Na(+) F(1)F(O) ATP synthase as key elements of the Na(+) cycle in A. woodii are discussed.
Collapse
Affiliation(s)
- Silke Schmidt
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
31
|
Núñez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G. The Na+-translocating NADH : ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology (Reading) 2009; 155:249-256. [DOI: 10.1099/mic.0.022533-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Azotobacter vinelandii is a nitrogen-fixing soil bacterium that produces the exopolysaccharide alginate. In this report we describe the isolation and characterization of A. vinelandii strain GG4, which carries an nqrE : : Tn5 mutation resulting in alginate overproduction. The nqrE gene encodes a subunit of the Na+-translocating NADH : ubiquinone oxidoreductase (Na+-NQR). As expected, Na+-NQR activity was abolished in mutant GG4. When this strain was complemented with the nqrEF genes this activity was restored and alginate production was reduced to wild-type levels. Na+-NQR may be the main sodium pump of A. vinelandii under the conditions tested (∼2 mM Na+) since no Na+/H+-antiporter activity was detected. Collectively our results indicate that in A. vinelandii the lack of Na+-NQR activity caused the absence of a transmembrane Na+ gradient and an increase in alginate production.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alexander V. Bogachev
- Department of Molecular Energetics of Microorganisms, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Gabriel Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Isaac Tello
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
32
|
Bogachev AV, Belevich NP, Bertsova YV, Verkhovsky MI. Primary steps of the Na+-translocating NADH:ubiquinone oxidoreductase catalytic cycle resolved by the ultrafast freeze-quench approach. J Biol Chem 2008; 284:5533-8. [PMID: 19117949 DOI: 10.1074/jbc.m808984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR) is a component of respiratory chain of various bacteria, and it generates a redox-driven transmembrane electrochemical Na(+) potential. Primary steps of the catalytic cycle of Na(+)-NQR from Vibrio harveyi were followed by the ultrafast freeze-quench approach in combination with conventional stopped-flow technique. The obtained sequence of events includes NADH binding ( approximately 1.5 x 10(7) m(-1) s(-1)), hydride ion transfer from NADH to FAD ( approximately 3.5 x 10(3) s(-1)), and partial electron separation and formation of equivalent fractions of reduced 2Fe-2S cluster and neutral semiquinone of FAD ( approximately 0.97 x 10(3) s(-1)). In the last step, a quasi-equilibrium is approached between the two states of FAD: two-electron reduced (50%) and one-electron reduced (the other 50%) species. The latter, neutral semiquinone of FAD, shares the second electron with the 2Fe-2S center. The transient midpoint redox potentials for the cofactors obtained during the fast kinetics measurements are very different from ones achieved during equilibrium redox titration and show that the functional states of the enzyme realized during its turning over cannot be modeled by the equilibrium approach.
Collapse
Affiliation(s)
- Alexander V Bogachev
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | | | | |
Collapse
|
33
|
Juárez O, Nilges MJ, Gillespie P, Cotton J, Barquera B. Riboflavin is an active redox cofactor in the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J Biol Chem 2008; 283:33162-7. [PMID: 18832377 DOI: 10.1074/jbc.m806913200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR.
Collapse
Affiliation(s)
- Oscar Juárez
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
34
|
Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S. Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 2008; 1125:137-46. [PMID: 18378592 DOI: 10.1196/annals.1419.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acetogens use the Wood-Ljungdahl pathway for reduction of carbon dioxide to acetate. This pathway not only allows reoxidation of reducing equivalents during heterotrophic growth but also supports chemolithoautotrophic growth on H(2) + CO(2). The latter argues for this pathway being a source for net energy conservation, but the mechanism involved remains unknown. In addition to CO(2), acetogens can use alternative electron acceptors, such as nitrate or caffeate. Caffeate respiration in the model acetogen Acetobacterium woodii is coupled to energy conservation via a chemiosmotic mechanism, with Na(+) as coupling ion. The pathway and its bioenergetics were solved in some detail very recently. This review focuses on the regulation of caffeate respiration, describes the enyzmes involved, summarizes the evidence for a potential Na(+)-translocating ferredoxin:NAD(+)-oxidoreductase (Rnf complex) as a new coupling site, and hypothesizes on the role of this Rnf complex in the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
35
|
Fadeeva MS, Núñez C, Bertsova YV, Espín G, Bogachev AV. Catalytic properties of Na+-translocating NADH:quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii. FEMS Microbiol Lett 2008; 279:116-23. [PMID: 18300384 DOI: 10.1111/j.1574-6968.2007.01015.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The catalytic properties of sodium-translocating NADH:quinone oxidoreductases (Na+-NQRs) from the marine bacterium Vibrio harveyi, the enterobacterium Klebsiella pneumoniae, and the soil microorganism Azotobacter vinelandii have been comparatively analyzed. It is shown that these enzymes drastically differ in their affinity to sodium ions. The enzymes also possess different sensitivity to inhibitors. Na+-NQR from A. vinelandii is not sensitive to low 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO) concentrations, while Na+-NQR from K. pneumoniae is fully resistant to either Ag+ or N-ethylmaleimide. All the Na+-NQR-type enzymes are sensitive to diphenyliodonium, which is shown to modify the noncovalently bound FAD of the enzyme.
