1
|
J Slater M, E Clarke B. Section Review Anti-infectives: Developments in viral hepatitis during 1995. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.8.739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
|
3
|
Du GX, Hou LH, Guan RB, Tong YG, Wang HT. Establishment of a simple assay in vitro for hepatitis C virus NS3 serine protease based on recombinant substrate and single-chain protease. World J Gastroenterol 2002; 8:1088-93. [PMID: 12439931 PMCID: PMC4656386 DOI: 10.3748/wjg.v8.i6.1088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 08/01/2002] [Accepted: 08/09/2002] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a simple and convenient assay in vitro for the Hepatitis C virus NS3 serine protease based on the recombinant protease and substrate, and to evaluate its feasibility in screening the enzyme inhibitors. METHODS Based on the crystallographic structure of hepatitis C virus (HCV) serine protease, a novel single-chain serine protease was designed, in which the central sequence of cofactor NS4A was linked to the N-terminus of NS3 serine protease domain via a flexible linker GSGS. The fusion gene was obtained by two-step PCR that was carried out with three primers and then cloned into the prokaryotic expression vector pQE30, and the recombinant clone was verified by DNA sequencing. The single-chain recombinant protease was expressed when the E.coli was induced with IPTG and the expression conditions were optimized to produce large amount of soluble protease. The recombinant substrate NS5ab that covers the cleavage point NS5A/B was also expressed in E.coli. Both of the protease and substrate were purified by using Ni-NTA agarose metal affinity resin, then they were mixed together in a specific buffer, and the mixture was analyzed by SDS-PAGE. The cleavage system was used to evaluate some compounds for their inhibitory activity on serine protease. RESULTS The single-chain recombinant protease was over-expressed as soluble protein when the E.coli was induced at a low dosage of IPTG (0.2 mM) and cultured at a low temperature (15 degrees ). The protease was purified by using Ni-NTA agarose metal affinity resin (the purity is over 95 %). The recombinant substrate NS5ab was expressed in an insoluble form and could refold successfully after purification and dialysis. A simple and convenient assay in vitro was established, in which the purified single-chain serine protease could cleave the recombinant substrate NS5ab into two fragments that were visualized by SDS-PAGE. PMSF had an effect on inhibiting activity of serine protease, while EDTA had not. CONCLUSION A simple and convenient assay in vitro for hepatitis C virus NS3 serine protease is based on recombinant substrate NS5ab and single-chain serine protease. This assay can be used in screening of enzyme inhibitors.
Collapse
Affiliation(s)
- Gui-Xin Du
- Department of Applied Molecular Biology, Institute of Microbiology and Epidemiology, Fengtai, Beijing 100071, China.
| | | | | | | | | |
Collapse
|
4
|
Babé LM, Linnevers CJ, Schmidt BF. Production of active mammalian and viral proteases in bacterial expression systems. Biotechnol Genet Eng Rev 2001; 17:213-52. [PMID: 11255667 DOI: 10.1080/02648725.2000.10647993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- L M Babé
- Axys Pharmaceuticals Inc., 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
5
|
Huang Y, Uchiyama Y, Fujimura T, Kanamori H, Doi T, Takamizawa A, Hamakubo T, Kodama T. A human hepatoma cell line expressing hepatitis c virus nonstructural proteins tightly regulated by tetracycline. Biochem Biophys Res Commun 2001; 281:732-40. [PMID: 11237719 DOI: 10.1006/bbrc.2001.4424] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonstructural (NS) proteins of hepatitis C virus (HCV) play major roles in viral replication and the pathogenesis of liver diseases. Current studies on antiviral strategies targeting these proteins have been hampered by the lack of efficient cell culture systems. Combining tetracycline-regulated gene expressing system and enhanced green fluorescent protein (EGFP), we generated a human hepatoma cell line inducibly expressing the HCV NS proteins. This cell line exhibited high induction of a full NS transcript ( approximately 7 kb). In the absence of tetracycline, NS proteins 3, 4A, and 5A of mature sizes were detected by immunoblot analysis and the induction of NS proteins 3 to 5B are confirmed by immunofluorescent staining. Using DNA microarray analysis, we characterized the changes in mRNA expression profile of 6416 genes and identified several genes, whose mRNAs are specifically upregulated by the induction of NS proteins. This cell line provides a unique in vitro hepatoma cell system for the investigation of structural and functional properties of HCV NS proteins.