Collapse
Affiliation(s)
- Maria S Fadeeva
- Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
36
|
Fadeeva MS, Yakovtseva EA, Belevich GA, Bertsova YV, Bogachev AV. Regulation of expression of Na+ -translocating NADH:quinone oxidoreductase genes in Vibrio harveyi and Klebsiella pneumoniae. Arch Microbiol 2007; 188:341-8. [PMID: 17551713 DOI: 10.1007/s00203-007-0254-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/16/2007] [Accepted: 04/28/2007] [Indexed: 10/23/2022]
Abstract
The expression of genes encoding sodium-translocating NADH:quinone oxidoreductase (Na(+)-NQR) was studied in the marine bacterium Vibrio harveyi and in the enterobacterium Klebsiella pneumoniae. It has been shown that such parameters as NaCl concentration, pH value, and presence of an uncoupler in the growth media do not influence significantly the level of nqr expression. However, nqr expression depends on the growth substrates used by these bacteria. Na(+)-NQR is highly repressed in V. harveyi during anaerobic growth, and nqr expression is modulated by electron acceptors and values of their redox potentials. The latter effect was shown to be independent of the ArcAB regulatory system.
Collapse
Affiliation(s)
- Maria S Fadeeva
- Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
37
|
Kerscher S, Dröse S, Zickermann V, Brandt U. The three families of respiratory NADH dehydrogenases. Results Probl Cell Differ 2007; 45:185-222. [PMID: 17514372 DOI: 10.1007/400_2007_028] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.
Collapse
Affiliation(s)
- Stefan Kerscher
- Molecular Bioenergetics Group, Centre of Excellence Macromolecular Complexes, Johann Wolfgang Goethe-Universität, 60590, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
38
|
Duffy EB, Barquera B. Membrane topology mapping of the Na+-pumping NADH: quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 2006; 188:8343-51. [PMID: 17041063 PMCID: PMC1698230 DOI: 10.1128/jb.01383-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/25/2006] [Indexed: 11/20/2022] Open
Abstract
The membrane topologies of the six subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae were determined by a combination of topology prediction algorithms and the construction of C-terminal fusions. Fusion expression vectors contained either bacterial alkaline phosphatase (phoA) or green fluorescent protein (gfp) genes as reporters of periplasmic and cytoplasmic localization, respectively. A majority of the topology prediction algorithms did not predict any transmembrane helices for NqrA. A lack of PhoA activity when fused to the C terminus of NqrA and the observed fluorescence of the green fluorescent protein C-terminal fusion confirm that this subunit is localized to the cytoplasmic side of the membrane. Analysis of four PhoA fusions for NqrB indicates that this subunit has nine transmembrane helices and that residue T236, the binding site for flavin mononucleotide (FMN), resides in the cytoplasm. Three fusions confirm that the topology of NqrC consists of two transmembrane helices with the FMN binding site at residue T225 on the cytoplasmic side. Fusion analysis of NqrD and NqrE showed almost mirror image topologies, each consisting of six transmembrane helices; the results for NqrD and NqrE are consistent with the topologies of Escherichia coli homologs YdgQ and YdgL, respectively. The NADH, flavin adenine dinucleotide, and Fe-S center binding sites of NqrF were localized to the cytoplasm. The determination of the topologies of the subunits of Na+-NQR provides valuable insights into the location of cofactors and identifies targets for mutagenesis to characterize this enzyme in more detail. The finding that all the redox cofactors are localized to the cytoplasmic side of the membrane is discussed.
Collapse
Affiliation(s)
- Ellen B Duffy
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, NY 12180, USA
| | | |
Collapse
|
39
|
Bogachev AV, Verkhovsky MI. Na(+)-Translocating NADH:quinone oxidoreductase: progress achieved and prospects of investigations. BIOCHEMISTRY (MOSCOW) 2005; 70:143-9. [PMID: 15807651 DOI: 10.1007/s10541-005-0093-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structural and catalytic properties of bacterial Na+-translocating NADH:quinone oxidoreductases are briefly described. Special attention is given to studies on kinetics of the enzyme interaction with NADH and the role of sodium ions in this process. Based on the existing data, possible model mechanisms of sodium transfer by Na+-translocating NADH:quinone oxidoreductase are proposed.
Collapse
Affiliation(s)
- A V Bogachev
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
40
|
Bertsova YV, Bogachev AV. The origin of the sodium-dependent NADH oxidation by the respiratory chain ofKlebsiella pneumoniae. FEBS Lett 2004; 563:207-12. [PMID: 15063750 DOI: 10.1016/s0014-5793(04)00312-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/25/2004] [Accepted: 03/02/2004] [Indexed: 11/21/2022]
Abstract
Properties of Klebsiella pneumoniae respiratory chain enzymes catalyzing NADH oxidation have been studied. Using constructed K. pneumoniae mutant strains, it was shown that three enzymes belonging to different families of NADH:quinone oxidoreductases operate in this bacterium. The NDH-2-type enzyme is not coupled with energy conservation, the NDH-1-type enzyme is a primary proton pump, and the NQR-type enzyme is homologous to the sodium-motive NADH dehydrogenase of Vibrio and is shown to be a primary Na(+) pump. It is concluded that the NQR-type enzyme, not the NDH-1-type enzyme, catalyzes sodium-dependent NADH oxidation in K. pneumoniae.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | |
Collapse
|
41
|
Türk K, Puhar A, Neese F, Bill E, Fritz G, Steuber J. NADH oxidation by the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae: functional role of the NqrF subunit. J Biol Chem 2004; 279:21349-55. [PMID: 15010474 DOI: 10.1074/jbc.m311692200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae is a six subunit enzyme containing four flavins and a single motif for the binding of a Fe-S cluster on its NqrF subunit. This study reports the production of a soluble variant of NqrF (NqrF') and its individual flavin and Fe-S-carrying domains using V. cholerae or Escherichia coli as expression hosts. NqrF' and the flavin domain each contain 1 mol of FAD/mol of enzyme and exhibit high NADH oxidation activity (20,000 micromol min(-1) mg(-1)). EPR, visible absorption, and circular dichroism spectroscopy indicate that the Fe-S cluster in NqrF' and its Fe-S domain is related to 2Fe ferredoxins of the vertebrate-type. The addition of NADH to NqrF' results in the formation of a neutral flavosemiquinone and a partial reduction of the Fe-S cluster. The NqrF subunit harbors the active site of NADH oxidation and acts as a converter between the hydride donor NADH and subsequent one-electron reaction steps in the Na(+)-translocating NADH:quinone oxidoreductase complex. The observed electron transfer NADH --> FAD --> [2Fe-2S] in NqrF requires positioning of the FAD and the Fe-S cluster in close proximity in accordance with a structural model of the subunit.