Collapse
Affiliation(s)
- Y Huang
- Department of Molecular Biology and Medicine, RCAST, University of Tokyo, 4-6-1 Komaba, Tokyo, Meguro-ku, 153-8904, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hwang JS, Yamada K, Honda A, Nakade K, Ishihama A. Expression of functional influenza virus RNA polymerase in the methylotrophic yeast Pichia pastoris. J Virol 2000; 74:4074-84. [PMID: 10756019 PMCID: PMC111921 DOI: 10.1128/jvi.74.9.4074-4084.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus RNA polymerase with the subunit composition PB1-PB2-PA is a multifunctional enzyme with the activities of both synthesis and cleavage of RNA and is involved in both transcription and replication of the viral genome. In order to produce large amounts of the functional viral RNA polymerase sufficient for analysis of its structure-function relationships, the cDNAs for RNA segments 1, 2, and 3 of influenza virus A/PR/8, each under independent control of the alcohol oxidase gene promoter, were integrated into the chromosome of the methylotrophic yeast Pichia pastoris. Simultaneous expression of all three P proteins in the yeast P. pastoris was achieved by the addition of methanol. To purify the P protein complexes, a sequence coding for a histidine tag was added to the PB2 protein gene at its N terminus. Starting from the induced P. pastoris cell lysate, we partially purified a 3P complex by Ni(2+)-agarose affinity column chromatography. The 3P complex showed influenza virus model RNA-directed and ApG-primed RNA synthesis in vitro but was virtually inactive without addition of template or primer. The kinetic properties of model template-directed RNA synthesis and the requirements for template sequence were analyzed using the 3P complex. Furthermore, the 3P complex showed capped RNA-primed RNA synthesis. Thus, we conclude that functional influenza virus RNA polymerase with the catalytic properties of a transcriptase is formed in the methylotrophic yeast P. pastoris.
Collapse
Affiliation(s)
- J S Hwang
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
7
|
Abstract
The family Flaviviridae contains three genera: Hepacivirus, Flavivirus, and Pestivirus. Worldwide, more than 170 million people are chronically infected with Hepatitis C virus and are at risk of developing cirrhosis and/or liver cancer. In addition, infections with arthropod-borne flaviviruses (such as dengue fever, Japanese encephalitis, tick-borne encephalitis, St. Louis encephalitis, Murray Valley encephalitis, West Nile, and yellow fever viruses) are emerging throughout the world. The pestiviruses have a serious impact on livestock. Unfortunately, no specific antiviral therapy is available for the treatment or the prevention of infections with members of the Flaviviridae. Ongoing research has identified possible targets for inhibition, including binding of the virus to the cell, uptake of the virus into the cell, the internal ribosome entry site of hepaciviruses and pestiviruses, the capping mechanism of flaviviruses, the viral proteases, the viral RNA-dependent RNA polymerase, and the viral helicase. In light of recent developments, the prevalence of infections caused by these viruses, the disease spectrum, and the impact of infections, different strategies that could be pursued to specifically inhibit viral targets and animal models that are available to study the pathogenesis and antiviral strategies are reviewed.
Collapse
|
8
|
Leyssen P, De Clercq E, Neyts J. Perspectives for the treatment of infections with Flaviviridae. Clin Microbiol Rev 2000; 13:67-82, table of contents. [PMID: 10627492 PMCID: PMC88934 DOI: 10.1128/cmr.13.1.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The family Flaviviridae contains three genera: Hepacivirus, Flavivirus, and Pestivirus. Worldwide, more than 170 million people are chronically infected with Hepatitis C virus and are at risk of developing cirrhosis and/or liver cancer. In addition, infections with arthropod-borne flaviviruses (such as dengue fever, Japanese encephalitis, tick-borne encephalitis, St. Louis encephalitis, Murray Valley encephalitis, West Nile, and yellow fever viruses) are emerging throughout the world. The pestiviruses have a serious impact on livestock. Unfortunately, no specific antiviral therapy is available for the treatment or the prevention of infections with members of the Flaviviridae. Ongoing research has identified possible targets for inhibition, including binding of the virus to the cell, uptake of the virus into the cell, the internal ribosome entry site of hepaciviruses and pestiviruses, the capping mechanism of flaviviruses, the viral proteases, the viral RNA-dependent RNA polymerase, and the viral helicase. In light of recent developments, the prevalence of infections caused by these viruses, the disease spectrum, and the impact of infections, different strategies that could be pursued to specifically inhibit viral targets and animal models that are available to study the pathogenesis and antiviral strategies are reviewed.