Collapse
Affiliation(s)
- Karin Türk
- Mikrobiologisches Institut der Eidgenössischen Technischen Hochschule, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Dimroth P, Cook GM. Bacterial Na+- or H+-coupled ATP Synthases Operating at Low Electrochemical Potential. Adv Microb Physiol 2004; 49:175-218. [PMID: 15518831 DOI: 10.1016/s0065-2911(04)49004-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In certain strictly anaerobic bacteria, the energy for growth is derived entirely from a decarboxylation reaction. A prominent example is Propionigenium modestum, which converts the free energy of the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA (DeltaG degrees =-20.6 kJ/mol) into an electrochemical Na(+) ion gradient across the membrane. This energy source is used as a driving force for ATP synthesis by a Na(+)-translocating F(1)F(0) ATP synthase. According to bioenergetic considerations, approximately four decarboxylation events are necessary to support the synthesis of one ATP. This unique feature of using Na(+) instead of H(+) as the coupling ion has made this ATP synthase the paradigm to study the ion pathway across the membrane and its relationship to rotational catalysis. The membrane potential (Deltapsi) is the key driving force to convert ion translocation through the F(0) motor components into torque. The resulting rotation elicits conformational changes at the catalytic sites of the peripheral F(1) domain which are instrumental for ATP synthesis. Alkaliphilic bacteria also face the challenge of synthesizing ATP at a low electrochemical potential, but for entirely different reasons. Here, the low potential is not the result of insufficient energy input from substrate degradation, but of an inverse pH gradient. This is a consequence of the high environmental pH where these bacteria grow and the necessity to keep the intracellular pH in the neutral range. In spite of this unfavorable bioenergetic condition, ATP synthesis in alkaliphilic bacteria is coupled to the proton motive force (DeltamuH(+)) and not to the much higher sodium motive force (DeltamuNa(+)). A peculiar feature of the ATP synthases of alkaliphiles is the specific inhibition of their ATP hydrolysis activity. This inhibition appears to be an essential strategy for survival at high external pH: if the enzyme were to operate as an ATPase, protons would be pumped outwards to counteract the low DeltamuH(+), thus wasting valuable ATP and compromising acidification of the cytoplasm at alkaline pH.
Collapse
Affiliation(s)
- Peter Dimroth
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
43
|
Bogachev AV, Bertsova YV, Ruuge EK, Wikström M, Verkhovsky MI. Kinetics of the spectral changes during reduction of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:113-20. [PMID: 12460668 DOI: 10.1016/s0005-2728(02)00342-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two radical signals with different line widths are seen in the Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi by EPR spectroscopy. The first radical is observed in the oxidized enzyme, and is assigned as a neutral flavosemiquinone. The second radical is observed in the reduced enzyme and is assigned to be the anionic form of flavosemiquinone. The time course of Na+-NQR reduction by NADH, as monitored by stopped-flow optical spectroscopy, shows three distinct phases, the spectra of which suggest that they correspond to the reduction of three different flavin species. The first phase is fast both in the presence and absence of sodium, and is assigned to reduction of FAD to FADH2 at the NADH dehydrogenating site. The rates of the other two phases are strongly dependent on sodium concentration, and these phases are attributed to reduction of two covalently bound FMN's. Combination of the optical and EPR data suggests that a neutral FMN flavosemiquinone preexists in the oxidized enzyme, and that it is reduced to the fully reduced flavin by NADH. The other FMN moiety is initially oxidized, and is reduced to the anionic flavosemiquinone. One-electron transitions of two discrete flavin species are thus assigned as sodium-dependent steps in the catalytic cycle of Na+-NQR.
Collapse
Affiliation(s)
- Alexander V Bogachev
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia
| | | | | | | | | |
Collapse
|
44
|
Barquera B, Zhou W, Morgan JE, Gennis RB. Riboflavin is a component of the Na+-pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci U S A 2002; 99:10322-4. [PMID: 12122213 PMCID: PMC124912 DOI: 10.1073/pnas.162361299] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavins are cofactors in many electron-transfer enzymes. Typically, two types of flavins perform this role: 5'-phosphoriboflavin (FMN) and flavin-adenine dinucleotide (FAD). Both of these are riboflavin derivatives, but riboflavin itself has never been reported to be an enzyme-bound component. We now report that tightly bound riboflavin is a component of the NADH-driven sodium pump from Vibrio cholerae.
Collapse
Affiliation(s)
- Blanca Barquera
- Department of Biochemistry, University of Illinois, 600 South Mathews Street, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
45
|
Schmid M, Vorburger T, Pos KM, Dimroth P. Role of conserved residues within helices IV and VIII of the oxaloacetate decarboxylase beta subunit in the energy coupling mechanism of the Na+ pump. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2997-3004. [PMID: 12071964 DOI: 10.1046/j.1432-1033.2002.02983.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane-bound beta subunit of the oxaloacetate decarboxylase Na+ pump of Klebsiella pneumoniae catalyzes the decarboxylation of enzyme-bound biotin. This event is coupled to the transport of 2 Na+ ions into the periplasm and consumes a periplasmically derived proton. The connecting fragment IIIa and transmembrane helices IV and VIII of the beta subunit are highly conserved, harboring residues D203, Y229, N373, G377, S382, and R389 that play a profound role in catalysis. We report here detailed kinetic analyses of the wild-type enzyme and the beta subunit mutants N373D, N373L, S382A, S382D, S382T, R389A, and R389D. In these studies, pH profiles, Na+ binding affinities, Hill coefficients, Vmax values and inhibition by Na+ was determined. A prominent result is the complete lack of oxaloacetate decarboxylase activity of the S382A mutant at Na+ concentrations up to 20 mm and recovery of significant activities at elevated Na+ concentrations (KNa approximately 400 mm at pH 6.0), where the wild-type enzyme is almost completely inhibited. These results indicate impaired Na+ binding to the S382 including site in the S382A mutant. Oxaloacetate decarboxylation by the S382A mutant at high Na+ concentrations is uncoupled from the vectorial events of Na+ or H+ translocation across the membrane. Based on all data with the mutant enzymes we propose a coupling mechanism, which includes Na+ binding to center I contributed by D203 (region IIIa) and N373 (helix VIII) and center II contributed by Y229 (helix IV) and S382 (helix VIII). These centers are exposed to the cytoplasmic surface in the carboxybiotin-bound state of the beta subunit and become exposed to the periplasmic surface after decarboxylation of this compound. During the countertransport of 2 Na+ and 1 H+ Y229 of center II switches between the protonated and deprotonated Na+-bound state.
Collapse
Affiliation(s)
- Markus Schmid
- Mikrobiologisches Institut der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
46
|
Hayashi M, Shibata N, Nakayama Y, Yoshikawa K, Unemoto T. Korormicin insensitivity in Vibrio alginolyticus is correlated with a single point mutation of Gly-140 in the NqrB subunit of the Na(+)-translocating NADH-quinone reductase. Arch Biochem Biophys 2002; 401:173-7. [PMID: 12054467 DOI: 10.1016/s0003-9861(02)00007-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Na(+)-translocating NADH-quinone reductase (NQR) from the marine Vibrio alginolyticus is strongly inhibited by a new antibiotic korormicin. Korormicin specifically inhibits the Na(+)-dependent reaction of the NQR complex and acts as a purely non-competitive inhibitor for Q-1 with the inhibitor constant of 82 pM. Korormicin-resistant mutants were isolated from V. alginolyticus and the NQR complex was purified from a mutant KR2. Similar to 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), korormicin acted as a purely noncompetitive inhibitor to the NQR complex from the mutant KR2, but the inhibitor constant increased to 8 microM, which is 10(5)-fold higher than that of the wild-type NQR complex. The inhibitor constant of HQNO, however, was only slightly affected by the acquisition of korormicin resistance. The spontaneous mutation was caused by a single mutation of G-422 to T-422 in the nucleotide sequence of the nqrB gene, which resulted in the conversion of Gly-140 to Val-140. Thus, Gly-140 seems to play an important role for the binding of korormicin to the NqrB subunit. The fact that korormicin is a purely noncompetitive inhibitor for Q-1 strongly supports the presence of one of Q-1 binding sites in the NqrB subunit, which also has a covalently bound FMN at Thr-235.
Collapse
Affiliation(s)
- Maki Hayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | |
Collapse
|
47
|
Steuber J, Rufibach M, Fritz G, Neese F, Dimroth P. Inactivation of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus by reactive oxygen species. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1287-92. [PMID: 11856363 DOI: 10.1046/j.1432-1033.2002.02770.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio alginolyticus was inactivated by reactive oxygen species. Highest Na+-NQR activity was observed in anaerobically prepared membranes that exhibited 1:1 coupling of NADH oxidation and Q reduction activities (1.6 U x mg(-1)). Optical and EPR spectroscopy documented the presence of b-type cytochromes, a [2Fe-2S] cluster and an organic radical signal in anaerobically prepared membranes from V. alginolyticus. It is shown that the [2Fe-2S] cluster previously assigned to the Na+-NQR originates from the succinate dehydrogenase or the related enzyme fumarate reductase.