Collapse
Affiliation(s)
- P Leyssen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
9
|
De Francesco R, Steinkühler C. Structure and function of the hepatitis C virus NS3-NS4A serine proteinase. Curr Top Microbiol Immunol 1999; 242:149-69. [PMID: 10592660 DOI: 10.1007/978-3-642-59605-6_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- R De Francesco
- Istituto di Ricerche di Biologia Molecolare (IRBM) P. Angeletti, Pomezia, Rome, Italy
| | | |
Collapse
|
10
|
Orrù S, Dal Piaz F, Casbarra A, Biasiol G, De Francesco R, Steinkühler C, Pucci P. Conformational changes in the NS3 protease from hepatitis C virus strain Bk monitored by limited proteolysis and mass spectrometry. Protein Sci 1999; 8:1445-54. [PMID: 10422832 PMCID: PMC2144388 DOI: 10.1110/ps.8.7.1445] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Conformational changes occurring within the NS3 protease domain from the hepatitis C virus Bk strain (NS3(1-180)) under different physico-chemical conditions either in the absence or in the presence of its cofactor Pep4A were investigated by limited proteolysis experiments. Because the surface accessibility of the protein is affected by conformational changes, when comparative experiments were carried out on NS3(1-180) either at different glycerol concentrations or in the presence of Pep4A, differential peptide maps were obtained from which protein regions involved in the structural changes could be inferred. The surface topology of isolated NS3(1-180) in solution was essentially consistent with the crystal structure of the protein with the N-terminal segment showing a high conformational flexibility. At higher glycerol concentration, the protease assumed a more compact structure showing a decrease in the accessibility of the N-terminal segment that either was forced to interact with the protein or originate intermolecular interactions with neighboring molecules. Binding of the cofactor Pep4A caused the displacement of the N-terminal arm from the protein moiety, leading this segment to again adopt an open and flexible conformation, thus suggesting that the N-terminus of the protease contributes only marginally to the stability of the complex. The observed conformational changes might be directly correlated with the activation mechanism of the protease by either the cosolvent or the cofactor peptide because they lead to tighter packing of the substrate binding site.
Collapse
Affiliation(s)
- S Orrù
- Centro Internazionale di Servizi di Spettrometria di Massa, CNR-Università di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Bartenschlager R. The NS3/4A proteinase of the hepatitis C virus: unravelling structure and function of an unusual enzyme and a prime target for antiviral therapy. J Viral Hepat 1999; 6:165-81. [PMID: 10607229 DOI: 10.1046/j.1365-2893.1999.00152.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The hepatitis C virus (HCV) is a major causative agent of transfusion-acquired and sporadic non-A, non-B hepatitis worldwide. Infections most often persist and lead, in approximately 50% of all patients, to chronic liver disease. As is characteristic for a member of the family Flaviviridae, HCV has a plus-strand RNA genome encoding a polyprotein, which is cleaved co- and post-translationally into at least 10 different products. These cleavages are mediated, among others, by a virally encoded chymotrypsin-like serine proteinase located in the N-terminal domain of non-structural protein 3 (NS3). Activity of this enzyme requires NS4A, a 54-residue polyprotein cleavage product, to form a stable complex with the NS3 domain. This review will describe the biochemical properties of the NS3/4A proteinase, its X-ray crystal structure and current attempts towards development of efficient inhibitors.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Yamada K, Mori A, Seki M, Kimura J, Yuasa S, Matsuura Y, Miyamura T. Critical point mutations for hepatitis C virus NS3 proteinase. Virology 1998; 246:104-12. [PMID: 9656998 DOI: 10.1006/viro.1998.9184] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hepatitis C virus NS3 proteinase plays an essential role in processing of HCV nonstructural precursor polyprotein. To detect its processing activity, we developed a simple trans-cleavage assay. Two recombinant plasmids expressing the NS3 proteinase region and a chimeric substrate polyprotein containing the NS5A/5B cleavage site between maltose binding protein and protein A were co-introduced into Escherichia coli cells. The proteinase processed the substrate at the single site during their polyprotein expression. Deletion analysis indicated that the functionally minimal domain of the NS3 proteinase was composed of 146 amino acids, 1059 to 1204. We isolated several cDNA clones encoding the functional domain of the NS3 proteinase from the sera of patients chronically infected with HCV and determined their proteinase activity by this trans-cleavage assay. Both active and inactive clones existed in the same patients. Comparative sequence analyses of these clones suggested that certain point mutations seemed to be related to the loss of proteolytic activity. This was confirmed by back mutation experiments. Among the critical mutations, Pro-1168 to Thr and Arg-1135 to Gly were intriguing. These amino acids, which are situated near the oxyanion hole, seem to be essential for maintaining the conformation of the active center of the NS3 proteinase.