Collapse
Affiliation(s)
- Julia Steuber
- Mikrobiologisches Institut der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Steuber J. The Na+-translocating NADH:quinone oxidoreductase (NDH I) from Klebsiella pneumoniae and Escherichia coli: implications for the mechanism of redox-driven cation translocation by complex I. J Bioenerg Biomembr 2001; 33:179-86. [PMID: 11695827 DOI: 10.1023/a:1010774701327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eukaryotic complex I integrated into the respiratory chain transports at least 4 H+ per NADH oxidized. Recent results indicate that the cation selectivity is altered to Na+ in complex I (NDH I) isolated from the enterobacteria Escherichia coli and Klebsiella pneumoniae. A sequence analysis illustrates the characteristic differences of the enterobacterial, Na+-translocating NDH I compared to the H+-translocating complex I from mitochondria. Special attention is given to the membranous NuoL (ND5, Nqo12) subunits that possess striking sequence similarities to secondary Na+/H+ antiporters and are proposed to participate in Na+ transport. A model of redox-linked Na+ (or H+) transport by complex I is discussed based on the ion-pair formation of a negatively charged ubisemiquinone anion with a positively charged Na+ (or H+).
Collapse
Affiliation(s)
- J Steuber
- Mikrobiologisches Institut der Eidgenössischen Technishen Hochschule, Zurich, Switzerland.
| |
Collapse
|
49
|
Abstract
The ability of the bacterium to use sodium in bioenergetic processes appears to play a key role in both the environmental and pathogenic phases of Vibrio cholerae. Aquatic environments, including fresh, brackish, and coastal waters, are an important factor in the transmission of cholera and an autochthonous source. The organism is considered to be halophilic and has a strict requirement for Na(+) for growth. Furthermore, expression of motility and virulence factors of V. cholerae is intimately linked to sodium bioenergetics and to each other. Several lines of evidence indicated that the activity of the flagellum of V. cholerae might have an impact on virulence gene regulation. As the V. cholerae flagellum is sodium-driven and the Na(+)-NQR enzyme is known to create a sodium motive force across the bacterial membrane, it was recently suggested that the increased toxT expression observed in a nqr-negative strain is mediated by affecting flagella activity. It was suggested that the V. cholerae flagellum might respond to changes in membrane potential and the resulting changes in flagellar rotation might serve as a signal for virulence gene expression. However, we recently demonstrated that although the flagellum of V. cholerae is not required for the effects of ionophores on virulence gene expression, changes in the sodium chemical potential are sensed and thus alternative mechanisms, perhaps involving the TcpP/H proteins, for the detection of these conditions must exist. Analyzing the underlying mechanisms by which bacteria respond to changes in the environment, such as their ability to monitor the level of membrane potential, will probably reveal complex interplays between basic physiological processes and virulence factor expression in a variety of pathogenic species.
Collapse
Affiliation(s)
- C C Häse
- Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
50
|
Steuber J. Na(+) translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:45-56. [PMID: 11248188 DOI: 10.1016/s0005-2728(00)00276-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current knowledge on the Na(+)-translocating NADH:ubiquinone oxidoreductase of the Na(+)-NQR type from Vibrio alginolyticus, and on Na(+) transport by the electrogenic NADH:Q oxidoreductases from Escherichia coli and Klebsiella pneumoniae (complex I, or NDH-I) is summarized. A general mode of redox-linked Na(+) transport by NADH:Q oxidoreductases is proposed that is based on the electrostatic attraction of a positively charged Na(+) towards a negatively charged, enzyme-bound ubisemiquinone anion in a medium of low dielectricity. A structural model of the [2Fe-2S]- and FAD-carrying NqrF subunit of the Na(+)-NQR from V. alginolyticus based on ferredoxin and ferredoxin:NADP(+) oxidoreductase suggests that a direct participation of the Fe/S center in Na(+) transport is rather unlikely. A ubisemiquinone-dependent mechanism of Na(+) translocation is proposed that results in the transport of two Na(+) ions per two electrons transferred. Whereas this stoichiometry of the pump is in accordance with in vivo determinations of Na(+) transport by the respiratory chain of V. alginolyticus, higher (Na(+) or H(+)) transport stoichiometries are expected for complex I, suggesting the presence of a second coupling site.
Collapse
Affiliation(s)
- J Steuber
- Mikrobiologisches Institut der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Schmelzbergstr. 7, CH-8092, Zürich, Switzerland.
| |
Collapse
|