Collapse
Affiliation(s)
- K Yamada
- Molecular Medicine Laboratory, Yokohama Research Center, Mitsubishi Chemical Corp., Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
De Francesco R, Pessi A, Steinkühler C. The Hepatitis C Virus NS3 Proteinase: Structure and Function of a Zinc-Containing Serine Proteinase. Antivir Ther 1998. [DOI: 10.1177/135965359800303s01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hepatitis C virus (HCV) NS3 protein contains a serine proteinase domain implicated in the maturation of the viral polyprotein. NS3 forms a stable heterodimer with NS4A, a viral memebrane protein that acts as an activator of the IMS3 proteinase. The three-dimensional structure of the NS3 proteinase complexed with an NS4A-derived peptide has been determined. The NS3 proteinase adopts a chymotrypsin-like fold. A β-strand contributed by NS4A is clamped between two β-strands within the N terminus of NS3. Consistent with the requirement for extraordinarily long peptide substrates (P6-P4’), the structure of the NS3 proteinase reveals a very long, solvent-exposed substrate-binding site. The primary specificity pocket of the enzyme is shallow and closed at its bottm by Phe-154, explaining the preference of the NS3 proteinase for cysteine residues in the substrate P, position. Another important feature of the NS3 proteinase is the presence of a tetrahedral zinc-binding site formed by residues Cys-97, Cys-99, Cys-145 and His-149. The zinc-binding site has a role in maintaining the structural stability and guiding the folding of the NS3 serine proteinase domain. Inhibition of the NS3 proteinase activity is regarded as a promising strategy to control the disease caused by HCV. Remarkably, the NS3 proteinase is susceptible to inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A/NS4B, NS4B/NS5A and NS5A/NS5B cleavage sites. The Ki values of the inhibitory products are lower than the Km values of the respective substrates and follow the order NS4A<NS5A<NS4B. Starting from the observation that the NS3 proteinase undergoes product inhibition, very potent, active site-directed inhibitors have been generated using a combinatorial peptide chemistry approach.
Collapse
Affiliation(s)
| | - Antonello Pessi
- Istituto di Ricerche di Biologia Molecolare ‘P Angeletti’, Pomezia, Rome, Italy
| | | |
Collapse
|
14
|
Belyaev AS, Chong S, Novikov A, Kongpachith A, Masiarz FR, Lim M, Kim JP. Hepatitis G virus encodes protease activities which can effect processing of the virus putative nonstructural proteins. J Virol 1998; 72:868-72. [PMID: 9420302 PMCID: PMC109451 DOI: 10.1128/jvi.72.1.868-872.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1997] [Accepted: 09/20/1997] [Indexed: 02/05/2023] Open
Abstract
The genome of a recently identified virus, hepatitis G virus (HGV), shows considerable homology to hepatitis C virus (HCV). Two HGV proteases similar to nonstructural proteins NS2 and NS3 of HCV were identified, and their cleavage site specificity was investigated. Amino acids essential for the protease activities were determined by mutation analysis. NS4A of HGV was demonstrated to be a cofactor for NS3-mediated proteolysis, with a region critical for activity residing between Leu1561, and Ala1598.
Collapse
Affiliation(s)
- A S Belyaev
- Genelabs Technologies, Inc., Redwood City, California 94063, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhang R, Durkin J, Windsor WT, McNemar C, Ramanathan L, Le HV. Probing the substrate specificity of hepatitis C virus NS3 serine protease by using synthetic peptides. J Virol 1997; 71:6208-13. [PMID: 9223519 PMCID: PMC191885 DOI: 10.1128/jvi.71.8.6208-6213.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We probed the substrate specificity of a recombinant noncovalent complex of the full-length hepatitis C virus (HCV) NS3 serine protease and NS4A cofactor, using a series of small synthetic peptides derived from the three trans-cleavage sites of the HCV nonstructural protein sequence. We observed a distinct cleavage site preference exhibited by the enzyme complex. The values of the turnover number (k(cat)) for the most efficient NS4A/4B, 4B/5A, and 5A/5B peptide substrates were 1.6, 11, and 8 min(-1), respectively, and the values for the corresponding Michaelis-Menten constants (Km) were 280, 160, and 16 microM, providing catalytic efficiency values (k(cat)/Km) of 92, 1,130, and 8,300 M(-1) s(-1). An alanine-scanning study for an NS5A/5B substrate (P6P4') revealed that P1 Cys and P3 Val were critical. Finally, substitutions at the scissile P1 Cys residue by homocysteine (Hcy), S-methylcysteine (Mcy), Ala, S-ethylcysteine (Ecy), Thr, Met, D-Cys, Ser, and penicillamine (Pen) produced progressively less efficient substrates, revealing a stringent stereochemical requirement for a Cys residue at this position.
Collapse
Affiliation(s)
- R Zhang
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Urbani A, Bianchi E, Narjes F, Tramontano A, De Francesco R, Steinkühler C, Pessi A. Substrate specificity of the hepatitis C virus serine protease NS3. J Biol Chem 1997; 272:9204-9. [PMID: 9083052 DOI: 10.1074/jbc.272.14.9204] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The substrate specificity of a purified protein encompassing the hepatitis C virus NS3 serine protease domain was investigated by introducing systematic modifications, including non-natural amino acids, into substrate peptides derived from the NS4A/NS4B cleavage site. Kinetic parameters were determined in the absence and presence of a peptide mimicking the protease co-factor NS4A (Pep4A). Based on this study we draw the following conclusions: (i) the NS3 protease domain has an absolute requirement for a small residue in the P1 position of substrates, thereby confirming previous modelling predictions. (ii) Optimization of the P1 binding site occupancy primarily influences transition state binding, whereas the occupancy of distal binding sites is a determinant for both ground state and transition state binding. (iii) Optimized contacts at distal binding sites may contribute synergistically to cleavage efficiency.
Collapse
Affiliation(s)
- A Urbani
- Istituto di Ricerche di Biologia Molecolare (IRBM) P. Angeletti, Pomezia, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Stempniak M, Hostomska Z, Nodes BR, Hostomsky Z. The NS3 proteinase domain of hepatitis C virus is a zinc-containing enzyme. J Virol 1997; 71:2881-6. [PMID: 9060645 PMCID: PMC191414 DOI: 10.1128/jvi.71.4.2881-2886.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NS3 proteinase of hepatitis C virus (HCV), contained within the N-terminal domain of the NS3 protein, is a chymotrypsin-like serine proteinase responsible for processing of the nonstructural region of the HCV polyprotein. In this study, we examined the sensitivity of the NS3 proteinase to divalent metal ions, which is unusual behavior for this proteinase class. By using a cell-free coupled transcription-translation system, we found that HCV polyprotein processing can be activated by Zn2+ (and, to a lesser degree, by Cd2+, Pb2+, and Co2+) and inhibited by Cu2+ and Hg2+ ions. Elemental analysis of the purified NS3 proteinase domain revealed the presence of zinc in an equimolar ratio. The zinc content was unchanged in a mutated NS3 proteinase in which active-site residues His-57 and Ser-139 were replaced with Ala, suggesting that the zinc atom is not directly involved in catalysis but rather may have a structural role. Based on data from site-directed mutagenesis combined with zinc content determination, we propose that Cys-97, Cys-99, Cys-145, and His-149 coordinate the structural zinc in the HCV NS3 proteinase. A similar metal binding motif is found in 2A proteinases of enteroviruses and rhinoviruses, suggesting that these 2A proteinases and HCV NS3 proteinase are structurally related.
Collapse
Affiliation(s)
- M Stempniak
- Agouron Pharmaceuticals, Inc., San Diego, California 92121, USA
| | | | | | | |
Collapse
|
18
|
Mori A, Yuasa S, Yamada K, Nagami Y, Miyamura T. The N-terminal region of NS3 serine proteinase of hepatitis C virus is important to maintain its enzymatic integrity. Biochem Biophys Res Commun 1997; 231:738-42. [PMID: 9070884 DOI: 10.1006/bbrc.1997.6180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus codes a serine proteinase in nonstructural protein 3 (NS3) to produce viral replicative machinery. Recently, we reported that the activity of NS3 proteinase (region 1050-1214) was efficiently inhibited by some chelators. Kinetic analysis revealed that its K(m) value was 3.9 mM. In contrast, an enzyme covering region 1027-1214 (including N-terminal region of NS3) was found to show an improved K(m) of 0.3 mM and a remarkably reduced susceptibility to EDTA. These results suggest that the N-terminal region of NS3 is not essential for the proteinase activity but indispensable to maintain its structural integrity.
Collapse
Affiliation(s)
- A Mori
- Molecular Medicine, Laboratory, Yokohama Research Center, Mitsubishi Chemical Corp, Japan
| | | | | | | | | |
Collapse
|